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Abstract
Norm emergence is a process where agents in a
multi-agent system establish self-enforcing con-
formity through repeated interactions. When such
interactions are confined to a social topology,
several self-reinforcing substructures (SRS) may
emerge within the population. This prevents a for-
mation of a global norm. We propose incremental
social instruments (ISI) to dissolve these SRSs by
creating ties between agents. Establishing ties re-
quires some effort and cost. Hence, it is worth to
design methods that build a small number of ties
yet dissolve the SRSs. By using the notion of in-
formation entropy, we propose an indicator called
the BA-ratio that measures the current SRSs. We
find that by building ties with minimal BA-ratio,
our ISI is effective in facilitating the global norm
emergence. We explain this through our exper-
iments and theoretical results. Furthermore, we
propose the small-degree principle in minimising
the BA-ratio that helps us to design efficient ISI
algorithms for finding the optimal ties. Experi-
ments on both synthetic and real-world network
topologies demonstrate that our adaptive ISI is
efficient at dissolving SRS.

1. Introduction
From greeting etiquette and driving habits to personal con-
ducts in workplace, social norms shape behaviors that are
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generally accepted by a society (Morris-Martin et al., 2020;
Santos et al., 2018). Online societies such as those facili-
tated by Facebook, Twitter, and Reddit present large plat-
forms for expressing vastly different opinions and practices.
In a decentralized online society, social norms are often
organically grown. Take, as examples, the spread of Inter-
net memes (Bauckhage, 2011) and the evolving narratives
of emoji (Miller et al., 2016). The decentralized nature of
open platforms leaves open the possibility for social bots
to manipulate public opinion, disrupt communication, and
influence public sentiment (Ferrara et al., 2016). Norm
emergence is the study of the process in which social norms
arise naturally through the interactions between individuals
of the society. Understanding norm emergence in diverse
societies is important as norms regulate communication,
help alleviate conflicts, enhance coordination, and ensure
meeting societies’ goals (Levin, 2002).

To capture the essence of norm emergence, imagine an in-
dividual who faces several possible actions, among which
only one is to be taken. The decision, which actions is taken,
depends on the interactions between this individual and oth-
ers in the network. One can naturally model this scenario as
a multi-agent system (MAS) (Jiang & Jiang, 2013). Here,
individuals are agents who can internalize sensory input
and derive actions autonomously. Through interacting with
other agents, a type of self-enforcing behaviors, for instance
a social norm, may be adopted by every agent. One repre-
sents inter-agent interactions as games that contain multiple
equilibria. A norm is then defined as one of these equilib-
ria which is accepted by every agent in the MAS (Young,
1996). Norm emergence is then the process that leads to the
establishment of such norm.

Sen and Airiau (Sen & Airiau, 2007) proposed the so-
cial learning mechanism. This is a simple yet powerful
paradigm for norm emergence. At every iteration, selected
agents participate in a fixed stage game through trial-and-
error. Such games are meant to simulate repeated inter-
actions between agents. After observing the outcomes of
their games, these agents accumulate their experiences with
a learning mechanism. The experience will, in turn, di-
rect their game plays in subsequent iterations. The process
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continues indefinitely and captures norm emergence as a
process of “gradual accretion of precedent” as defined in
(Young, 1996).

Despite the general belief that social learning prepares the
way for norm emergence, there are situations where a norm
fails to emerge (Hu & Leung, 2017; Villatoro et al., 2011;
Toivonen et al., 2009). Often these situations occur when
one confines agents’ interactions in a pre-defined social
topology. To digest these failures, one may resort to empiri-
cism by relaxing the notion of norm. A common practice is
to declare that a norm emerged when 90% of the population
(rather than all) have the same behavior (Kittock, 1993).
However, even this 90% relaxation might be too strong.
It has been observed that communities may converge to
different behaviors when the social topology is naturally
segregated into communities (Hu & Leung, 2017). These
are called local norms. In this sense, each community forms
a self-reinforcing substructure (SRS) that remain stable over
time (Villatoro et al., 2011).

In many situations, a desirable outcome is have these SRS
dissolved so that the entire population achieves a global
norm. This applies when the goal is to, e.g., establish a com-
mon frequency of communication among sensors in a WSN,
or enforce protocols in a multi-agent system, or unify opin-
ions among multiple online users (Mihaylov, 2012). Given
that the social topology plays a vital role in the formation
of SRSs, a natural approach to achieve global norm in the
presence of SRSs is to modify the social ties. In particular,
adding social ties corresponds to establishing interactions
between agents, e.g., in a WSN, adding a tie means cre-
ating a channel to allow two sensors to communicate. In
an online social platform, users can be linked through so-
cial recommendation (Yan et al., 2018) (Moskvina & Liu,
2016). Based on this intuition, we introduce incremental
social instruements (ISI) for dissolving SRSs that guarantee
emergence of a global norm (Villatoro et al., 2011). An
ISI process adds new social links to the social topology to
promote norm emergence in the entire population. Such a
process makes sense since in fully connected networks a
social norm is expected to be formed (Sen & Airiau, 2007).
A natural question arises as to how we can implement such
ISIs most effectively, i.e., with the small number of new ties.

