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8. Supplementary Material
We now provide the proofs for all results stated in the main body of our work. We also introduce the connection between
recovery for replacements and sparse recovery. Finally, we provide additional details and figures from our experimental
evaluation that were omitted due to space constraints.

8.1. Proof of Proposition 1

Proof. Suppose that A3 affects at least one entry in a subset S of all samples. As at least one coordinate per sample is
corrupted, S must be at most an α-fraction of all samples; since α ≤ ε/n the sample-level adversary can corrupt the entirety
of every sample partially corrupted by the coordinate-level adversary, and thus, it is a stronger adversary given this condition.
The proof for A2 is similar.

8.2. Proof of Proposition 2

Proof. If α, ρ ≥ ε, similarly to the proof of Proposition 1, A2 and A3 can simulate A1 by placing all its corruptions on
the εN coordinates corrupted by A1. If α ≥ ρ, A3 can simulate A2 by corrupting the coordinates corrupted by A2 since
A2 can never corrupt more than ρ-fraction of coordinates in expectation. On the other hand, if α ≤ ρ/n, A2 can corrupt
whatever coordinates A3 decides to corrupt since A3 cannot corrupt more than αn-fraction of one coordinate. Thus, the
three statements hold.

8.3. Proof of Theorem 1

Proof. We first show that when α > 2α′, Aα3 has a way to make corruptions so that with probability at least 1− e−Ω(α2N)

it is indistinguishable whether the N samples come from D1 or D2. From the definition of d1
ENTRY, if we take the coupling

γ that achieves the infimum, changing α′ fraction of the entries per sample on average will make D1 indistinguishable
from D2. Therefore, if the adversary corrupts the entries of the N samples according to the coupling γ, by Hoeffding’s
inequality, the probability that more than 2α′ fraction of the entries need to be changed to make it impossible to tell whether
the samples come from D1 or D2 is less than e−Ω(α2N).

Then we show that when α < α′/4, no matter how Aα3 makes corruptions, with probability at least 1 − e−Ω(α2N), we
can tell that the N samples come from D1. Since d1

ENTRY(D1, D2) = α′, by Monge-Kantorovich duality theorem (see
e.g. Theorem 5.10 of (Villani, 2009)), there exists a function u : (R ∪ {⊥})n → [0, 1], where ⊥ denotes a missing
entry, such that u(x) − u(y) ≤ 1

n‖x − y‖0 and ED1 [u(x)] − ED2 [u(x)] = α′. This is because the optimal coupling of
D1, D2 for d1

ENTRY is represents the optimal to the primal Kantorovich problem where c(x, y) = 1
n‖I(x, y)‖1, while u

represents the optimal to the dual problem. We use u to distinguish whether the corrupted samples come from D1 or
D2 by checking whether the expectation of u according to the empirical distribution D̂ that we observe is closer to the
expectation corresponding to D1 or D2. By Hoeffding’s inequality, the empirical distribution D̂1 of the N samples before
corruption satisfies |ED1

[u(x)]−ED̂1
[u(x)]| ≤ α′/4 with probability at least 1− e−Ω(α2N). After corruption, we have that

|ED̂[u(x)]− ED̂1
[u(x)]| ≤ α by the bound on the number of corrupted entries and the Lipschitz property of u. Thus, with

probability at least 1− e−Ω(α2N), |ED1
[u(x)]− ED̂[u(x)]| ≤ α′/4 + α < α′/2 while |ED2

[u(x)]− ED̂[u(x)]| > α′/2,
which allows us to distinguish between D1 and D2.

In the case of the value-fraction adversary Aρ2 that can corrupt ρ-fraction of values in each coordinate, d∞ENTRY can be
bound similarly in Θ(ρ) by applying Hoeffding’s inequality and Kantorovich duality theorem for each coordinate such that
ui(x)− ui(y) ≤ ‖xi − yi‖0 and then comparing the mean for each coordinate. Therefore, for both Aρ2 and Aα3 , dENTRY is a
tight characterization of the coordinate-level adversary.

