Selfish Sparse RNN Training

Appendices

A. Hyperparameters

In this section, we share the hyperparameters used in thie
paper. For fair comparison, we use the exact same hyperpa-
rameters and regularization introduced in ON-LSTM (Shen
et al., 2019) and AWD-LSTM-MoS (Yang et al., 2018).
We then extend the similar settings to stacked LSTMs and
RHNs. No hyperparameter tuning techniques such as Melis
et al. (2017) are involved in our experiments. No need of
finetuning the original hyperparameters of the dense model
is another advantage of our method. For all DST methods,
the hyperparameters are the same, as shared in Table 4.

B. Ablation Study

To analyze the influence of cell gate redistribution and
Sparse NT-ASGD on the performance of sparse RNN train-
ing, we conduct an ablation study for all architectures. All
models use the same hyperparameters with the ones re-
ported in the main paper. We present the validation and
testing perplexity for variants of our model without these
two contributions, as shown in Table 5. Not surprisingly,
removing either of these two novelties degrades the perfor-
mance. There is a significant degradation in the performance
for all models, up to 13 perplexity point, if the optimizer
switches to the standard NT-ASGD. This stands as empiri-
cal evidence regarding the benefit of SNT-ASGD. Without
cell gate redistribution, the testing perplexity of all models
degrades except for RHNs whose number of redistributed
weights in each layer is only two. This indicates that cell
gate redistribution is more effective for the models with
more cell gates.

C. Comparison of Different Cell Gate
Redistribution Methods

In Table 6, we conduct a small experiment to compare differ-
ent methods of cell gate redistribution with stacked LSTMs.
We consider weight redistribution based on the mean value
of the magnitude of nonzero weights and the mean value
of the gradient magnitude of nonzero weights. Our method
can achieve the lowest perplexity.

D. Experimental Results with ON-LSTM

Proposed by Shen et al. (2019) recently, ON-LSTM can
learn the latent tree structure of natural language by learning
the order of neurons. For a fair comparison, we use exactly
the same model hyper-parameters and regularization used
in ON-LSTM. We set the sparsity of each layer to 55%
and the initial pruning rate to 0.5. Same as ON-LSTM, we

train the model for 1000 epochs and restart SNT-ASGD as a
fine-tuning step once at the 500" epoch, dubbed as Selfish-
RNNjggo. As shown in Table 7, Selfish-RNN outperforms
the dense model while reducing the model size to 11.3M.
Without SNT-ASGD, sparse training techniques can not
reduce the test perplexity to 60. SNT-ASGD is able to
improve the performance of RigL by 5 perplexity. Moreover,
one interesting observation is that one of the regularizations
used in the standard ON-LSTM, DropConnect, is perfectly
compatible with our method, although it also drops the
hidden-to-hidden weights out randomly during training.

In our experiments we observe that Selfish-RNN benefits sig-
nificantly from the second fine-tuning operation. We scale
the learning schedule to 1300 epochs with two fine-tuning
operations at epoch 500 and 1000, respectively, dubbed as
Selfish-RNNy30¢. It is interesting that Selfish-RNNj 30 can
achieve lower testing perplexity after the second fine-tuning
step, whereas the dense model Dense; 30 can not even reach
again the perplexity that it had before the second fine-tuning.
The heuristic explanation here is that our method helps the
optimization escape the local optima or a local saddle point
by optimizing the sparse structure, while for dense models
whose energy landscape is fixed, it is very difficult for the
optimizer to find its way off the saddle point or the local
optima.

E. Experimental Results with
AWD-LSTM-MoS

We also evaluate Selfish-RNN on the WikiText-2 dataset.
The model we choose is AWD-LSTM-MoS (Yang et al.,
2018), which is the state-of-the-art RNN-based language
model. It replaces Softmax with Mixture of Softmaxes (MoS)
to alleviate the Softmax bottleneck issue in modeling natural
language. For a fair comparison, we exactly follow the
model hyper-parameters and regularization used in AWD-
LSTM-MoS. We sparsify all layers with 55% sparsity except
for the prior layer as its number of parameters is negligible.
We train our model for 1000 epochs without finetuning or
dynamical evaluation (Krause et al., 2018) to simply show
the effectiveness of our method. As demonstrated in Table
8, Selfish AWD-LSTM-MoS can match the performance of
the corresponding dense model with 15.6M parameters.