The contributions of this paper are the following:

1. We use the concept of information entropy, and define
two entropies: A-entropy and B-entropy. These en-
tropies, respectively, measure uncertainty of ties and
beliefs between the agents. We define their ratio as BA-
ratio that, in some ways, measures the interaction diver-
sity among the agents in the population.

2. We propose that minimizing BA-ratio is an efficient ap-
proach to dissolve SRSs and promote norm emergence.

We further prove the small-degree principle in minimiz-
ing BA-ratio at the process of creating links. Based on
this, we design efficient ISIs for finding the optimal link.

3. We introduce two ways that implements ISIs, one static
and one adaptive. We perform experiments and compare
them with several benchmarks and discuss their effect on
both synthetic and real-world networks. We demonstrate
that our adaptive ISI is effective at dissolving SRSs. We
also discuss the impact of various network properties at
dissolving SRSs.

2. Related Work
We review key breakthroughs in the study of norm emer-
gence. Axelrod was among the first who studied social
norms from an emergent point of view (Axelrod, 1986).
His work laid down many key characteristics in subsequent
studies, e.g., norms are self-enforcing behaviors of social
actors. Shoham and Tennenholtz introduced the paradigm
of norm emergence through repeated coordination games
(Shoham & Tennenholtz, 1992). In this paradigm, a norm
is an equilibrium achieved through repeated interactions be-
tween agents. This paradigm has become a standard model
of norm emergence; we too adopt this paradigm in this
work. Importantly, they also focused on the efficiency of
norm emergence. Efficiency is critical as agents’ incoordina-
tion is regarded undesirable and thus faster norm emergence
is preferred.

Kittock (Kittock, 1993) was the first who studied the effect
of social topology to norm emergence. The author observed
that in many cases, even though the majority of agents co-
ordinate their actions after only a few repeated interactions,
it is often impossible for the entire population to adopt the
same action. Thus it makes sense to accept 90% conver-
gence as a threshold that indicates a norm has emerged.
(Young, 1996) studied norm emergence under various so-
cial topologies. The author observed a “global diversity
effect” where the presence of several sub-populations that
do not interact with one another could lead to different, and
sometimes conflicting norms.

Sen and Airiau (Sen & Airiau, 2007) proposed the social
learning framework that greatly extends the varieties of
learning mechanism of agents. In particular, Q-learning,
also adopted in our paper, is used to guide agents’ de-
cisions. Once again, the authors observed that disjoint
sub-populations with infrequent inter-community interac-
tion could lead to different local norms. Since then, there
have been a lot of studies that explored the roles network
topologies play in norm emergence under various learning
paradigms (Mukherjee et al., 2008; Yu et al., 2013; Hao
et al., 2017; Hu et al., 2019). Notably, Hu and Leung in (Hu
& Leung, 2017) studied networks with salient community
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structure and verified the emergence of stable diverse local
norms in such networks.

These works clearly show that network connectivity and
SRSs may play a major role in global convergence. Villa-
toro, et al. (Villatoro et al., 2011) introduced social instru-
ments aimed at dissolving the SRSs. A social instrument
is an agent-level mechanism that exploits the social topol-
ogy with the purpose of influencing agents’ behaviors. The
authors conducted experiments on regular and scale-free
networks using two social instruments: rewiring the social
ties or expanding agents’ scopes of observation. These so-
cial instruments differ from our proposed social instruments
in three aspects: (1) rewiring might destroy the original
topological connection between individuals contrasting our
desire to preserve the connections; (2) their mechanism tend
to produce disconnected components, which even hinder the
emergence of global norms; (3) their work focuses on indi-
viduals choosing actions that are beneficial to them, while
our work focuses on a central organization that helps indi-
viduals establish connections to achieve global norms. We
thus aim to design incremental social instruments that help
individuals to establish new connections, and we look for
techniques that integrate different local norms in one global
norm in an effective way.

Since SRS is related to the community structure of the graph,
how to measure the structural information of the graph is
of great significance for the study of global convergence.
Recently, Li and Pan proposed a notion of structural in-
formation entropy to quantify structural information of a
graph (Li & Pan, 2016). This notion advances the study of
problems related to graph structure, for example, measuring
the security of a network (Li et al., 2016), defending net-
works against virus attack (Li et al., 2017) and hiding the
community structure by modifying the original graph (Liu
et al., 2019). Inspired by those works, in this paper, we
study a metric to measure SRS, and then use this metric to
guide the dissolution of SRS and finally reach the global
norm.

