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Abstract

Sparse neural networks have been widely applied
to reduce the computational demands of train-
ing and deploying over-parameterized deep neu-
ral networks. For inference acceleration, meth-
ods that discover a sparse network from a pre-
trained dense network (dense-to-sparse training)
work effectively. Recently, dynamic sparse train-
ing (DST) has been proposed to train sparse neu-
ral networks without pre-training a dense model
(sparse-to-sparse training), so that the training
process can also be accelerated. However, pre-
vious sparse-to-sparse methods mainly focus on
Multilayer Perceptron Networks (MLPs) and Con-
volutional Neural Networks (CNNs), failing to
match the performance of dense-to-sparse meth-
ods in the Recurrent Neural Networks (RNNs)
setting. In this paper, we propose an approach
to train intrinsically sparse RNNs with a fixed
parameter count in one single run, without com-
promising performance. During training, we al-
low RNN layers to have a non-uniform redistri-
bution across cell gates for better regularization.
Further, we propose SNT-ASGD, a novel vari-
ant of the averaged stochastic gradient optimizer,
which significantly improves the performance of
all sparse training methods for RNNs. Using
these strategies, we achieve state-of-the-art sparse
training results, better than the dense-to-sparse
methods, with various types of RNNs on Penn
TreeBank and Wikitext-2 datasets. Our codes
are available at https://github.com/
Shiweiliuiiiiiii/Selfish-RNN.
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1. Introduction
Recurrent neural networks (RNNs) (Elman, 1990), with a
variant of long short-term memory (LSTM) (Hochreiter &
Schmidhuber, 1997), have been highly successful in various
fields, including language modeling (Mikolov et al., 2010),
machine translation (Kalchbrenner & Blunsom, 2013), ques-
tion answering (Hirschman et al., 1999; Wang & Jiang,
2017), etc. As a standard task to evaluate models’ abil-
ity to capture long-range context, language modeling has
witnessed great progress in RNNs. Mikolov et al. (2010)
demonstrated that RNNs perform much better than backoff
models for language modeling. After that, various novel
RNN architectures such as Recurrent Highway Networks
(RHNs) (Zilly et al., 2017), Pointer Sentinel Mixture Mod-
els (Merity et al., 2017), Neural Cache Model (Grave et al.,
2017), Mixture of Softmaxes (AWD-LSTM-MoS) (Yang
et al., 2018), Ordered Neurons LSTM (ON-LSTM) (Shen
et al., 2019), and effective regularization like Variational
Dropout (Gal & Ghahramani, 2016), Weight Tying (Inan
et al., 2017), DropConnect (Merity et al., 2018) have been
proposed to improve the performance of RNNs on language
modeling.

At the same time, as the performance of deep neural net-
works (DNNs) improves, the resources required to train and
deploy these deep models are becoming prohibitively large.
To tackle this problem, various dense-to-sparse methods
have been developed, including but not limited to pruning
(LeCun et al., 1990; Han et al., 2015; Molchanov et al.,
2016), variational dropout (Kingma et al., 2015; Molchanov
et al., 2017), distillation (Hinton et al., 2015), L1 regulariza-
tion (Wen et al., 2018), and low-rank decomposition (Jader-
berg et al., 2014). Given a pre-trained model, these methods
work effectively to accelerate the inference process.

Recently, some dynamic sparse training (DST) approaches
(Mocanu et al., 2018; Mostafa & Wang, 2019; Dettmers &
Zettlemoyer, 2019; Evci et al., 2020) have been proposed
to bring efficiency to the training phase as well. However,
previous approaches are mainly for CNNs and MLPs. The
long-term dependencies and repetitive usage of recurrent
cells make RNNs more difficult to be sparsified (Kalchbren-
ner et al., 2018; Evci et al., 2020). More importantly, the
state-of-the-art performance achieved by RNNs on language
modeling is mainly associated with the optimizer, averaged
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Figure 1. Schematic diagram of the Selfish-RNN. Wi,Wf ,Wc,Wo refer to LSTM cell gates. Colored squares and white squares refer to
nonzero weights and zero weights, respectively. Light blue squares are weights to be removed and orange squares are weights to be grown.

stochastic gradient descent (ASGD) (Polyak & Juditsky,
1992), which is not compatible with the existing DST ap-
proaches. The abovementioned problems heavily limit the
performance of the off-the-shelf sparse training methods in
the RNN field. For instance, while “The Rigged Lottery”
(RigL) achieves state-of-the-art sparse training results with
various CNNs, it fails to match the performance of the itera-
tive pruning method (Gale et al., 2019) in the RNN setting
(Evci et al., 2020).