8.4. Proof of Theorem 2

Proof. Let disc(Σ−1) = maxx∈[−1,1]

√
xT s(Σ−1)x and let v be the vector with entries (Σ−1

ii )−1/2. To complete the
proof, we will show that d∞ENTRY(N(µ,Σ), N(µ + ρv,Σ)) ≤ ρ. To do this, we are going to use a hybrid argument
showing that by only hiding ρ fraction of the entries in the i-th coordinate, N(µ,Σ) and N(µ + ρei/Σ

−1/2
ii ,Σ)) be-

come indistinguishable where ei is the vector that has 1 in its ith coordinate and 0 in the others. This is because,
dTV(N(µ,Σ), N(µ + ρei/Σ

−1/2
ii ,Σ))) ≤ ρ. By applying this argument sequentially for every coordinate, N(µ,Σ) and

N(µ+ ρv,Σ) are indistinguishable under an A2 adversary. Since the total distance between µ and µ+ ρv in Mahalanobis
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distance is at least ρ · disc(Σ−1), the theorem follows.

8.5. Proof of Corollary 1

Proof. We prove the following lemma that implies Corollary 1 when combined with Theorem 2.

Lemma 4. For any n× n PSD matrix M , disc(M) ∈ [
√
n, n]

We have that s(M) is a PSD matrix with diagonal elements equal to 1. Consider a random x with uniformly random
coordinates in {−1, 1}. Then, E[xT s(M)x] = Trace(s(M)) = n. Thus, maxx∈[−1,1]

√
xT s(M)x ≥

√
n. This lower

bound is tight for M = I .

For the upper-bound, we notice that since s(M) is PSD, it holds that |s(M)ij + s(M)ji| ≤ 2. To see this notice that
xT s(M)x ≥ 0 for both x = ei + ej and x = ei − ej .

Given this, we have that xT s(M)x ≤ 1
2

∑
ij |s(M)ij + s(M)ji| ≤ n2. This gives the required upper-bound. Notice that

the upper-bound is tight for the matrix M consisting entirely of 1’s.

8.6. Proof of Theorem 3

Proof. With a budget of α, A3 can concentrate its corruption on one particular coordinate, say the first coordinate. If
αn ≥ 1, we will lose all information for the first coordinate, making mean estimation impossible. Since α < 1/n, A3 can
corrupt αn-fraction of first coordinates of all samples. Since the marginal distribution with respect to the first dimension is a
univariate Gaussian, information-theoretically any mean estimator of the first coordinate must be Ω(αn)-far from the true
mean of the first coordinate.

8.7. Proof of Theorem 4

Proof. First, we show the case for d1
ENTRY.

d1
ENTRY(D1, D2) ≤ dTV(D1, D2) follows from

d1
ENTRY(D1, D2) = inf

γ∈Γ(D1,D2)

‖E(x,y)∼γ [I(x, y)] ‖1
n

= inf
γ∈Γ(D1,D2)

E
(x,y)∼γ

[
||x− y||0

n

]
≤ inf
γ∈Γ(D1,D2)

Pr
(x,y)∼γ

[x 6= y]

= dTV(D1, D2)

Then we show that d1
ENTRY(D1, D2) ≥ mA

n dTV(D1, D2).

We first show that for any x 6∈ ker(A), ||Ax||0 ≥ mA. Suppose by way of contradiction that ΠiAx is nonzero for fewer
than mA values of i. Call the rows of A vT0 , . . . , v

T
n−1 and let S be the subspace of Rr spanned by the vi’s. As x 6∈ ker(A),

Ax is nonzero. Hence, 〈x, vi〉 is nonzero for some i so ΠS x is nonzero.

Now, let B be a basis for S containing ΠS x. Consider the subspace S′ of S spanned by {vi | 〈x, vi〉 = 0}. As ΠS′ x = 0,
ΠS x cannot be an element of S′ and so B is not a basis for S′. Thus, the dimension of S′ is less than that of S; as
|{vi}| − |{vi | 〈x, vi〉 = 0}| < mA we have a contradiction of the definition of mA. Thus, if x 6= 0 ∈ Rr, ΠiAx must be
nonzero for at least mA values of i, and hence ||Ax||0 ≥ mA.