3. Preliminaries
We present the game-theoretic framework for norm emer-
gence in networks proposed in (Sen & Airiau, 2007). Let
N = {v1, . . . , vn} be a set of n agents. Assume that these
agents are embedded in a social topology, i.e., an undirected
graph G = (N,E) where every edge {u, v} represents a
social link between agents u and v. Informally, the edge
{u, v} provides a venue where the agents u and v interact.

3.1. Stage game

When interacting with others, agents can choose from the
set A = {a1, . . . , am} of m actions. Consider the situa-

Table 1. 2-player-m-action coordination game
a1 a2 ... am

a1 (1, 1) (−1,−1) ... (−1,−1)
a2 (−1,−1) (1, 1) ... (−1,−1)
... ... ... ... ...
am (−1,−1) (−1,−1) ... (1, 1)

tion when these actions are equally desirable by the agents,
meaning that the outcome of the interaction only depends on
coordination of the players. By coordination we mean that
the two agents align their actions as specified in a (2-player
m-action) coordination game. The payoff matrix of this
game is in Table 1. Intuitively, the agents make indepen-
dent moves by selecting the actions. If the agents choose
the same action, they are both rewarded with a payoff 1;
otherwise, they are both punished with a penalty -1. In this
way, the game has m Nash equilibria (ai, ai) where ai ∈ A,
all of which are equally preferred by the two agents.

3.2. Social learning

Social learning is used as the action selection mechanism.
The process proceeds in iterations. At each iteration, a
number of disjoint edges are chosen randomly. The pair of
agents in a selected edge then play a coordination game. An
agent only receives its own payoff as the outcome of playing
the stage game. During the play, each agent vi maintains a
private belief state bi ∈ A which directs vi to the next action.
Once agent vi receives a payoff, the belief state bi is adjusted
with the payoff. In the literature, a number of algorithms
have been used to implement the social learning paradigm
(Morris-Martin et al., 2020), e.g., Q-Learning, WoLF-PHC,
and Fictitious play (FP), among which Q-learning has been
widely used (Yu et al., 2013; Villatoro et al., 2009; Hu &
Leung, 2017). The main reason is that Q-learning tend to
lead the majority of agents to adopt the same action with
fewer number of iterations.

In Q-learning, every agent vi maintains a Q-value Qi(aj)
for each action a ∈ A. The action bi is thus the action aj
that has the maximum Q-value, i.e., bi = arg maxaj Qi(aj).
At every iteration, the agent vi chooses the action bi with
ε-greedy exploration. After getting a payoff r from playing
action aj , the agent vi updates Qi(aj):

Qi(aj) := (1− λ)(Qi(aj)) + λr,

where λ ∈ [0, 1]. In this paper, we set λ = 0.5 and ε = 0.1
(exploration parameter) according to (Hu & Leung, 2017).

3.3. Norm emergence

The desired outcome of a social learning process is when
agents converge to actions that would maximize their ex-
pected utility. This would corresponds to a state when the
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Figure 1. The effect of applying ISI to the dolphin network1. Each
picture displays stabilized SRS indicated by different colors. The
original network contains 62 nodes and 159 edges. Then the
configurations after adding 20 and 40 edges respectively.

agents hold the same belief states. This state gives rise to
the notion of norms, as defined below. Here, we focus on
the belief state b instead of the chosen actions as we adopt
ε-greedy exploration which forbids the convergence of ac-
tions. We therefore regard b as the outcome of the social
learning process.

Definition 1. We say that a local norm emerges in a sub-
population M ⊆ N if the belief states bi of all agents
vi ∈ M converge to the same aj ∈ A. In this case, if
M 6= N , then M is called a self-reinforcing substructure
(SRS) in N , and if M = N , we say that a (global) norm
has emerged.

Remark 1. The notions above are defined for a social
learning process which in theory has infinitely many itera-
tions. Empirically, though, we may declare that a (local or
global) norm has emerged when convergence is observed
within a sufficient number (e.g., 5000) of iterations. This
has been adopted by the vast majority of work that study
norm emergence (Sen & Airiau, 2007; Hu & Leung, 2017;
Yu et al., 2013; Hao et al., 2017; Morris-Martin et al., 2020).

3.4. Incremental social instrument

Villatoro, et al. (Villatoro et al., 2011) observed that SRSs
form a major bottleneck for the emergence of a global norm.
Moreover, SRSs arise mainly due to connectivity issues
in the social topology. (Hu & Leung, 2017) have shown
that communities often play the roles of SRSs. This is
consistent with studies in social psychology (Cialdini &
Trost, 1998) where online communities build their own
social conventions. Interestingly, a fully connected network
does not exhibit any SRSs and global norm has been shown
to always emerge.