F. Effect of Sparsity

There is a trade-off between the sparsity level S and the
test perplexity of Selfish-RNN. When there are too few
parameters, the sparse neural network will not have enough
capacity to fit the data. Here, we analyze this trade-off by
training all models with Selfish-RNN at various sparsity
levels S € [0.50,0.55,0.60,0.70,0.80, 0.90], reported in
Figure 6a. We find that Selfish Stacked LSTMs, RHNs,



Selfish Sparse RNN Training

Table 4. Experiment hyperparameters including Optimizer (Opt), Learning rate (Lr), Batch size (Bs), Backpropagation through time
(BPTT), Clip norm (Clip), Non-monotone interval for SNT-ASGD (Nonmono), Initial pruning rate (P); Lr Drop with (A, B) refers to
B epochs with no improvement after which learning rate will be reduced by a factor of A; Dropout refers to the word-level dropout,
embedding dropout, hidden layer dropout, and output dropout, respectively; Coupled means that the carry gate and the transform gate are
coupled in RHNSs; Tied means reusing the input word embedding matrix as the output matrix.

Model Data Opt Lr Lr Drop Bs BPTT Dropout Epochs Tied Coupled Clip Nonmono P
Adam 0.001 (2x,2)
Stacked LSTMs PTB SNT-ASGD 40 - 20 35 (0,0, 0.65, 0) 100 no no 0.25 5 0.7
Momentum SGD 2 (1.33x, 1)
) Adam 0.001 (2x,2) ) )
RHNs PTB SNT-ASGD 15 _ 20 35 (0.2, 0.65, 0.25, 0.65) 500 yes yes 0.25 5 0.5
Adam 0.001 (2x,2) .
ON-LSTM PTB SNT-ASGD 30 _ 20 70 (0.1,0.5,0.3,0.45) 1000 yes no 0.25 5 0.5
o Adam 0.001 (2x,2)
AWD-LSTM-MoS WikiText-2 SNT-ASGD 15 _ 15 70 (0.1,0.55,0.2,0.4) 1000 yes no 0.25 5 0.5

Table 5. Ablation study of Selfish-RNN with stacked LSTMs, RHNs, ON-LSTM on Penn Treebank and AWD-LSTM-MoS on WikiText-2.

Methods | Stacked LSTMs | RHNs | ON-LSTM | AWD-LSTM-MoS
Selfish-RNN | 71.65 | 6035 | 5568 | 63.05
w/o cell gate redistribution | 72.89 | 6026 | 5748 | 65.27
w/o Sparse NT-ASGD | 73.74 | 6970 | 6928 | 71.65

ON-LSTM, and AWD-LSTM-MoS need around 25%, 40%,
45%, and 40% parameters to reach the performance of their
dense counterparts, respectively.

G. Effect of Initial pruning rate

The initial pruning rate p determines how many weights
would be removed at each connectivity update. We analyze
the performance sensitivity of our algorithm to the initial
pruning rate p by varying it € [0.3,0.5,0.7]. We set the
sparsity level of each model as the one having the best
performance in Figure 6a. Results are shown in Figure 6b.
We can clearly see that our method is very robust to the
choice of the initial pruning rate.

H. Difference Among SET, Selfish-RNN and
Iterative Pruning Methods

The topology update strategy of Selfish-RNN differs from
SET in several important features (1) we automatically redis-
tribute weights across cell gates for better regularization, (2)
we use magnitude-based removal instead of removing a frac-
tion of the smallest positive weights and the largest negative
weights, (3) we use uniform initialization rather than non-
uniform sparse distribution like ER or ERK. Additionally,
the optimizer proposed in this work, SNT-ASGD, brings
substantial perplexity improvement to the sparse RNN train-
ing.