In this paper, we propose an algorithm to train initially
sparse RNNs with a fixed number of parameters throughout
training. We abbreviate our sparse RNN training method as
Selfish-RNN because our method encourages cell gates to
obtain their parameters selfishly. The main contributions of
this work are four-fold:

• We propose an algorithm to train sparse RNNs from
scratch with a fixed number of parameters. Our method
has two novelty components: (1) we propose SNT-
ASGD, a sparse variant of the non-monotonically trig-
gered averaged stochastic gradient descent optimizer
(NT-ASGD), which improves the performance of all
sparse training methods for RNNs; (2) we allow RNN
layers to have a non-uniform redistribution across cell
gates during training for a better regularization.

• We demonstrate state-of-the-art sparse training per-
formance, better than the dense-to-sparse methods,
with various RNN models, including stacked LSTMs
(Zaremba et al., 2014), RHNs, ON-LSTM on Penn
TreeBank (PTB) dataset (Marcus et al., 1993) and
AWD-LSTM-MoS on WikiText-2 dataset (Melis et al.,
2018).

• We present an approach to measure the topological
distance between different sparse connectivities from
the perspective of graph theory. Recent works (Garipov
et al., 2018; Draxler et al., 2018; Fort & Jastrzebski,
2019) on understanding dense loss landscapes find that

many independent optima are located in different low-
loss tunnels. We complement these works by showing
that there exist many low-loss sparse networks which
are very different in the topological space.

• Our analysis shows two surprising phenomena in the
setting of RNNs contrary to CNNs (1) random-based
weight growth performs better than gradient-based
weight growth, and (2) uniform sparse distribution per-
forms better than Erdős-Rényi (ER) sparse distribution.
These results highlight the need to choose different
sparse training methods for different architectures.

2. Related Work
Dense-to-Sparse. There are a large number of works op-
erating on a dense network to yield a sparse network. We
divide them into three categories based on the training cost
in terms of memory and computation.
(1) Iterative Pruning and Retraining. To the best of our
knowledge, pruning was first proposed by Janowsky (1989)
and Mozer & Smolensky (1989) whose goal is to yield a
sparse network from a pre-trained network for sparse infer-
ence. Han et al. (2015) brought it back to people’s attention
based on the idea of iterative pruning and retraining with
modern architectures. Gradual Magnitude Pruning (GMP)
(Zhu & Gupta, 2017; Gale et al., 2019) was further proposed
to obtain the target sparse model in one running. Recently,
Frankle & Carbin (2019) proposed the Lottery Ticket Hy-
pothesis showing that the sub-networks (“winning tickets”)
obtained via iterative magnitude pruning combined with
their “lucky” initialization can outperform the dense net-
works. Zhou et al. (2019) found that the sign of the initial
weights is the key factor that makes the “winning tickets”
work. Our work shows that there exists a much more effi-
cient and robust way to find those “winning tickets” without
any pre-training steps and any specific initialization. Overall,
iterative pruning and retraining requires at least the same
training cost as training a dense model, sometimes even
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Table 1. Comparison of different sparsity-inducing approaches in RNNs. ER and ERK refer to the Erdős-Rényi distribution and the
Erdős-Rényi-Kernel distribution, respectively. Backward Sparse means a clean sparse backward pass and no need to compute or store any
information of the non-existing weights. Sparse Opt indicates whether a specific optimizer is proposed for sparse RNN training.