Let G = (N,E) be a social topology on which SRSs are
observed. As we mentioned above, adding edges to G until
G becomes fully connected will dissolve SRSs. We thus
propose the idea of incremental social instrument (ISI) to
facilitate norm emergence, for example, applying ISI to

the dolphin network1. In order to implement this idea we
need to design methods that find small number of edges
such that a global norm emerges. Let E′ be a set of pairs
{u, v} where u 6= v and u, v ∈ N . By G ⊕ E′ denote the
graph (N,E ∪ E′) obtained by adding edges E′ into G.
Our problem thus aims to find a set E′ such that a global
norm is more likely to emerge. In the rest of the paper
we design appropriate implementations of the incremental
social instrument.

4. ISI based on minimizing BA-ratio
To better understand how agents interaction in a social topol-
ogy, we adopt an information-theoretic argument. In the
following, we invoke information entropy to interpret vari-
ous components of the social learning process that we de-
scribed above. In particular, we focus on (1) the pattern of
interactions, and (2) the outcomes of these interactions,

4.1. Interaction

Agent interaction: As explained Section 3.2, each it-
eration of the social learning process involves the inter-
actions from randomly sampled set S of pairs of agents.
These pairs of agents can be viewed as edges in the graph
G = (N,E), the graph G represents the patterns of agent
interactions. Let us list all agents (vertices) v1, . . ., vn
of the graph G. Assume that the interactions between the
pairs of agents in S takes place in different discrete times
t = 0, 1, . . . Let {xt, yt} be the pair of agents that interact
at time t. The degree di of vi captures the probability that
vi ∈ {xt, yt}. This probability is di/2|E|. By Shannon’s
definition of information entropy, the information content
of vi is− log2(di/2|E|) that reveals the level of uncertainty
if vi is chosen to participate in an interaction (Cover, 1999).
Thus, given the probabilistic distribution on the nodes of the
graph G, we have the overall interaction entropy, that we
call the A-entropy, defined as:

Ha(G) = −
∑
vi∈N

di
2|E|

log2

di
2|E|

. (1)

The notion of A-entropy defined above reflects the interac-
tion between different agents. Specifically, a smaller value
of A-entropy indicates that the interaction is concentrated in
a small set of individuals, while a larger value implies that
each individual has a more equal opportunity to participate
in the interaction.

Belief in interaction: Suppose every agent vi has a be-
lief state bi. In Q-learning, the belief state is an action
with the maximum Q-value. The belief states b1, . . . , bm
of the agents partition the population N into m disjoint

1http://www-personal.umich.edu/∼mejn/netdata/

http://www-personal.umich.edu/~mejn/netdata/
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sub-populations N1, . . . , Nm, where Nj := {vi ∈ N |
bi = aj}. Note that Nj can be empty. When Nj = N
for some j, the agents have reached a global norm. For
j ∈ {1, . . . ,m}, the volume of Nj is νj :=

∑
vi∈Nj

di. It
is clear that

∑m
j=1 νj = 2|E|.

Assume that the players adopt their beliefs as actions (so
ε = 0) during social learning. An interaction between agents
xt, yt thus involves agents playing their belief states pt, qt,
respectively. There are three cases for any action aj : 1)
aj /∈ {pt, qt}, that is, aj does not appear in the interaction;
2) aj ∈ {pt, qt} and pt 6= qt, that is, aj appears once;
3) aj = pt = qt, that is, aj appears twice. Then, for a
given graph G and the partition P = {N1, . . . , Nm}, the
probability that action aj appears in the interaction is

Pr(aj) =
∑
bi=aj

di
2|E|

=
∑
vi∈Nj

di
2|E|

=
νj

2|E|
.

The value νj/2|E| measures the reputation of action aj in
the population. We have, in fact, just defined the belief
entropy, that we call B-entropy and denote by HPb (G), as
follows:∑
aj∈A

Pr(aj) log2 Pr(aj) = −
∑
aj∈A

νj
2|E|

log2

νj
2|E|

. (2)

The B-entropy captures the average information content of
agents’ beliefs in their interaction.

Lemma 1. For any connected graph G = (N,E) and
partition P = {N1, . . . , Nm}, we have 0 ≤ HPb (G) ≤
Ha(G).

Proof. Obviously, HPb (G) ≥ 0. The result is immediate
because − log2

νj
2|E| ≤ − log2

di
2|E| for vi ∈ Nj .

Note that Ha(G) is the maximal value of HPb (G). The
equationHPb (G) = Ha(G) holds if and only if each agent
takes a different beliefs. At this time, we have m ≥ n.

Remark 2. We point out that, even though in principle,
B-entropy is defined on an arbitrary partition of agents, it
makes sense in our context only when we apply it to the re-
sulting partition derived from the belief states of agents after
a social learning process, i.e., when agents’ belief states sta-
bilize. This partition reflects a self-reinforcing substructure
of the population due to their patterns of communication
G = (V,E), and therefore it can be considered, in this work,
as an inherent attribute of G.

4.2. Belief-Agent ratio

We noted above thatHa(G) is the upper bound forHPb (G).
Hence, it makes sense to define their ratio.

Definition 2. [BA-ratio] The belief-agent ratio of a partition
P defined on the population N with respect to their social
topology G = (N,E) is ρG(P) := HPb (G)/Ha(G).