Iterative pruning and retraining techniques (Han et al., 2016;
Zhu & Gupta, 2017; Frankle & Carbin, 2019) usually in-

volve three steps (1) pre-training a dense model, (2) pruning
the unimportant based on some criteria, and (3) re-training
the pruned model to improve performance. The pruning and
re-training cycle is required at least once, but may many
times depending on the specific algorithms used. Therefore,
the computational costs required by iterative pruning and
retraining is at least the same as fully training a dense model.
Different from iterative pruning and retraining, FLOPs re-
quired by Selfish-RNN is proportional to the density of the
model, as it allows us to train a sparse network with a fixed
number of parameters throughout training in one single
run, without any retraining phases. Moreover, the over-
head caused by the dynamic sparse connectivity operation
is negligible, as it performs only once per epoch.

I. Comparison between Selfish-RNN and
Pruning

It has been shown by Evci et al. (2020) that while state-of-
the-art sparse training method (RigL) achieves promising
performance with various CNN models, it fails to match
the performance of pruning in RNNs. Given the fact that
magnitude pruning has become a widely-used and strong
baseline for model compression, we also report a compari-
son between Selfish-RNN and iterative magnitude pruning
with stacked LSTMs. The pruning baseline is obtained from
Zhu & Gupta (2017). The results are demonstrated in Figure
7-right.

We can see that Selfish-RNN exceeds the performance of
pruning in most cases. An interesting phenomenon is that,



Selfish Sparse RNN Training

Table 6. A small experiment about the comparison among different cell gate redistribution methods. The experiment is evaluated with

stacked LSTMs on Penn Treebank.

2]
o

®
[=]

mm Selfish ON-LSTM

Test Perplexity
(=)} ~ ~
(% o w

=)
=]

%]
v ]

cell gate redistribution ‘ #Param  Validation  Test
Mean of the magnitude of nonzero weights 21.8M 74.04 72.40
Mean of the gradient magnitude of nonzero weights | 21.8M 74.54 72.31
Ours | 21.8M 7376  71.65
85
Selfish Stacked LSTMs Selfish Stacked LSTMs
Selfish RHNs Selfish RHNs
807 Selfish ON-LSTM
Selfish AWD-LSTM-MoS Selfish AWD-LSTM-MoS
> 75
o
5 70
Q
F 65
___.-—-———/ ®
- S o
0.50 0.55 0.60 0.70 0.80 0.90 0.3 0.5 0.7

Sparsity

(a) Performance Sensitivity of Sparsity

Initial pruning rate

(b) Performance Sensitivity of Pruning Rate

Figure 6. Sensitivity analysis of sparsity levels S and initial pruning rates p with Selfish stacked LSTMs, RHNs, ON-LSTM, and
AWD-LSTM-MoS. (a) Test perplexity of all models with various sparsity levels. The initial pruning rate is 0.7 for stacked LSTMs, and
0.5 for the rest models. The dashed lines represent the performance of the corresponding dense models. (b) Test perplexity of all models
with different initial pruning rates. The sparsity level is 67%, 52.8%, 55% and 55% for Selfish stacked LSTMs, RHNs, ON-LSTM, and

AWD-LSTM-MoS, respectively.

Table 7. Single model perplexity on validation and test sets for the
Penn Treebank language modeling task with ON-LSTM. Methods
indicated with “ASGD” are trained with SNT-ASGD. The numbers
reported are averaged over five runs.

Models | #Param  Val Test

Denseioo0 (NT-ASGD) 25M 5829 +£0.10 56.17 +£0.12
Dense1300 (NT-ASGD) 25M 5855 +0.11 56.28 +0.19
SET (Adam) 11.3M 6590 +0.08 63.56 +0.14
DSR (Adam) 11.3M 65.22 £0.07 62.55 +0.06
SNFS (Adam) 11.3M 68.00 £0.10 65.52 +0.15
RigL (Adam) 11.3M 64.41 +£0.05 62.01 +=0.13
RigL1000 (ASGD) 11.3M 59.17 £0.08 57.23 +0.09
Rigl1300 (ASGD) 11.3M 59.10 £ 0.05 57.44 £+ 0.15
Selfish-RNNjg00 (ASGD) | 11.3M 58.17 + 0.06 56.31 +0.10
Selfish-RNN1300 (ASGD) | 11.3M 57.67 = 0.03 55.82 + 0.11