Method Initialization Removal Growth Weight Redistribution Backward Sparse Sparse Opt

Iterative Pruning dense min(|θ|) none no no no
ISS dense Lasso none no no no
SET ER min(|θ|) random no yes no
DSR uniform min(|θ|) random across all layers yes no
SNFS uniform min(|θ|) momentum across all layers no no
RigL ERK min(|θ|) gradient no no no
Selfish-RNN uniform min(|θ|) random across RNN cell gates yes yes

more, as a pre-trained dense model is involved. We com-
pare our method with the state-of-the-art pruning method
proposed by Zhu & Gupta (2017) in Appendix I. With fewer
training costs, our method is able to discover sparse net-
works with lower test perplexity.
(2) Learning Sparsity During Training. Some works attempt
to learn the sparse networks during training. Louizos et al.
(2017) and Wen et al. (2018) were examples that gradually
enforce the network weights to zero via L0 and L1 regu-
larization, respectively. Dai et al. (2018) proposed the idea
of using singular value decomposition (SVD) to accelerate
the training process for LSTMs. Recent works (Liu et al.,
2020a; Srivastava et al., 2015; Xiao et al., 2019; Kusupati
et al., 2020) induce sparsity by jointly learning masks and
model weights during training. These methods start with a
fully dense network, and hence are not memory efficient.
(3) Pruning at Initialization. Some works aim to find sparse
neural networks by pruning once prior to the main training
phase based on some salience criteria, including connection
sensitivity (Lee et al., 2019; 2020), synaptic flow (Tanaka
et al., 2020), gradient signal preservation (Wang et al., 2020),
and iterative pruning (de Jorge et al., 2020). These tech-
niques can find sparse networks before the standard training,
but at least one iteration of dense training is involved to
identify these trainable sparse networks. Additionally, prun-
ing at initialization generally cannot match the performance
of dynamic sparse training, especially at extreme sparsity
levels (Wang et al., 2020).

Sparse-to-Sparse. Recently, many works have emerged to
train intrinsically sparse neural networks from scratch to
obtain efficiency both for training and inference.
(1) Static Sparse Training. Mocanu et al. (2016) developed
intrinsically sparse networks by exploring the scale-free and
small-world topological properties in Restricted Boltzmann
Machines. Later, some works focus on designing sparse
CNNs based on Expander graphs and show comparable per-
formance against the corresponding dense models (Prabhu
et al., 2018; Kepner & Robinett, 2019).
(2) Dynamic Sparse Training. Mocanu et al. (2018) pro-

posed Sparse Evolutionary Training (SET) allowing sparse
training MLPs to match the performance of dense MLPs by
dynamically changing the sparse connectivity based on a
simple remove-and-regrow strategy. Shortly after, DeepR
was introduced by Bellec et al. (2018) to train sparse net-
works by sampling the sparse connectivity from the posterior
distribution. Mostafa & Wang (2019) introduced Dynamic
Sparse Reparameterization (DSR) to train sparse neural net-
works while dynamically adjusting the sparse distribution
during training. Sparse Networks from Scratch (SNFS)
(Dettmers & Zettlemoyer, 2019) improved the sparse train-
ing performance by introducing the idea of growing free
weights according to their momentum. While effective, it
requires extra computation and memory to update the dense
momentum tensor for every iteration. RigL (Evci et al.,
2020) went one step further by activating new weights with
the highest magnitude gradient. It amortizes the significant
amount of overhead by updating the sparse connectivity
infrequently. In addition, some recent works (Jayakumar
et al., 2020; Raihan & Aamodt, 2020) attempt to explore
more sparse space during training to improve the sparse
training performance. Due to the inherent limitations of
deep learning software and hardware libraries, all of those
works simulate sparsity using a binary mask over weights.
More recently, Liu et al. (2020b) proved the practical val-
ues of DST by developing for the first time an independent
software framework to train truly sparse MLPs with over
one million neurons on a typical laptop. However, all these
works mainly focus on CNNs and MLPs, and they are not
designed to match state-of-the-art performance for RNNs.

We summarize the properties of all approaches compared in
this paper in Table 1. Additionally, we provide a high-level
overview of the difference between Selfish-RNN and iter-
ative pruning and re-training in Figure 2. FLOPs required
by Selfish-RNN is much smaller than iterative pruning and
re-training, as it starts with a sparse network and without any
retraining phases. See Appendix H for more differences.
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Figure 2. A high-level overview of the difference between Selfish-
RNN and iterative pruning and re-training techniques. Blocks with
light blue color represent optional pruning and retraining steps
chosen depending on specific approaches.