The BA-ratio reflects the level of diversity of the agents
preferred actions (i.e., belief states). HPb (G) = 0 if and
only if νj

2|E| = 1 for some 1 ≤ j ≤ m (Cover, 1999).
Combined with Lemma 1, we obtain the following theorem:

Theorem 1. For any connected graph G = (N,E) on the
population N and partition P = {N1, . . . , Nm}, we have
0 ≤ ρG(P) ≤ 1 and ρG(P) = 0 if and only if a global norm
emerges in N , i.e., for some 1 ≤ j ≤ m, Nj = N .

Clearly, ρG(P) is a normalized version of B-entropy. We
note that if ρG(P) = 1, then each agent holds its own be-
lief; also, if ρG(P) = 0, then all agents reach a consensus.
Therefore, minimizing ρG(P) facilitates the norm emer-
gence. We conclude that in order to design an effective
ISI, that is, an edge creation strategy that links members of
distinct SRSs to integrate local norms into one global norm,
it makes sense to create edges by minimizing ρG(P).

4.3. Small-degree principle

When the graph G has SRSs such as N1, . . ., Nm described
above, it is hard to descrease the BA-ratio. This amounts to
either decreasingHPb (G), that is, decreasing beliefs among
agents or increasingHa(G) interactions between the agents.
Which agents should we link in order to decrease the value
ρG(P)? It turns out linking the agents with smallest degrees
and distinct beliefs is one such natural tool.

We call agents vi, vk non-interacting-action-inconsistent
(NIAI) agents if {vi, vk} /∈ E and bi 6= bk. We call a
pair e = {vi, vk} of NIAI agents BA-ratio minimizing if
ρG⊕{e}(P) ≤ ρG⊕{e′}(P) for all NIAI agent pairs e′.

Theorem 2 (Small-Degree Principle). Consider two NIAI
pairs e = {vi, vk}, e′ = {vi′ , vk′} ∈ Nj ⊗N`.

(1) If min{di, dk} ≤ min{di′ , dk′} and max{di, dk} ≤
max{di′ , dk′}, then ρG⊕{e}(P) ≤ ρG⊕{e′}(P).

(2) If e = {vi, vk} is BA-ratio minimizing, then vi has the
smallest degree among those nodes in Nj that are not
interacting with vk.

Proof. For h ∈ {1, . . . ,m}, let ∆h denote

νh
2|E|+ 2

log2

νh
2|E|+ 2

.

By (2), bothHPb (G⊕ {e}) andHPb (G⊕ {e′}) are equal to

−
∑
h6=j,`

∆h −
∑

h∈{j,`}

[
νh + 1

2|E|+ 2
log2

νh + 1

2|E|+ 2

]
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Algorithm 1 Incremental Social Instrument (ISI)
Input: G = (V,E), N = (N1, N2, ..., Nm)
Output: a NIAI pair {u, v}
1: ρmin = 1;
2: for (j, `) ∈ {1, . . . ,m}2 where ` > j do
3: Lj`← sort Nj ∪N` into non-decreasing degree order,

s← 1, t← |Lj`|;
4: while s < t do
5: for k = s+ 1→ t do
6: e← {Lj`[s], Lj`[k]};
7: if δ(Lj`[s], Lj`[t]) = 0 & ρG⊕e < ρmin then
8: u← Lj`[s], v ← Lj`[k];
9: ρmin = ρG⊕e, t = k − 1; Break;

10: end if
11: end for
12: s← s+ 1;
13: end while
14: end for
15: RETURN {u, v}

Therefore if we want to prove ρG⊕{e}(P) ≤ ρG⊕{e′}(P),
by the definition of BA-entropy, it remains to prove that
Ha(G⊕{e}) ≥ Ha(G⊕{e′}). Define a function f : R→
R as f(x) = (x+ 1) log2(x+ 1)− x log2 x. Denote

ηh = − dh + 1

2|E|+ 2
log2

dh + 1

2|E|+ 2
+

dh
2|E|+ 2

log2

dh
2|E|+ 2

then,

Ha(G⊕ {e})−Ha(G⊕ {e′}) = ηi + ηk − ηi′ − ηk′

=
1

2|E|+ 2
(f(di′) + f(dk′)− f(di)− f(dk)) (3)

Without loss of generality, assume di = min{di, dk} ≤
min{di′ , dk′} = di′ and dk = max{di, dk} ≤
max{di′ , dk′} = dk′ , since f ′(x) = log2(1 + 1/x) > 0
when x > 0, then the function f is monotonically increas-
ing. Then f(di′) ≥ (di) and f(dk′) ≥ f(dk). By equation
(3), we have Ha(G ⊕ {e}) ≥ Ha(G ⊕ {e′}). Then we
complete the proof of (1). Let vk = vk′ , the conclusion (2)
can be obtained immediately by (1).