with increased sparsity, we see a decreased performance gap
between Selfish-RNN and pruning. Especially, Selfish-RNN
performs worse than pruning when the sparsity level is 95%.
This can be attributed to the poor trainability problem of
sparse models with extreme sparsity levels. Noted in Lee
et al. (2020), the extreme sparse structure can break dynam-
ical isometry (Saxe et al., 2014) of sparse networks, which
subsequently degrades the trainability of sparse neural net-

Table 8. Single model perplexity on validation and test sets for
the WikiText-2 language modeling task with AWD-LSTM-MoS.
Baseline is AWD-LSTM-MoS obtained from Yang et al. (2018).
Methods with “ASGD” are trained with SNT-ASGD.

Models | #Param  Val Test
Dense (NT-ASGD) 35M 66.01 63.33
SET (Adam) 15.6M  72.82 69.61
DSR (Adam) 15.6M 69.95 66.93
SNFS (Adam) 15.6M 7997 76.18
Rigl (Adam) 15.6M 7136 68.52
RigL (ASGD) 15.6M  68.84 65.18
Selfish-RNN (ASGD) ‘ 15.6M 6596 63.05

works. Different from sparse training methods, pruning
operates from a dense network and thus, does not have this
problem.

J. Sparse Connectivity Distance Measurement

Our sparse connectivity distance measurement considers the
unit alignment based on a semi-matching technique intro-
duced by Li et al. (2016) and a graph distance measurement
based on graph edit distance (GED) (Sanfeliu & Fu, 1983).
More specifically, our measurement includes the following



Selfish Sparse RNN Training

105

Selfish-RNN
100 Pruning
RigL
> 95
2
%
9
S 90
[
a
& 85
it
80
75
0.8 0.85 0.9 0.95

Sparsity

Figure 7. Comparison among Selfish-RNN, Rigl. and iterative
magnitude pruning with stacked LSTMs on PTB. The pruning
baseline is obtained from Zhu & Gupta (2017).

steps:

1. We train two sparse networks with dynamic sparse
training on the training dataset and store the sparse
topology after each epoch. Let W; be the set of sparse
topologies for the [-th layer of network 1.

2. Using the saved model, we compute the activity output
on the test data, O] € R™"*™, where n is the number
of hidden units and m is the number of samples.

3. We pair-wisely match two topologies obtained from
different networks } and W by the semi-matching
method introduced in Li et al. (2016) based on their
activity units. The semi-matching step is achieved by
finding the a pair of units from different networks with
the maximum correlation.

4. After alignment, we apply graph edit distance (GED)
to measure the similarity between W and W7. Even-
tually, the distance is scaled to lie between 0 and 1.
The smaller the distance is, the more similar the two
sparse topologies are.

Here, we choose stacked LSTMs on PTB dataset as a spe-
cific case to analyze. Specifically, we train two stacked
LSTMs for 100 epochs with different random seeds. We
choose a relatively small pruning rate of 0.1. We start align-
ment at the 5" epoch to ensure a good alignment, as the
model does not learn very well at the very beginning of
training.

K. Sparse Connectivity Distance Comparison
between Different Growth Methods

In this section, we investigate the topological distance be-
tween sparse connectivities learned by gradient weight

growth and random weight growth. We empirically illus-
trate that gradient growth drives different networks into
some similar connectivity patterns based on the proposed
distance measurement between sparse connectivities. The
initial pruning rates are set as 0.1 for all training runs in this
section.

First, we measure the sparse connectivity distance between
two different training runs trained with gradient growth and
random growth, respectively, as shown in Figure 8. We
can see that, starting with very different sparse connectiv-
ity topologies, two networks trained with random growth
end up at the same distance, whereas the distance between
two networks trained with gradient growth is continuously
decreasing and this tendency is likely to continue as the
training goes on. We further report the distance between
two networks with same initialization (same sparse connec-
tivity and same weight values) but different training seeds
in Figure 9. We can see that the distance between sparse
connectivities optimized by gradient growth is smaller than
the ones optimized by random growth.