Now, suppose that (x, y) ∼ γ for some γ ∈ Γ(D1, D2). Then, x = Ax′ and y = Ay′ for some x′, y′ ∈ Rr. If x 6= y, then
Ax′ 6= Ay′ so x′ − y′ 6∈ ker(A). Thus

||A(x′ − y′)||0 ≥ mA

by the above, and so
E

(x,y)∼γ
[||x− y||0] ≥ mA Pr

(x,y)∼γ
[x 6= y]
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Therefore, we have that

d1
ENTRY(D1, D2) = inf

γ∈Γ(D1,D2)

‖E(x,y)∼γ [I(x, y)] ‖1
n

= inf
γ∈Γ(D1,D2)

E
(x,y)∼γ

[
||x− y||0

n

]
≥ inf
γ∈Γ(D1,D2)

mA

n
Pr

(x,y)∼γ
[x 6= y]

=
mA

n
dTV(D1, D2)

In the case of d∞ENTRY, the left hand side (d∞ENTRY(D1, D2) ≥ mA

n dTV(D1, D2)) follows from above by using the fact that
‖x‖1 ≤ n‖x‖∞ for x ∈ Rn. The right hand side follows from

d∞ENTRY(D1, D2) = inf
γ∈Γ(D1,D2)

‖ E
(x,y)∼γ

[I(x, y)] ‖∞

= inf
γ∈Γ(D1,D2)

max
i

Pr
(x,y)∼γ

[xi 6= yi]

≤ inf
γ∈Γ(D1,D2)

Pr
(x,y)∼γ

[x 6= y]

= dTV(D1, D2)

Therefore, the theorem holds for the dENTRY metric.

8.8. Proof of Corollary 2

Proof. We can obtain the given upper bound relating the distance to dTV. Since dTV(N (0, 1),N (µ, 1)) = erf( µ

2
√

2
), for

small µ > 0, erf( µ

2
√

2
) = Θ(µ). Then

dTV(N (µ,Σ),N (µ′,Σ)) = dTV(N (0, I),N (Σ−1/2(µ′ − µ), I))

= dTV(N (0, 1),N (‖Σ−1/2(µ′ − µ)‖2, 1))

= dTV(N (0, 1),N (‖µ′ − µ‖Σ, 1)) = Θ(‖µ′ − µ‖Σ)

Applying Theorem 4, we get that ‖µ− µ′‖Σ = O(α n
mA

).

8.9. Proof of Theorem 5

Proof. We prove the theorem for both missing values and replaced values. In the case of missing values, for the lower
bound, Aα3 may corrupt at most αn

mA
-fraction of the samples so that the coordinates are non-recoverable and shift part of the

original distribution to anywhere along the axes of missing coordinates. Then the proof similarly follows the lower bound
proof for estimating the mean of a Gaussian corrupted by Aε1. Hence, since we cannot distinguish between two Gaussians
that share 1− αn

mA
of mass, ‖µ̂− µ‖Σ = Ω(α n

mA
).

For Aα3 that replaces values, we prove the following lemma and the theorem follows.

Lemma 5. The adversary corrupts δ coordinates of a sample. Let x̃ be the corrupted sample and x∗ = Az∗ be the
original. We can only information-theoretically recover x∗ from x̃ if and only if δ < mA

2 . Furthermore, if δ < mA

2 then
‖x̃−Az∗‖0 < δ and ‖x̃−Az′‖0 ≥ mA − δ for any z′ 6= z∗.

Assume that if δ < mA

2 then ‖x̃ − Az∗‖0 < δ and ‖x̃ − Az′‖0 ≥ mA − δ for any z′ 6= z∗. This implies that we can
consider all possible subsets I ⊆ U where |I| = n− mA

2 and solve the linear system of equations of x̃I = AIz and output
the solution z, which achieves smallest hamming distance to x̃, as z∗. If δ ≥ mA

2 , it is information theoretically impossible
to recover x∗ as arg minz ‖x̃−Az‖0 may not be unique: since the corruptions are adversarial, z∗ may not be part of the set
of minimizers.
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Assume δ < mA

2 . Without loss of generality, let A be full rank. If not, the proof follows by replacing r with rank(A) and
considering the kernel of A. Let Ai denote the i-th row of matrix A and U = {Ai : i ∈ [n]}. Let ∆ denote the set of Ai’s
that correspond to the corrupted coordinates of x̃ so that |∆| = δ. Define S ⊇ ∆ to be the smallest subset of U such that
row space dimension (rank) of AU\S is 1 less than that of A. By definition of mA, |S| ≥ mA.

The entries corresponding to rows U \ S are uncorrupted, so if we solve the linear system AU\Sz = x̃U\S , we will a
get a 1-dimensional solution space for z. Thus, any z in this line will give at least |U \ S| matching coordinates when
multipied to A with x∗. Now, we can generate |S| many solutions, each corresponding to the solution to the linear system
AU\S∪{s}z = x̃U\S∪{s} for each s ∈ S.