3. Sparse RNN Training
Our sparse RNN training method is illustrated in Figure 1
with LSTM as a specific case. Note that our method can
be easily applied to any other RNN variants. The only dif-
ference is the number of cell gates. Before training, we
randomly initialize each layer at the same sparsity (the frac-
tion of zero-valued weights), so that the training costs are
proportional to the dense model at the beginning. To explore
more sparse structures, while to maintain a fixed sparsity
level, we need to optimize the sparse connectivity together
with the corresponding weights (a combinatorial optimiza-
tion problem). We use dynamic sparse connectivity and
SNT-ASGD together to handle this combinatorial optimiza-
tion problem. The pseudocode of the full training procedure
of our algorithm is shown in Algorithm 1.

3.1. Dynamic Sparse Connectivity

We consider uniform sparse initialization, magnitude weight
removal, random weight growth, and cell gate redistribution
together as main components of our dynamic sparse training
method, which can ensure a fixed number of parameters and
a clean sparse backward pass, as discussed next.
Notation. Given a dataset ofN samples D = {(xi, yi)}Ni=1

and a network f(x; θ) parameterized by θ. We train the net-
work to minimize the loss function

∑N
i=1 L(f(xi; θ), yi).

The basic mechanism of sparse training is to train with a
fraction of parameters θs, while preserving the performance
as much as possible. Hence, a sparse neural network can
be denoted as fs(x; θs) with a sparsity level S = 1− ‖θs‖0‖θ‖0 ,
where ‖ · ‖0 is the `0-norm.
Uniform Sparse Initialization. First, the network is ran-
domly initialized with a uniform sparse distribution in which
the sparsity level of each layer is the same S. More precisely,

Algorithm 1 Selfish-RNN

Input: Model weight θ, number of layer L, sparsity S,
pruning rate p, training epoch n
for i = 1 to L do

Initialize the network with Eq. (1)
end for
for epoch = 1 to n do

Training: θs ← SNT-ASGD(θs)
for i = 1 to L do

if RNN layer then
Cell Gate redistribution with Eq. (4)

else
Weight removal with Eq. (2)
Weight growth with Eq. (3)

end if
end for
p←DecayRemovingRate(p)

end for

the network is initialized by:

θs = θ �M (1)

where θ is a dense weight tensor initialized in a standard
way; M is a binary tensor, in which nonzero elements are
sampled uniformly based on the sparsity S; � refers to the
Hadamard product.
Magnitude Weight Removal. For non-RNN layers, we
use magnitude weight removal followed by random weight
growth to update the sparse connectivity. We remove a
fraction p of weights with the smallest magnitude after each
training epoch. This step is performed by changing the
binary tensor M , as follows:

M =M − P (2)

where P is a binary tensor with the same shape as M , in
which the nonzero elements have the same indices with
the top-p smallest-magnitude nonzero weights in θs, with
||P ||0 = p||M ||0.
Random Weight Growth. To keep a fixed parameter count,
we randomly grow the same number of weights immediately
after weight removal, by:

M =M +R (3)

where R is a binary tensor where the nonzero elements are
randomly located at the position of zero elements of M . We
choose random growth to get rid of using any information of
the non-existing weights, so that both feedforward and back-
propagation are completely sparse. It is more desirable to
have such pure sparse structures as it enables the possibility
of conceiving in the future specialized hardware accelera-
tors for sparse neural networks. Besides, our analysis of
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growth methods in Section 5.2 shows that random growth
can explore more sparse structural degrees of freedom than
gradient growth, which might be crucial to sparse training.
Cell Gate Redistribution. Our dynamic sparse connec-
tivity differs from previous methods mainly in cell gate
redistribution. For non-RNN layers, we use magnitude
weight removal followed by random weight growth to up-
date the sparse connectivity. For RNN layers, we use cell
gate redistribution to update their sparse connectivities. The
naive approach is to sparsify all cell gates independently
at the same sparsity, as used in Liu et al. (2019) which is
a straightforward SET extension to RNNs. Essentially, it
is more desirable to redistribute new weights to cell gates
dependently, as all gates collaborate together to regulate in-
formation. Intuitively, we redistribute new weights in a way
that cell gates containing more large-magnitude weights
should have more weights. Large-magnitude weights indi-
cate that their loss gradients are large and few oscillations
occur. Therefore, gates with more large-magnitude weights
should be reallocated with more parameters to accelerate
training. Concretely, for each RNN layer l, we remove
weights dependently given by an ascending sort:

Sortp(|θl1|, |θl2|, .., |θlt|) (4)

where {θl1, θl2, ..., θlt} are all gate tensors within RNN cell,
and Sortp returns p indices of the smallest-magnitude
weights. After weight removal, new weights are uniformly
grown to each gate, so that gates with more large-magnitude
weights will gradually obtain more weights. We further
demonstrate the final sparsity breakdown of cell gates
learned by our method in Appendix M and observe that
the forget gates are consistently sparser than other gates for
all models.

Similar with SNFS, We also decay the pruning rate p to zero
with a cosine annealing. We further use Eq. (1) to enforce
the sparse structure before the forward pass and after the
backward pass, so that zero weights will not contribute to
the loss. And all newly activated weights are initialized to
zero.

3.2. Sparse Non-monotonically Triggered ASGD

Non-monotonically Triggered ASGD (NT-ASGD) has
shown its ability to achieve remarkable performance with
various RNNs (Merity et al., 2018; Yang et al., 2018; Shen
et al., 2019). However, it becomes less appealing for sparse
RNNs training. Unlike dense networks in which every pa-
rameter in the model is updated at each iteration, the non-
active weights remain zero for sparse training. Once these
non-active weights are activated, the original averaging op-
eration of standard NT-ASGD will immediately bring them
close to zero. Thereby, after the averaging operation is trig-
gered, the number of valid weights will decrease sharply.
To alleviate this problem, we describe SNT-ASGD as fol-

Figure 3. The number of weights whose magnitude is larger than
0.1 during training for ON-LSTM. The solid lines represent SNT-
ASGD and dashed lines represent standard NT-ASGD. ih1, ih2,
and ih3 refer to input weights in the first, second and third LSTM
layer.

lowing:

w̃i =

{
0 if mi = 0,∀i,∑K

t=Ti
wi,t

(K−Ti+1) if mi = 1,∀i.
(5)

where w̃i is the value returned by SNT-ASGD for weight
wi; wi,t represents the actual value of weight wi at the
tth iteration; mi = 1 if the weight wi exists and mi = 0
if not; Ti is the iteration in which the weight wi grows
most recently; and K is the total number of iterations. We
demonstrate the effectiveness of SNT-ASGD in Figure 3.
At the beginning when trained with SGD, the number of
weights with high magnitude increases fast. However, the
trend of NT-ASGD starts to descend significantly once the
averaging is triggered at epoch 80, whereas the trend of
SNT-ASGD continues to rise after a small drop caused by
the averaging operation.

Besides, the constant learning rate of SNT-ASGD helps to
prevent the negative effect of learning rate decay on dy-
namic sparse training. Since most dynamic sparse training
methods initialize the newly activated weights as zero, the
magnitude of new weights can barely catch up with the un-
pruned weights once the learning rate is decayed to small
values. To better understand how proposed components,
cell gate redistribution and SNT-ASGD, improve the sparse
RNN training performance, we further conduct an ablation
study in Appendix B. It is clear to see that both of them lead
to significant performance improvement.

4. Experimental Results
We evaluate Selfish-RNN with various models including
stacked LSTMs, RHNs, ON-LSTM on the Penn TreeBank
dataset and AWD-LSTM-MoS on the WikiText-2 dataset.
The performance of Selfish-RNN is compared with 6 state-
of-the-art sparse inducing techniques, including 2 dense-to-
sparse methods, ISS and GMP; 4 sparse-to-sparse methods,
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Table 2. Single model perplexity on validation and test sets for the Penn Treebank language modeling task with stacked LSTMs and
RHNs. ‘*’ indicates the reported results from the original papers: “Dense” is obtained from Zaremba et al. (2014) and ISS is obtained
from Wen et al. (2018). “Static-ER” and “Static-Uniform” are the static sparse network trained from scratch with ER distribution and
uniform distribution, respectively. “Small Dense” refers to the small dense network with the same number of parameters as Selfish-RNN.