These observations are in line with our hypothesis and indi-
cate that gradient growth drives networks into some similar
structures, whereas random growth allows models to explore
more sparse structures spanned over the dense network, and
thus has a better chance to find a better sparse connectivity.

L. FLOPs Analysis of Different Approaches

Although different DST methods maintain a fix parameter
count throughout training, their training costs can be very
different since different sparse distributions lead to different
computational costs. Hence, we also report the estimated
training and inference FLOPs for all methods in this section.

We follow the way of calculating training FLOPs proposed
by Evci et al. (2020). The perplexity and the corresponding
training and inference FLOPs of different methods are given
in Table 9. We split the process of training a sparse recurrent
neural network into two steps: forward pass and backward
pass.

Forward pass In order to calculate the loss of the current
models given a batch of input data, the output of each layer
is needed to be calculated based on a linear transformation
and a non-linear activation function. Within each RNN
layer, different cell gates are used to regulate information in
sequence using the output of the previous time step and the
input of this time step.

Backward pass In order to update weights, during the
backward pass, each layer calculates 2 quantities: the gra-
dient of the loss function with respect to the activations of
the previous layer and the gradient of the loss function with



Selfish Sparse RNN Training

o o
=) =)

Sparse topology GED
o
~

Istm1_ih
02 Istm1_hh
Istm2_ih
0.0 Istm2_hh

‘obﬂ‘b%,\p ,‘/Q ,,)Q D‘Q (,)0 60 «0 Q)Q QQ \/QQ
Epoch [#]

e o
o ©

Sparse topology GED
I
'

Istm1_ih
02 Istm1_hh
Istm2_ih
0.0 Istm2_hh

*’ob”\‘bc),\lo ,‘/Q ,,)Q b‘Q (,)0 @0 ,\Q %0 0)0 '&0
Epoch [#]

Figure 8. (left) The sparse connectivity distance between two different training runs of stacked LSTMs trained with random growth.
(right) The sparse connectivity distance between two different training runs of stacked LSTMs trained with gradient growth.

o o
o ©

Sparse topology GED
o
~

Istm1_ih
0.2 === |stm1_hh

Istm2_ih
0.0 Istm2_hh

b\%bﬂ‘b%@ "le ,,)Q vQ 6)0 Q)Q «0 ‘bQ QD \/QQ
Epoch [#]

0.8

i

006

>

[o)

)

00.4

Q.

8

Oé 02 Istm1_ih

o Istm1_hh

0 Istm2_ih
0.0 Istm2_hh

b(")‘o’\‘bQNQ ,19 ,,)Q @ (,)Q bQ «Q %Q QQ \90
Epoch [#]

Figure 9. (left) The sparse connectivity distance between two stacked LSTMs with same initialization but different training seeds trained
with random growth. (right) The sparse connectivity distance between two networks with same initialization but different training seeds
trained with gradient growth. ¢h is the input weight tensor comprising four cell gates and hh is the hidden state weight tensor comprising

four cell gates.

respect to its own weights. Therefore, the computational ex-
pense of backward pass is twice that of forward pass. Given
that RNN models usually contain an embedding layer from
which it is very efficient to pick a word vector, for models
not using weight tying, we only count the computations
to calculate the gradient of its parameters as the training
FLOPs and we omit its inference FLOPs. For models using
weight tying, both the training FLOPs and the inference
FLOPs are omitted.