For s that corresponds to an uncorrupted entry in x̃, the solution to the linear system is the true solution z∗ since none of the
values in the system was corrupted. That gives us at least |S| − δ solutions out of |S| solutions to be exactly z∗. Regardless
of how the adversary corrupts the δ entries, if δ < mA

2 , then the majority solution will always be z∗ since |S|− δ > mA

2 > δ.
Furthermore, for z′ 6= z∗, z′ can match at most |U \ S|+ δ ≤ n−mA + δ coordinates of x̃, i.e. ‖Az′ − x̃‖0 ≥ mA − δ.
However, if δ ≥ mA

2 , then there is no clear majority so it is impossible to distinguish between the true solution and the other
solution. In fact, when δ is strictly greater and corruptions adversarially chosen, ‖Az∗ − x̃‖0 = δ and there exists some z′,
‖Az′ − x̃‖0 = mA − δ < ‖Az∗ − x̃‖0.

8.10. Details of the Recovery Steps in the Algorithms in Section 4.1

The input is the structure matrix A and corrupted samples x̃i with Mi missing entries for i = 1, 2, .., N . When A is known,
we iterate over all samples. If Mi ≥ mA, we discard x̃i. Otherwise, we remove the missing entries in x̃i and get x̃′i, and
also remove the rows in A corresponding to those missing entries and get A′. Then we solve A′z = x̃′i and recover sample i
with Az. When A is unknown, we perform matrix completion on X̃ , the ith row of which is x̃′i. We first impute the missing
entries with the coordinate-wise medians. Then we repeat the following procedure until convergence: 1) compute the
rank-mA projection of X̃ 2) replace the entries that are missing initially with the corresponding entries from the projection.
The details of the projection and the completion procedure can be found in (Chunikhina et al., 2014).

8.11. Proof of Theorem 6

Proof. Define ε be the fraction of samples that has at least one corrupted coordinate. Note that the coordinate-level adversary
must corrupt at least mA coordinates of a sample to make his corruptions non-recoverable. Given that we can recover any
sample with less than mA corrupted coordinates, we have that ε ≤ αn

mA
. If D is the original distribution on Rn and D′ is

the observed distribution, then dTV(D,D′) ≤ ε. Since dTV between the two Gaussians is less than or equal to ε, the Tukey
median algorithm achieves ‖µ̂Tukey − µ‖Σ = O( αnmA

). On the other hand, removing ε-fraction of a spherical Gaussian shifts
the empirical mean by O(ε

√
log 1/ε). Therefore, ‖µ̂− µ‖Σ = Õ( αnmA

).

8.12. Proof of Lemma 2

Proof. The adversary can simply hide one coordinate completely to prevent us from recovering that coordinate if at least
one missing coordinate per sample in expectation is allowed. If the expected number of missing coordinates per sample is
less than one, there must then be some positive fraction of samples with no missing coordinates; as we have infinite samples,
we can select any r + 1 disjoint sets of n− r such samples to satisfy the conditions in Lemma 1.

8.13. Robust Mean Estimation Under Coordinate-fraction Adversaries with Unknown Structure

If we consider the case where the data is corrupted by Aα3 , we have the following result.

Theorem 9. Assume samples xi = Azi and zi comes from a Gaussian such that xi ∼ N (µ,Σ) with support in the range
of A, but A is unknown. Under corruption Aα3 with budget α < 1

n , recover missing coordinates by solving the matrix
completion problem and discard any unrecoverable samples. The empirical mean µ̂ of the remaining samples satisfies
‖µ− µ̂‖Σ = Õ( αnmA

), while the Tukey median µ̂Tukey of the remaining samples satisfies ‖µ̂Tukey − µ‖Σ = O( αnmA
).

Theorem 9 is based on Theorem 6 and the Lemma 2.
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8.14. Proof of Lemma 3

Proof. First, We introduce the concept of hidden patterns. The set of coordinates missing from a sample forms its hidden
pattern. We only consider the hidden patterns which have been applied to infinitely many samples as if only finitely many
samples share a pattern, the adversary could hide those samples completely with 0 budget.