The theorem above suggests that an ISI that puts priority
on creating edges between non-interacting agents who have
small degrees will result in faster drop of the BA-ratio, hence
it facilitates norm emergence in a more effective way.

Remark 2. Denote δ(vi, vk) = 0 if vi and vk have differ-
ent beliefs and have no edge between them in Alg.1. The
worst-case complexity of Alg.1 is O(n2). On sparse graph,
this complexity is onlyO(m2) wherem is the number of ac-
tions. This is because {Lj`[s], Lj`[s+ 1]} in line 6 is likely
to have the minimum degrees of substructures Nj ⊗ N`
respectively and is non-interacting. In this case, the ‘while’
loop in line 4 and the ‘for’ loop in line 5 are executed only

once. In addition, it can be easily obtained by Theorem 2
that Alg.1 outputs a NIAI edge e that minimizes ρG⊕e. Also,
this Algorithm help us to design two methods to facilitate
global norm, i.e., Static ISI and Adaptive ISI, in Section 5.

4.4. Static and Adaptive ISI

We describe two scenarios for ISI: static and adaptive. Both
scenarios start when agents stabilise on their initial beliefs
forming SRS. In the static case, the algorithm only has
knowledge about the initial beliefs, while the adaptive case
allows the algorithm to take into account changes in agents’
beliefs when edges are added iteratively.

Static ISI. Let G = (N,E) be a social topology. Suppose
that the agents in N have arrived at local norms, represented
by the partition P = {N1, . . . , Nm}. That means the agent
vi ∈ Nj has its belief bi = aj . The goal is output a set E′

of non-interacting pairs so that adding E′ into the social
topology G will effectively dissolve the SRS N1, . . . , Nm
such that Nj = N for some j. We call this problem the
static ISI problem as the central organization only has the
have the knowledge of the initial beliefs and the edges in E′

can be computed at one go depend on the initial beliefs.

As the description of BA-ratio, our algorithm will aim to
reduce the BA-ratio ρG(P) of the social topology by cre-
ating edges between nodes. Algorithm 2 implements the
strategy and outputs an approximate optimal edge set E′ of
ρG⊕E′(P) through the gradient descent method.

Algorithm 2 Static Incremental Social Instrument (SISI)
Input: Social topology G = (N,E), local norm partition P =
{N1, . . . , Nm}, budget h ∈ N
Output: Set E′ of h non-interacting pairs.

Create empty sets E′ ← ∅
for j = 1, . . . , h do

Find a NIAI e with the smallest ρG⊕(E′∪e)(P) by Alg.1;
Update E′ = E′ ∪ e;

end for
return E′

Adaptive ISI. In static ISI, the knowledge of agents’ beliefs
are limited in the initial state. This may make a wrong
judgment for the subsequent edge addition, since agents
may change their beliefs as they have more interaction with
other beliefs through the newly added social instrument. In
adaptive ISI, suppose that the agents are interacting while
the social instrument is putting in place. That is, we assume
that the actions (i.e. belief states) of the players may change
as the social topology changes. When one edge is added
between two nodes, the belief state partition P may also
change. Thus the next decision to be made on which edge to
add should be made on this updated P according to Alg. 1.

For this idea to make sense, we need to modify the prob-
lem definition above. We propose the adaptive ISI prob-
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Table 2. The table lists key statistics of the generated graphs using
the GRP and LFR models. Parameters in GRP: k = 10, v = 1.
Parameters in LFR: α = 2.5, β = 1.5, k = 5.

Type Parameter n |E| m Modularity

GRP

σ = 0.9 500 2408 10 0.789
σ = 0.8 500 2465 10 0.692
σ = 0.7 500 2472 10 0.596
σ = 0.6 500 2565 10 0.495
σ = 0.5 500 2524 10 0.398

LFR

µ = 0.1 500 1411 9 0.789
µ = 0.2 500 1378 11 0.670
µ = 0.3 500 1571 8 0.465
µ = 0.4 500 1491 7 0.331
µ = 0.5 500 1362 9 0.300

lem as follows: The input of the problem is still a social
topology G = (N,E) with established local norms P =
{N1, . . . , Nm}. A desired algorithm that solves the prob-
lem will generate a sequence of new edges e1, e2, e3, . . .
such that after creating every new edge et, the agents will
continue with their social learning process, until achieving
a (meta-)stable state in the form of an updated partition
P ′ = {N ′1, . . . , N ′m}, at which point the algorithm then
computes the next edge et+1 with respect to P ′. In this
sense, the algorithm is adaptive as it is able to adjust its
decisions at runtime by observing the belief states of the
agents. Moreover, in the adaptive ISI problem there is no
need to have a pre-determined number h of new edges to be
created; we can simply run the algorithm to iteratively add
edges until a global norm emerges.