STACKED LSTMS RHNS

MODELS #PARAMETERS VALIDATION TEST #PARAMETERS VALIDATION TEST

DENSE* 66.0M 82.57 78.57 23.5M 67.90 65.40
DENSE (NT-ASGD) 66.0M 74.51 72.40 23.5M 63.44 61.84

SPARSITY=0.67 SPARSITY=0.53

SMALL DENSE (NT-ASGD) 21.8M 88.67 86.33 11.1M 70.10 68.40
STATIC-ER (SNT-ASGD) 21.8M 81.02 79.30 11.1M 75.74 73.21
STATIC-UNIFORM (SNT-ASGD) 21.8M 80.37 78.61 11.1M 74.11 71.83

ISS* 21.8M 82.59 78.65 11.1M 68.10 65.40
DSR (ADAM) 21.8M 89.95 88.16 11.1M 65.38 63.19
GMP (ADAM) 21.8M 89.47 87.97 11.1M 63.21 61.55
SNFS (ADAM) 21.8M 88.31 86.28 11.1M 74.02 70.99
RIGL (ADAM) 21.8M 88.39 85.61 11.1M 67.43 64.41
SET (ADAM) 21.8M 87.30 85.49 11.1M 63.66 61.08
SELFISH-RNN (ADAM) 21.8M 85.70 82.85 11.1M 63.28 60.75
RIGL (SNT-ASGD) 21.8M 78.31 75.90 11.1M 64.82 62.47
GMP (SNT-ASGD) 21.8M 76.78 74.84 11.1M 65.63 63.96
SELFISH-RNN (SNT-ASGD) 21.8M 73.76 71.65 11.1M 62.10 60.35

SPARSITY=0.62 SPARSITY=0.68

ISS* 25.2M 80.24 76.03 7.6M 70.30 67.70
RIGL (SNT-ASGD) 25.2M 77.16 74.76 7.6M 69.32 66.64
GMP (SNT-ASGD) 25.2M 74.86 73.03 7.6M 66.61 64.98
SELFISH-RNN (SNT-ASGD) 25.2M 73.50 71.42 7.6M 66.35 64.03

SET, DSR, SNFS, and RigL. Intrinsic Sparse Structures
(ISS) (Wen et al., 2018) is a method that uses Lasso reg-
ularization to explore sparsity inside RNNs. GMP is the
state-of-the-art unstructured pruning method in DNNs. For
fair comparison, we use the exact same hyperparameters
and regularization introduced in ON-LSTM (Shen et al.,
2019) and AWD-LSTM-MoS (Yang et al., 2018). We then
extend these similar settings to stacked LSTMs and RHNs.
We choose Adam (Kingma & Ba, 2014) and SNT-ASGD
as the optimizers of different DST methods. Due to the
space limitation, we put the results of sparse ON-LSTM on
PTB and sparse AWD-LSTM-MoS on Wikitext-2 in Ap-
pendix D and Appendix E, respectively. See Appendix A
for hyperparameters.

4.1. Stacked LSTMs

As introduced by Zaremba et al. (2014), stacked LSTMs
(large) is a two-layer LSTM model with 1500 hidden units
for each LSTM layer. We choose the same sparsity as
ISS, 67% and 62%. Results are shown in the left side of
Table 2 (see Appendix L for the version with estimated
FLOPs). We provide a new dense baseline trained with
the standard NT-ASGD, achieving 6 lower test perplexity
than the widely-used baseline. When optimized by Adam,

while Selfish-RNN achieves the lowest perplexity, all sparse
training techniques fail to match the performance of ISS
and dense models. On the other hand, training sparse RNNs
with SNT-ASGD substantially improves the performance of
all sparse methods, and Selfish-RNN achieves the best one,
even better than the new dense baseline. Note that even start-
ing from a sparse network (sparse-to-sparse), our method
can discover a better solution than the state-of-the-art dense-
to-sparse method, GMP. We also test whether a small dense
network and a static sparse network with the same number
of parameters as Selfish-RNN can match the performance
of Selfish-RNN. We train a dense stacked LSTMs with 700
hidden units, named as “Small Dense”. In line with the
previous studies (Mocanu et al., 2018; Mostafa & Wang,
2019; Evci et al., 2020), both static sparse networks and
small dense networks fall short of Selfish-RNN. Moreover,
training a static sparse network from scratch with uniform
distribution performs better than the one with ER distribu-
tion.