When ρ ≥ mA−1
n , the adversary is able to hide mA − 1 entries for every sample, and we cannot learn the structure from

samples with only r visible entries.

When ρ < mA−1
n , the adversary does not have enough budget to hide mA − 1 entries of all the samples, so there exist some

patterns with at least r + 1 coordinates visible. We use M to denote the number of such patterns, and pl to denote the
probability of the lth pattern Pl, l = 1, 2, . . . ,M .

Next, we show a necessary condition for the adversary to prevent us from learning the structure. Since we have infinitely
many samples, one group of n− r samples satisfying the conditions in Lemma 1 is enough to learn the structure since we
can find another r groups by choosing samples with the same hidden patterns.

It is obvious that the adversary has to hide at least one coordinate per pattern, otherwise we have infinitely many samples
without corruption. No matter what the patterns the adversary provides, we try to get the samples satisfies the conditions in
Lemma 1 by the following sampling procedure.

1. Start with one of the patterns, pick r + 1 visible coordinates of it to form the initial visible set V1. Take one sample
from this pattern to form the initial sample group G0. Mark this pattern as checked.

2. For K = 1, 2, 3, . . . ,M − 1, take one of the unchecked patterns and check if it contains at least one visible coordinate
not in VK , the current visible set. If so, take one sample xK from it and pick any one of its visible coordinates vK /∈ VK .
Add xK to the sample group and vK to the visible set: GK+1 = GK ∪ {xK}, VK+1 = VK ∪ {vK}. If not, skip it.
Mark the pattern as checked.

We show by induction that any k(k ≤ K) different samples in GK have at least r + k coordinates in VK not completely
hidden. It is trivial that the property holds for K = 1. Assume that the property holds for K. According to the sampling
procedure, when a new sample xK comes, it has at least one visible coordinate vK not in VK . Consider any k(k ≤ K + 1)
different samples in GK+1. If the k samples don’t include the new sample xK , by the induction assumption they have
at least r + k coordinates in VK ⊂ VK+1 not completely hidden. If xK is one of the k samples, again by the induction
assumption the other k − 1 samples have at least r + k − 1 coordinates in VK not completely hidden, plus vK of xK is
also not hidden, so there are at least r + k coordinates in VK+1 not completely hidden. Thus, the property also holds for
K + 1. By induction, any k distinct samples from the group we get at the end of step 2 have at least r + k coordinates not
completely hidden, which means if the group has at least n− r samples, the conditions in Lemma 1 can be satisfied.

Denote the set of the patterns being picked as PP and the set of the patterns being skipped as PS . Based on the previous
analysis, the adversary has to manipulate the patterns so that |PP | ≤ n− r − 1, in which case the visible set cannot cover
all the coordinates, which means there exists at least one common hidden coordinate for the patterns in PS (otherwise the
pattern where that coordinate is visible should have been picked). Since the fraction of hidden entries in that common
coordinate is less than or equal to ρ, the sum of the probabilities of the patterns in PS satisfies

∑
l:Pl∈PS

pl ≤ ρ. Since all
the patterns have at least one missing coordinate, we also have pl:Pl∈PP

≤ ρ. Thus, we have
∑M
l=1 pl ≤ (n− r)ρ. In such a

case, the overall fraction of missing entries η satisfies

η ≥
M∑
l=1

pl
1

n
+ (1−

M∑
l=1

pl)
n− r
n

≥ (n− r)ρ 1

n
+ (1− (n− r)ρ)

n− r
n

The first inequality holds because for the samples with at least r + 1 visible entries, there are at least 1 missing entries
per sample, and for the samples with less than r + 1 visible entries, there are at least n− r missing entries per sample. In
addition, η also satisfies η ≤ ρ, so we have ρ ≥ n−r

n+(n−r−1)(n−r) = mA−1
n+(mA−1)(mA−2) , which is a necessary condition for

the adversary. Thus, if ρ < mA−1
n+(mA−1)(mA−2) , we can learn the structure and impute all the samples with at least r visible

entries.
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8.15. Proof of Theorem 8

Proof. Algorithm 1 and the following analysis borrows significantly from the randomized approximation algorithm for the
NP-hard problem Min-Unsatisfy in the work of (Berman & Karpinski, 2001).

If x̃ is in the subspace generated by A (i.e. there exists z such that x̃ = Az), then the point x̃ must be either an uncorrupted
point or a corrupt point where at least mA coordinates corrupted. This is because mA is equal to the minimum number of
coordinates needed to move a point on the subspace generated by A to another point on the subspace.