Given a specific architecture, we denote fp as dense FLOPs
required to finish one training iteration and fg as the cor-
responding sparse FLOPs (fs =~ (1 — S)fp), where S is
the sparsity level. Thus fg < fp for very sparse networks.
Since different sparse training methods use different sparse
distribution, their FLOPs fg are also different from each
other. We omit the FLOPs used to update the sparse con-
nectivity, as it is only performed once per epoch. Overall,
the total FLOPs required for one training update on one
single sample are given in Table 10. The training FLOPs of
dense-to-sparse methods like, ISS and pruning, are 3 fp * s;,

where s, is the sparsity of the model at iteration ¢. Since
dense-to-sparse methods require to train a dense model for
a while, their training FLOPs and memory requirement are
higher than our method. For methods that allow the sparsity
of each layer dynamically changing e.g., DSR and SNFS,
we approximate their training FLOPs via their final distri-
bution, as their sparse distribution converges to the final
distribution in the first few epochs. ER distribution causes
a bit more inference FLOPs than uniform distribution be-
cause it allocates more weights to the RNN layers than other
layers. SNFS requires extra FLOPs to calculate dense mo-
mentum during the backward pass. Although RigL also uses
the dense gradients to assist weight growth, it only needs to
calculate dense gradients every AT iterations, thus with a
smaller number of FLOPs given by W. Here,
we simply omit the extra FLOPs required by the full gradi-
ent calculation as it is negligible compared with the whole
training FLOPs. Moreover, the inference FLOPs are calcu-
lated with the final sparse distribution learned by different
methods.



Selfish Sparse RNN Training

Table 9. Single model perplexity on validation and test sets for the Penn Treebank language modeling task with stacked LSTMs and RHN .
FLOPs required to train the entire model and to test on single sample are reported. ‘*’ indicates the reported results from the original
papers: “Dense” is obtained from Zaremba et al. (2014) and ISS is obtained from Wen et al. (2018). “Static-ER” and “Static-uni” are the
static sparse network trained from scratch with ER distribution and uniform distribution, respectively. “Small” refers the small-dense

network.
| Stacked LSTMs | RHNs
Models FLOPs FLOPs Val Test FLOPs FLOPs Val Test
(Train) (Test) (Train) (Test)
Dense* 1x(3.1e16) 1x(7.2e10) 82.57 78.57 || 1x(6.5¢16) 1x(3.3e10) 67.90 65.40
Dense (NT-ASGD) 1x 1x 74.51 7240 1x 1x 63.44 61.84
| S=0.67 | $=0.53
Small (NT-ASGD) 0.33x 0.33x 88.67 86.33 0.47x 0.47x 70.10  68.40
Static-ER (SNT-ASGD) 0.33x 0.34x 81.02 79.30 0.47x 0.47x 75.74  73.21
Static-uni (SNT-ASGD) 0.33x 0.33x 80.37 78.61 0.47x 0.47x 74.11 71.83
ISS* 0.28x 0.20x 82.59 78.65 0.50x 0.47x 68.10 6540
GMP (Adam) 0.63x 0.33x 89.47 8797 0.62x 0.47x 63.21 61.55
SET (Adam) 0.33x 0.34x 87.30 85.49 0.47x 0.47x 63.66 61.08
DSR (Adam) 0.38x 0.40x 89.95 88.16 0.47x 0.47x 65.38 63.19
SNFS (Adam) 0.63x 0.38x 88.31 86.28 0.63x 0.45x 74.02  70.99
Rigl. (Adam) 0.33x 0.34x 88.39 85.61 0.47x 0.47x 6743 64.41
Selfish-RNN (Adam) 0.33x 0.33x 85.70  82.85 0.47x 0.47x 63.28 60.75
GMP (SNT-ASGD) 0.63x 0.33x 76.78 74.84 0.62x 0.47x 65.63 63.96
Rigl. (SNT-ASGD) 0.33x 0.34x 78.31 75.90 0.47x 0.47x 64.82 6247
Selfish-RNN (SNT-ASGD) 0.33x 0.33x 73.76  71.65 0.47x 0.47x 62.10 60.35
\ S=0.62 H S=0.68
ISS* 0.32x 0.23x 80.24 76.03 0.34x 0.32x 70.30 67.70
GMP (SNT-ASGD) 0.63x 0.38x 74.86  73.03 0.51x 0.32x 66.61 64.98
Rigl. (SNT-ASGD) 0.38x 0.39x 77.16 74.76 0.32x 0.32x 69.32  66.64
Selfish-RNN (SNT-ASGD) 0.38x 0.38x 73.50 71.42 0.32x 0.32x 66.35 64.03

Table 10. Training FLOPs analysis of different sparse training approaches. fp refers to the training FLOPs for a dense model to compute
one single prediction in the forward pass and fs refers to the training FLOPs for a sparse model. AT is the number of iterations used by
RigL to update sparse connectivity. s; is the sparsity level of the model at iteration ¢.