Algorithm 3 Adaptive Incremental Social Instrument (AISI)
Input: Social topology G = (N,E), local norm partition P =
{N1, . . . , Nm}, budget h ∈ N
Output: A sequence of h non-interacting pairs e1, e2, . . .

while there exists vi, vk such that bi 6= bk and j = 1→ h do
Find an edge e by Alg.1 with respect to the current social
topology G and partition P;
Update G = G⊕ e and output ej = e;
Run the social learning process until the agents stabilize and
record the current partition as the new P;

end while

5. Experiments
Through experiments, we would like to investigate: 1) The
effectiveness of our algorithms w.r.t. integrating local norms
and dissolving SRS in both the static and adaptive scenar-
ios; 2) How accurately BA-ratio (as in Def. 2) reveals the
diversity of agents’ actions; 3) How parameters such as com-
munity number, size, and action size affect the algorithms’
performance.

5.1. Experiment setup

Network datasets. We adopt both synthetic and real-
world networks in our experiments. For synthetic networks,

Table 3. Key statistics of the synthetic and real-world networks.
Type Graph n |E| m Modularity

GRP grp 200 0.9 200 468 5 0.726
grp 500 0.9 500 2408 8 0.789

LFR lfr 100 0.1 100 302 5 0.638
lfr 500 0.1 500 1411 8 0.788

RN enron email 143 623 7 0.568
virgili email 1133 5451 10 0.572

RN dblp 202 202 387 5 0.510
dublin contact 410 2765 7 0.711

we generate initial social topologies using two well-used
random network models: GRP (Brandes et al., 2003): This
model consists of parameters g, v, `, k and σ: The generated
graph has ` communities, average degree k, the separation
degree σ, the community size g and standard deviation v.
More precisely, edges in the graph are added randomly to
make sure that the ratio of intra-community edges to the
whole edges is σ. LFR (Lancichinetti et al., 2008): This
model consists of parameters n, γ, β, µ, k, where n is the
number of nodes, γ and β are power-law exponents for the
degree and community size distribution, µ is the fraction
of inter-community edges, and k is the average degree. In
fact, the parameter µ in LFR is equivalent to 1 − σ. LFR
is different from GRP in that the community size is not
uniform but are generated from a power-law distribution.
Moreover, the degree distribution within each community
also follows a power law.

For the real-world networks (RN), we choose two email
communication network: enron email2 and virgili email3;
one co-authorship network: dblp4; and one human contact
network: dublin contact5. We point out that the dblp dataset
available online are too large for our experiments, so we
only extract several communities from it. See Table 3 for
details. In addition, we also list the modularity of the initial
partition to show the strength of community structure in
each graph (Newman, 2006).

Performance metrics. We rely on two indices to re-
veal global norm emergence: The first is the propor-
tion of the dominant action, defined as the maximum
proportion of agents who adopt the same belief, i.e.,
max1≤j≤m

|{i|bi=aj}|
n . The second is the diverseity in-

dex proposed by Hu and Leung in (Hu & Leung, 2017):
Given a social topology G = (N,E) and a partition
P = {N1, . . . , Nm}, the diversity index ι(P) is defined
as

ι(P) :=
1

log2 n

∑
1≤j≤m

−|Nj |
n

log2

|Nj |
n

The diversity index is the normalized information entropy

2http://networkrepository.com/ia-enron-only.php
3https://deim.urv.cat/∼alexandre.arenas/data/welcome.htm
4https://snap.stanford.edu/data/com-DBLP.html
5http://networkrepository.com/ia-infect-dublin.php

http://networkrepository.com/ia-enron-only.php
https://deim.urv.cat/~alexandre.arenas/data/welcome.htm
https://snap.stanford.edu/data/com-DBLP.html
http://networkrepository.com/ia-infect-dublin.php
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for a random variable that selects an action a ∈ A based
on the proportion of the population that adopt it. In this
sense, it is a measure on how wide the actions spread within
the population N. Normalizing the information entropy by
dividing with log2 n makes the value of ι(P) lying within
[0, 1]. In this experiment, we would like to verify that our
notion of BA-ratio ρG(P) correlates well with the diversity
index ι(P).

Social learning. As mentioned above, we adopt Q-learning
for social learning. On each graph, we run 5000 iterations
to convergence for each execution of the social learning
process. If a global norm fail to emerge after the social
learning process, we observe the SRS that have formed
and regard it as the initial partition, i.e., the local norms.
After adding one edge by an edge creation strategy, we
start another execution social learning, and compute the
resulting proportion of dominant action and the new local
norm partition. This lasts until the global norm emerges.

Benchmarks. Apart from implementing our static and adap-
tive strategies (SISI and AISI) to creating edges, we also
run four benchmark methods to create edges: Random: add
a new non-interacting edge randomly; Min-Degree: Ran-
domly choose two agent substructures Nj and N`, add a
new edge {vi, vk} in Nj ×N` 6= φ, where di is the smallest
degree in Nj and dk is the smallest degree among non-
interacting pair all {vi, vk} ∈ Nj ×N`; Max-Degree: re-
place smallest by largest in Min-Degree; MaxMin-Degree:
Randomly choose two agent substructures Nj and N`, add
a new edge {vi, vk} in Nj × N` 6= φ, where di is the
largest degree in Nj and dk is the smallest degree among
non-interacting pair all {vi, vk} ∈ Nj ×N`.