To understand better the effect of different optimizers on
different DST methods, we report the performance of all
DST methods trained with Adam, momentum SGD, and
SNT-ASGD. For SNFS (SNT-ASGD), we replace momen-
tum of weights with their gradients, as SNT-ASGD does not
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Table 3. Effect of different optimizers on different DST methods.
We choose stacked LSTMs on PTB dataset at a sparsity level of
67%.

MODELS #PARAMETERS VALIDATION TEST

DENSE 66.0M 82.57 78.57

ADAM

DSR 21.8M 89.95 88.16
SNFS 21.8M 88.31 86.28
RIGL 21.8M 88.39 85.61
SET 21.8M 87.30 85.49
SELFISH-RNN 21.8M 85.70 82.85

SGD WITH MOMENTUM

SNFS 21.8M 90.09 87.98
SET 21.8M 85.73 82.52
RIGL 21.8M 84.78 80.81
DSR 21.8M 82.89 80.09
SELFISH-RNN 21.8M 82.48 79.69

SNT-ASGD

SNFS 21.8M 82.11 79.50
RIGL 21.8M 78.31 75.90
SET 21.8M 76.78 74.84
SELFISH-RNN 21.8M 73.76 71.65
DSR 21.8M 72.30 70.76

involve any momentum terms. We use the same hyperparam-
eters for all DST methods. The results are shown in Table
3. It is clear that SNT-ASGD brings significant perplexity
improvements to all sparse training techniques. This further
stands as empirical evidence that SNT-ASGD is crucial to
improve the sparse training performance in the RNN setting.
Moreover, compared with other DST methods, Selfish-RNN
is quite robust to the choice of optimizers likely due to its
simple scheme to update the sparse connectivity. Advanced
strategies such as across-layer weight redistribution used
in DSR and SNFS, gradient-based weight growth used in
RigL and SNFS heavily depend on optimizers. They might
work decently for some optimization methods but may not
for others.

4.2. Recurrent Highway Networks

Recurrent Highway Networks (Zilly et al., 2017) is a variant
of RNNs allowing RNNs to explore deeper architectures
inside the recurrent transition. The results are shown in
the right side of Table 2. Again, Selfish-RNN achieves
the lowest perplexity with both Adam and SNT-ASGD,
better than the dense-to-sparse methods (ISS and GMP).
Surprisingly, random-based growth methods (SET, DSR,
and Selfish-RNN) consistently have the lower perplexity
than the gradient-based growth methods (RigL and SNFS).
We further analyze the effect of different weight growth
methods on DST in Section 5.2.

5. Analyzing the Performance of Selfish-RNN
5.1. Analysis of Topological Distance between Sparse

Connectivities

Prior works on understanding dense loss landscapes have
shown the existence of diverse low-loss solutions on the
manifold of dense networks (Goodfellow et al., 2014;
Garipov et al., 2018; Draxler et al., 2018; Fort & Jastrzebski,
2019). Here, the fact that Selfish-RNN consistently achieves
good performance with different runs naturally raises some
questions: e.g., are final sparse connectivities obtained by
different runs similar or very different? Is the distance be-
tween the original sparse connectivity and the final sparse
connectivity large or small? To answer these questions, we
investigate a method based on graph edit distance (GED)
(Sanfeliu & Fu, 1983) to measure the topological distance
between different sparse connectivities. The distance is
scaled between 0 and 1. The smaller the distance is, the
more similar the two sparse topologies are (See Appendix
J for details on how we measure the sparse connectivity
distance).