If the point does not lie on the subspace, it is clearly a corrupted point. If this point is corrupted by more than mA/2, it
would be information-theoretically impossible to recover the true point as is shown in Lemma 5. However, changing this
point to a different point on the subspace would not matter in the reduction to a robust mean estimation algorithm since it is
a outlier either way.

Now assume this point is corrupted by at most mA/2. By Lemma 2 and Theorem 1 of (Berman & Karpinski, 2001), the for
loop results in the best z̃ such that ‖x̃− Az̃‖0 ≤ r

c ln r‖x̃− x
∗‖0 with high probability. In the case that the point is only

corrupted by at most cmA ln r
2r coordinates, then ‖x̃ − Az̃‖0 ≤ mA

2 . But the only point on the subspace such that it only
needs at most mA

2 coordinate changes to x̃ is x∗. Then this approximation algorithm performs exact recovery of x∗ when at
most O(mA ln r

r ) coordinates are corrupted. Therefore, preprocessing points with this algorithm and then applying robust
mean estimation yields a mean estimate µ̂ such that ‖µ̂− µ‖2 = Õ( r

ln r ·
αn
mA

).

8.16. Connection between Recovery for Replacements and Sparse Recovery

We first show that the reduction from exact recovery for replacements to sparse recovery. Let x∗ = Az∗ be the uncorrupted
sample, and x̃ be the same sample with no more than δ coordinates corrupted. Let e∗ = x̃ − x∗, where ‖e∗‖0 ≤ δ, and
we have x̃ = Az∗ + e∗. Take a non-trivial matrix F ∈ Rp×n (p < n) which satisfies FA = 0. Apply F to x̃ we have
y = F (Ax̃+ e∗) = Fe∗. x∗ can be recovered if we know what e∗ is, so the recovery of x∗ can be reduced to recovering e∗

from y.

Candes & Tao (2005) show that when δ < mA

2 , we can get the exact e∗ by solving

min
e∈Rn

‖e‖0 subject to Fe = y

Therefore, we reduce the problem of exact recovery for replacements to the problem of sparse recovery.

On the other hand, sparse recovery can also be reduced to exact recovery for replacements. Given the sparse recovery
problem shown above, we take A ∈ Rn×r such that the columns of A span the null space of F , and x̃ ∈ Rn such that
Fx̃ = y. For any e satisfying Fe = y, we have Fx̃ = Fe, and therefore x̃ = e+Az for some z ∈ Rr. In addition, for any
z ∈ Rr, we can find e = x̃− Az satisfying Fe = y. Thus, solving the exact recovery problem minz∈Rr ‖x̃− Az‖0 will
also give the sparsest e.

8.17. Computationally Efficient Algorithms for Sparse Recovery

Basis pursuit (BP) (Candes & Tao, 2005) and orthogonal matching pursuit (OMP) (Davenport & Wakin, 2010) are
computationally efficient algorithms that get the exact e∗ defined in Section 8.16 under certain conditions.

BP approximates the sparse recovery problem by

min
e∈Rn

‖e‖1 subject to Fe = y (1)

which is convex and can be solved by linear programming.

OMP is a greedy algorithm that gives a solution by the following procedure:

• Step 1 Initialize the residual r0 = y, the index set Λ0 = ∅, and the iteration counter l = 0.

• Step 2 Find the column of F that has the largest inner product with the current residual and add its index to the index
set: Λl+1 = Λl ∪ {arg maxi |FTi rl|}.
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• Step 3 Update the estimation and the residual: el+1 = arg minv:supp (v)⊆Λl+1 ‖y − Fv‖2, rl+1 = y − Fel+1.

• Step 4 Output el+1 if converged, otherwise increment l and return to Step 2.

RIP-based Guarantee for BP and OMP Candes & Tao (2005) introduce the Restricted Isometry Property (RIP) that
characterizes the orthonormality of matrices when operating on sparse vectors.

Definition 4. (RIP) A matrix F satisfies the RIP of order k if

(1− ζ)‖c‖2 ≤ ‖Fc‖2 ≤ (1 + ζ)‖c‖2 (2)

for all real coefficients c with ‖c‖0 ≤ k. ζ ∈ (0, 1) is a constant.