Method ‘ Forward Pass Backward Pass Total
Dense fp 2fp 3fp

ISS fp*s¢ 2fp * s¢ 3fp *s¢
Pruning fp * st 2fp * st 3fp * st
SET [s 2fs 3fs
DSR fs 2fs 3fs
SNFS Is fs+fp 2fs +fp
RigL fS (2ATA+71“Hf+fD 3fsA£;ifls+fD
Selfish-RNN (ours) fs 2fs 3fs

M. Final Cell Gate Sparsity Breakdown

We further investigate the final sparsity level of different
cell gates learned automatically by our method in Figure 10.
We find a consistent observation existing in all models, i.e.,

the weight of the forget gates, either the forget gate in the
standard LSTM or the master forget gate in ON-LSTM, tend
to be sparser than other gate weights. The weight of the cell
gates and output gates are denser than the average. However,
there is no big difference between the gates in RHNs, even



Selfish Sparse RNN Training

although the H nonlinear transform gate is slightly sparser
than the T" gate weight in most RHNs layers.

N. Limitation

The aforementioned training benefits have not been fully
explored, as off-the-shelf software and hardware have lim-
ited support for sparse operations. The unstructured sparsity
is difficult to be efficiently mapped to the existing parallel
processors. The results of our paper provide motivation for
new types of hardware accelerators and libraries with better
support for sparse neural networks. Nevertheless, many re-
cent works have been developed to accelerate sparse neural
networks including Gray et al. (2017); Moradi et al. (2019);
Ma et al. (2019); Yang & Ma (2019); Liu et al. (2020b).
For instance, NVIDIA develops the A100 GPU enabling
the Fine-Grained Structured Sparsity (NVIDIA, 2020). The
sparse structure is enforced by allowing two nonzero values
in every four-entry vector to reduce memory storage and
bandwidth by almost 2x. We hope that our results will
pile up on other researchers results in sparse training and
soon there will be a change of perspective in such a way
that the developers of deep learning software and hardware
will start considering including real sparsity support in their
solutions.



Selfish Sparse RNN Training

Layer sparsity: 0.67

0.8+
o 0.74
2067 HEEE 0 EEES
0
s 0.5 e @ 0
o
w 0.44 S .. N Ingate
% 0.3 - . Emm Forgetgate
U 0.2 - B Cellgate
0.1 S . Outgate
0 B!
& &
@ @
\‘(\/ x\\Q/
Stacked LSTM
08 Layer sparsity: 0.528
0.7 1 EEl H nonlinear transform
> 0.6 mmm T gate
205
o
2044
203
©
0 0.2
0.14
0 B!
) e
DR R R R R R R R GO
RHN
Layer sparsity: 0.55
0.84
0.74
20,61
4
s 0.5
% 0‘4 N Master \ngate
% 03 1 ::Z:;:r Forgetgate
(] 0.21 Forgetgate
Cellgats
0.1
O 4
& & & & & &
\’iiA \’5\ \.5\ \@S \’5\ \’<>ﬁ
-‘\/ -\‘Q/ -\‘Q/ \Q\\Q/ “\Q/ ‘(‘\(\/
ONLSTM
Layer sparsity: 0.55
0.7
> 0.6
‘» 0.5
204
Ingate
@ 0.3
3 Forgetgate
O 0.21 b Cellgate
0.1 = Outgate
0 B!

MoS

Figure 10. Breakdown of the final sparsity level of cell gates with stacked LSTMs, RHNs, ON-LSTM on PTB, AWD-LSTM-MoS on
Wikitext-2. W and R is the weight of the H nonlinear transform and the T gate in RHNS, respectively; ¢h and hh refer to the input weight
and the hidden weight of each LSTM layer, respectively.