The results are demonstrated in Figure 4. Figure 4-left
shows how the topology of one random-initialized (random
sparse connectivity and random weight values) network
evolves when trained with Selfish-RNN. We compare the
sparse connectivity at 5 epoch with those at the following
epochs. We can see that the distance gradually increases
from 0 to a very high value 0.8, meaning that Selfish-RNN
optimizes the initial topology to a very different one. More-
over, Figure 4-right illustrates that the topological distance
between two same-initialized (same sparse connectivity and
same weight values) networks trained with different seeds
after the 4th epoch. Started from the same sparse topol-
ogy, they evolve to completely different sparse topologies.
While topologically different, they have very similarly per-
formance. This indicates that in the case of RNNs there exist
many low-dimensional sub-networks that can achieve simi-
larly low loss. This phenomenon complements the findings
of Liu et al. (2020c) which shows that there are numer-
ous sparse sub-networks performing similarly well in the
context of sparse MLPs.

5.2. Analysis of Weight Growth Methods

Methods that leverage gradient-based weight growth (SNFS
and RigL) have shown superiority on performance over the
methods using random-based weight growth for CNNs (Evci
et al., 2020). However, we observe a different behavior with
RNNs. We set up a controlled experiment to compare these
two methods with SNT-ASGD and momentum SGD. We
report the results with various update intervals (the number
of iterations between sparse connectivity updates) in Fig-
ure 5. Surprisingly, gradient-based growth performs worse
than random-based growth in most cases. Our hypothesis
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Figure 4. (left) One random-initialized sparse stacked LSTMs trained with Selfish-RNN end up with a very different sparse connectivity
topology. (right) Two same-initialized sparse stacked LSTMs trained with different random seeds end up with very different sparse
connectivity topologies. ih is the input weight tensor comprising four cell gates and hh is the hidden state weight tensor comprising four
cell gates.

Figure 5. Comparison between random-based growth and gradient-based growth. (left) Models trained with SNT-ASGD. (right) Models
trained with momentum SGD.

is that random growth helps in exploring better the search
space, as it naturally considers a large number of various
sparse connectivities during training, which is crucial to
the performance of dynamic sparse training. Differently,
gradient growth drives the network topology towards some
similar local optima for the sparse connectivity as it uses
a greedy search strategy (highest gradient magnitude) at
every topological change. However, benefits provided by
high-magnitude gradients might change dynamically after-
wards due to complicated interactions between weights. We
empirically illustrate our hypothesis via the proposed sparse
connectivity distance measurement in Appendix K.

5.3. Analysis of Sparse Initialization

It has been shown that the choice of sparse initialization
(sparsity distribution) is important for sparse training in
Frankle & Carbin (2019); Kusupati et al. (2020); Evci et al.
(2020). Here, we compare two types of sparse initialization
for RNNs, ER distribution and uniform distribution. Uni-
form distribution namely enforces the sparsity level of each

layer to be the same as S. ER distribution allocates higher
sparsity to larger layers than smaller ones. Note that its
variant Erdős-Rényi-Kernel proposed by Evci et al. (2020)
scales back to ER for RNNs, as no kernels are involved. The
results are shown as the Static group in Table 2. We can
see that uniform distribution outperforms ER distribution
consistently for RNNs.

5.4. Analysis of DST Hyperparameters

The sparsity S and the initial pruning rate p are two hyper-
parameters of our DST method. We show their sensitivity
analysis in Appendix F and Appendix G. We find that Selfish
Stacked LSTMs, RHNs, ON-LSTM, and AWD-LSTM-MoS
need around 25%, 40%, 45%, and 40% parameters to reach
the performance of their dense counterparts, respectively.
In addition, our method is quite robust to the choice of the
initial pruning rate.
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6. Conclusion
In this paper, we developed an approach to train sparse
RNNs from scratch with a fixed parameter count through-
out training. We further proposed SNT-ASGD, a specially
designed sparse optimizer for training sparse RNNs and
showed that it substantially improves the performance of
all DST methods in RNNs. We observed that random-
based growth achieves lower perplexity than gradient-based
growth in the case of RNNs. Further, we developed an ap-
proach to compare two different sparse connectivities from
the perspective of graph theory. Using this approach, we
found that random-based growth explores better the topolog-
ical search space for optimal sparse connectivities, whereas
gradient-based growth is prone to drive the network towards
similar sparse connectivity patterns, opening the path for a
better understanding of sparse training.
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