Based on the RIP condition, Cai & Zhang (2013) and Davenport & Wakin (2010) show that BP and OMP recover a K-sparse
e exactly when F satisfies certain RIP conditions, and we state their results here as the following lemma.

Lemma 6. Consider the problem of recovering a K-sparse e∗ from Fe∗. BP recovers e∗ exactly if F satisfies the RIP of
order K with ζ < 1

3 ; OMP recovers e∗ exactly in K iterations if F satisfies the RIP of order K + 1 with ζ < 1
3
√
K

.

Matrices Satisfying RIP Gaussian matrices F ∈ Rp×n whose entries are independent realizations of N (0, 1
p ) satisfy RIP

with certain probability, which can be shown by the following lemma that comes from Baraniuk et al. (2008).

Lemma 7. Consider a Gaussian matrix F ∈ Rp×n whose entries are independent realizations of N (0, 1
p ). For a given

0 < ζ < 1, there exist constants c1, c2 > 0 such that the RIP of order k (k ≤ c1p/log(n/k)) with ζ holds for Gaussian
metrics F with probability at least 1−2e−c2p. c1, c2 have the relation that c2 = c0(ζ/2)−c1[1+(1+log(12/ζ))/ log(n/k)],
where c0(x) = x2/4− x3/6 is a function.

Note that one can choose sufficiently small c1 so that c2 > 0.

Recovery for Gaussian A When the structure A is a Gaussian matrix, we can perform efficient recovery by BP or OMP,
with the following guarantee:

Theorem 10. Suppose x∗ = Az∗ is an uncorrupted sample, where A ∈ Rn×r is a Gaussian matrix whose entries are i.i.d.
realizations of some Gaussian random variable N (0, σ2). x̃ = x∗ + e∗ is the corrupted version of x∗, and e∗ is K-sparse
with K < mA/2. x∗ can be recovered exactly from x̃ with probability at least 1− 2e−c2p by the following procedure:

• Step 1: Let k = K. Choose ζ < 1
3 , and c1 so that c2 = c0(ζ/2)− c1[1 + (1 + log(12/ζ))/ log(n/k)] > 0. Choose p

such that k ≤ c1p/log(n/k).

• Step 2: For i from 1 to p, randomly sample a vector vi from the unit sphere in the null space of AT , and a scalar ui
from the chi-square distribution χ2

n of degree n. Construct F ∈ Rp×n where the ith row is
√

1
puiv

T
i .

• Step 3: Solve Fe = Fx̃ by BP and denote the result as ê. Output x̂ = x̃− ê.

Proof. Since each row of F is sampled from the null space of AT , we have FA = 0 and Fx̃ = Fe. Because A is a
Gaussian matrix, vi is a random unit vector sampled from the n dimension sphere, and each entry of it can be considered as
i.i.d. samples from N (0, 1

p ) after we multiply it by
√

1
pui. Hence, F is a Gaussian matrix whose entries are independent

realizations of N (0, 1
p ). The satisfaction of the RIP condition and the exact recovery property follow from Lemma 7 and 6

respectively. Therefore, with probability at least 1− 2e−c2p, ê = e∗ and x̂ = x∗.

Similar result for OMP can be derived by simply replacing the conditions for k and ζ in Step 1 by k = K + 1 and ζ < 1
3
√
K

.

8.18. Detailed Experimental Evaluation

We show a detailed description of our experiments. We consider both real-world data that may not exhibit linear structure
and synthetic data that does not always follow a Gaussian distribution.

Methods and Experimental Setup We consider the following mean estimation methods:
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Figure 3. Mean estimation error (Mahalanobis) for synthetic data sets.
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Figure 4. Mean estimation error (in l2) for synthetic data sets.

• Empirical Mean: Take the mean for each coordinate, ignoring all missing entries.

• Data Sanitization: Remove any samples with missing entries, and then take the mean of the rest of the data.

• Coordinate-wise Median (C-Median): Take the median for each coordinate, ignoring all missing entries.

• Our Method with Matrix Completion (Two-Step-M): Use iterative hard-thresholded SVD (ITHSVD) (Chunikhina
et al., 2014) to impute the missing entries. Take the mean afterwards. We use randomized SVD (Halko et al., 2011) to
accelerate.

• Out Method with Exact Recovery (Two-Step-E): For each sample, build a linear system based on the structure and
solve it. If the linear system is under-determined, do nothing. Then, take the mean while ignoring the remaining
missing values.