We point out that all four methods can be implemented using
two instantiations: a static and an adaptive one. The static
implementation runs on the initial SRS while the adaptive
strategy runs on the updated SRS. 6

5.2. Experimental results

Effectiveness for norm emergence. We use both syn-
thetic and real-world networks listed in Table 3. For every
method, we run both the static and adaptive implementa-
tions and compare with our SISI and AISI methods. Despite
that all methods are shown to produce global norm, they
vary greatly in terms of effectiveness. Fig. 2(a) plots the
changes of the proportion of the dominant action and of
the diversity index on all graphs when applying the static
algorithms. Note that only the trend of SISI will suddenly
become smooth. This is because SISI only considers the
initial partition, and minimizing the BA-ratio will tend to

6Reproducibility: Details of the experiments and the code
of our algorithm can be downloaded from https://github.com/
CommunityDeception/DissolvingSRS

add edges between the two largest initial substructures even
though they already have the same belief, which is unneces-
sary. The other four edge addition algorithms will not have
this phenomenon, because they all randomly select two sub-
structures from the initial partition in each edge addition.
Apart from this, the Min-Degree has the leading perfor-
mance on both the synthetic networks and the real-world
networks in the static strategy. The good performance of
Min-Degree reflects the utility of the small-degree principle.
Fig. 2(b) plots the performances when applying the adaptive
algorithms. Here it is clear that AISI has superior perfor-
mance than other methods, verifying the adaptive usage of
BA-ratio in eliciting norm emergence.

Correlation with diversity index. For this experiment,
we generating 10 networks using each of GRP and LFR
models (See Table 2 for statistics) and apply AISI to cre-
ate edges. We then compare the changes on the BA-ratio
σG(P) against changes on the diversity index ι(P). The
experiment is repeated on each graph for 100 times to gen-
erate an average value. Figure 3 illustrates the changes on
the measured indices on all 10 graphs. Comparing the two
plots in the same column, it is clear that the curves of ρG(P)
closely resemble that of ι(P) in that they not only show a
similar downward trend as more edges are added, but also
similar differences between the results of graphs of different
parameters. The plots also reflect patterns on the relation
between global norm and community structure. A higher σ
for GRP or lower µ for LFR leads to a more salient network
structure with high modularity, suggesting that it is harder
to reach the global norm by adding edges.

Effect of system parameters. For this experiment, we
generated 7 GRP graphs and plot the trends of the pro-
portion of the dominant action when we change different
graph parameters. Fig. 4 shows that increasing the number
of communities `, community size g, and average degree
k has a significantly influence in facilitating global norm.
Specifically, they make it harder to dissolve SRS. The action
number m also has significant impact when it is less than
the community number (m < `), while its impact is much
smaller when m ≥ `.

6. Conclusion
This paper addresses the bottleneck to norm emergence in
certain social topology that exhibit clear self-reinforcing sub-
structures (SRS), where local norms tend to be stabilized.
We demonstrate that in these situations, it is reasonable
to implement incremental social instruments to dissolve
these SRS and integrate local norms into a single global
norm. The significance of this work is three-fold: Firstly,
this is one of the few work that address the presence of
SRS and integrating local norms through modifying the
social topology. Then, this is the first work that aims to

https://github.com/CommunityDeception/DissolvingSRS
https://github.com/CommunityDeception/DissolvingSRS
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(a) Static strategy.

(b) Adaptive strategy.

Figure 2. The figure illustrates the performance of the five meth-
ods in facilitating global norm emergence in 8 networks. Each
graph corresponds to two diagrams, displaying respectively the
proportion of the dominant action and the diversity index ι(P).
The horizontal axis indicate the number of new edges added. The
horizo ntal dashed line in each graph indicates the value of the
original graph. Each line is the result of averaging 100 trials with
confidence interval as shown.

bring information-theoretic argument, connecting diversity
of interactions with the social topology of the population.
Moreover, this is the first work that study small-degree prin-
ciple. This phenomenon may provide insights in practice

Figure 3. Comparisons of the changes to the BA-ratio ρG(P) and
the diversity index ι(P) over ten graphs. The horizontal axis
indicates the number of new edges added to each graph. The figure
clearly exhibits downwards trend on both types of diversity as
more edges are created.

Figure 4. Effects of network properties in facilitating global norm
by applying adaptive ISI. The 7 graphs are generated by GPR with
different parameters. The reference network are generated by set
l = 6, g = 50, k = 10,m = 6. We control variables by changing
one parameter in each subfigure.

when social platform design intervention mechanisms that
promote unity and social integration in the online space.
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