The methods can be classified into three categories, based on the amount of structural information they leverage: (1)
Empirical Mean, Data Sanitization, and C-Median ignore the structure information; (2) Two-Step-M assumes there exists
some unknown structure but it can be inferred from the visible data; (3) Two-Step-E knows exactly what the structure is and
uses it to impute the missing values.

In each experiment presented below, we inject missing values by hiding the smallest ε fraction of each dimension. For
synthetic data sets, the true mean is derived from the data generation procedure. For real-world data sets, we use the
empirical mean of the samples before corruption approximate the true mean. For synthetic data sets, we consider the l2 and
Mahalanobis distances to measure the estimation accuracy of different methods. For real-world data, we only consider the l2
distance between the estimated mean and the true empirical mean of the data before corruption.

Mean Estimation on Synthetic Data We show that redundancy in the corrupted data can help improve the robustness of
mean estimation. We test all the methods on synthetic data sets with linear structure (x = Az) and three kinds of latent
variables (z): 1) Gaussian, 2) Uniform, and 3) Exponential. Each sample xi is generated by xi = Azi, where zi is sampled
from the distribution Dz describing the latent variable z. We set A to be a diagonal block matrix with two 8 × 4 blocks
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(b) Breast Cancer Wisconsin
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(d) Wearable Sensor
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Figure 5. Error of mean estimation on real-world data sets.

Table 2. Properties of the real-world data sets in our experiments.

Data Set Samples Features ITHSVD Rank

Leaf 340 14 3
Breast Cancer 69 10 3
Blood Transfusion 748 5 3
Wearable Sensor 52081 9 4
Mice Protein Expr. 1080 77 10

generated randomly and fixed through the experiments. In every experiment, we consider a sample with 1,000 data vectors.
To reduce the effect of random fluctuations, we repeat our experiments for five random instances of the latent distribution
Dz for each type of latent distribution and take the average error.

The results for the above experiments are shown in Figure 3. This figure shows the mean estimation error of different
methods measured using the Mahalanobis distance. Additional results with the l2 distance are shown in Figure 4. We
see that estimators that leverage the redundancy in the observed data to counteract corruption yield more accurate mean
estimates. This behavior is consistent across all types of distributions and not only for the case of Gaussian distributions that
the theoretical analysis in Section 3 focuses on. We see that the performance of Two-Step-M (when the structure of A is
considered unknown) is the same as that of Two-Step-E (when the structure of A is known) when the fraction of missing
entries is below a certain threshold. Following our analysis in Section 4, this threshold corresponds to the conditions for
which the subspace spanned by the samples can be learned from the visible data. Finally, we point out that we do not report
results for Data Sanitization when the missing fraction is high because all samples get filtered.

Mean Estimation on Real-world Data We turn our attention to settings with real-world data with unknown structure. We
use five data sets from the UCI repository (Dua & Graff, 2017) for the experiments in this section. Specifically, we consider:
Leaf (Silva et al., 2013), Breast Cancer Wisconsin (Mangasarian & Wolberg, 1990), Blood Transfusion (Yeh et al., 2009),
Wearable Sensor (Torres et al., 2013), and Mice Protein Expression (Higuera et al., 2015). For each data set, we consider the
numeric features; all of these features are also standardized. For all the data sets, we report the l2 error. We summarize the
size of the data sets along with the rank used for Two-Step-M in Table 2. As the structure is unknown, we omit Two-Step-E.
We show the results in Figure 5. We find that Two-Step-M always outperforms Empirical Mean and C-Median on three data
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sets (Breast Cancer Wisconsin, Wearable Sensor, Mice Protein Expression). For the other two (Leaf, Blood Transfusion),
the error of Two-Step-M can be as much as two-times lower than the error of the other two methods for small ε’s (ε < 0.35
for Leaf and ε < 0.25 for Blood Transfusion). We also see that the estimation error becomes very high only for large values
of ε. It is also interesting to observe that Data Sanitization performs worse than the Empirical Mean and the C-Median for
real-world data. Recall that the opposite behavior was recorded for the synthetic data setups in the previous section. Overall,
these results demonstrate that structure-aware robust estimators can outperform the standard filtering-based robust mean
estimators even in setups that do not follow the linear structure setup in Section 3.


