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Abstract
We study the problem of robust mean estimation
and introduce a novel Hamming distance-based
measure of distribution shift for coordinate-level
corruptions. We show that this measure yields ad-
versary models that capture more realistic corrup-
tions than those used in prior works, and present
an information-theoretic analysis of robust mean
estimation in these settings. We show that for
structured distributions, methods that leverage the
structure yield information theoretically more ac-
curate mean estimation. We also focus on practi-
cal algorithms for robust mean estimation and
study when data cleaning-inspired approaches
that first fix corruptions in the input data and
then perform robust mean estimation can match
the information theoretic bounds of our analysis.
We finally demonstrate experimentally that this
two-step approach outperforms structure-agnostic
robust estimation and provides accurate mean es-
timation even for high-magnitude corruption.

1. Introduction
Data corruption is an impediment to modern machine learn-
ing deployments. Corrupted data samples, i.e., data vectors
with either noisy or missing values, can severely skew the
statistical properties of a data set, and hence, lead to invalid
inferences. Robust statistics seek to provide methods for
problems such as estimating the mean and covariance of a
data set that are resistant to data corruptions.

Much of the existing robust estimation methods assume that
a data sample is either completely clean or completely cor-
rupted; Huber contamination model (Huber, 1992) and the
strong contamination model considered by Diakonikolas &
Kane (2019) are typical examples of such corruption models.
Under this kind of model, robust estimators rely either on
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filtering or down-weighting corrupted data vectors to reduce
their influence (Diakonikolas et al., 2019a; 2017). In many
applications, however, we can have partially corrupted data
samples and even all data vectors can be partially corrupted.
For example, in DNA microarrays, measurement errors or
dropouts can occur for batches of genes (Troyanskaya et al.,
2001b). Filtering or down-weighting an entire data vector
can waste the information contained in the clean coordinates
of the vector.

Moreover, recent works (Rekatsinas et al., 2017; Wu et al.,
2020; Khosravi et al., 2019) show that to obtain state-of-
the-art empirical results for predictive tasks over noisy data,
one needs to leverage the redundancy in data samples in-
troduced by statistical dependencies among the coordinates
of the data (referred to as structure hereafter) to learn an
accurate distribution of the clean data and use that to re-
pair corruptions. This work aims to promote theoretical
understanding as to why leveraging statistical dependen-
cies is key in dealing with data corruption. To this end,
we study the connections between robust statistical estima-
tion under worst-case (e.g., adversarial) corruptions and
structure-aware recovery of corrupted data.

Problem Summary We consider robust mean estimation
under coordinate-level corruptions (either missing entries
or value replacements). We study worst-case, adversarial
corruption, i.e., we assume that corruption is systematic
and cannot be modeled as random noise. We consider the
adversarial model for which a given data set generated
from an unknown distribution can have up to α-fraction of
its coordinates corrupted adversarially, i.e., the adversary
can strategically hide or modify individual coordinates of
samples. The goal is to find an estimate µ̂ of the true mean
µ of the data set that is accurate even in the worst case.

Main Contributions First, we present a new information
theoretic analysis of robust mean estimation for coordinate-
level corruptions, i.e., both replacement-based corruptions
and missing-data corruptions. Our analysis introduces a
model for coordinate-level corruptions, and dENTRY, a new
measure of distribution shift for coordinate-level corruption.
We base dENTRY on the Hamming distance between samples
from the original and the corrupted distribution. The reason
is that the Hamming distance between the original and the
corrupted samples is at most the amount of corruption in
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this sample, neatly reflecting the noise level.

We present an information-theoretic analysis of corruption
under coordinate-level adversaries and formally validate the
empirical observations in the data cleaning literature: one
must exploit the structure of the data to achieve information-
theoretically optimal error for mean estimation. To show
that structure is key, we focus on the case where the data
lies on a lower-dimensional subspace, i.e., the observed
sample before corruption is x = Az, where A ∈ Rn×r
and z ∈ Rr is a lower-dimensional vector drawn from an
unknown distribution Dz . Also, n is the total number of
coordinates in x. Such low-rank subspace-structure is com-
mon in real-world data and the linear assumption is standard
in theoretical exploration. We identify a key quantity mA,
the minimum number of rows that one needs to remove
from A to reduce its row space by one, which captures the
effect of structure on mean-estimation error ||µ− µ̂||. For
Gaussian distributions, the de facto distribution considered
in the robust statistics literature, we prove that no algorithm
can achieve error better than Ω(α n

mA
) when α-fraction of

coordinates per sample on average is adversarially corrupted.
Our analysis highlights that, for coordinate-level corruption,
it is necessary to use the structure in the data to perform
recovery before statistical estimation. Specifically, when
α-fraction of the values are corrupted, recently-introduced
estimators (Diakonikolas et al., 2019a) yield an estimation
error of Ω(αn) which is not the information theoretic opti-
mal in the presence of structure. We show that to achieve the
information theoretic optimal error of Θ(α n

mA
), one needs

to consider the dependencies amongst coordinates.

Second, we study the existence of practical algorithms with
polynomial complexity which yield results that match the
error bounds of our information-theoretic analysis. We first
show that, when corruptions correspond to missing data,
a data-cleaning-inspired two-step approach achieves the
information-theoretic optimal error. Specifically, to achieve
the optimal error, one must first use imputation strategies
that leverage the dependencies between data coordinates
to recover the missing entries and then proceed with ro-
bust mean estimation over the imputed data. We show that
in the case of linear structure, if the dependencies across
coordinates are modeled via a known matrix A, we can re-
cover missing entries by solving a linear system; when A is
unknown, we show that under bounded amount of corrup-
tion, we can leverage matrix completion methods (Pimentel-
Alarcón et al., 2016) to recover the missing entries and
obtain the same performance as in the case with known
structure. We also explore replacement-type corruptions.
By drawing connections to sparse recovery, we show that
recovery for replacements is computationally intractable in
general. As a preliminary result, we propose a randomized
recovery algorithm for replacements that achieves proba-
bilistic guarantees when the structure A is known.

Finally, we present an experimental evaluation of the afore-
mentioned two-step approach for missing-data corruptions
on real-world data and show it leads to significant accuracy
improvements over prior robust estimators even for samples
that do not follow a Gaussian distribution or whose structure
does not conform to a linear model.

2. Background and Motivation
We review the problem of robust mean estimation and dis-
cuss models and measures related to our study.

Robust Mean Estimation Robust mean estimation seeks
to recover the mean µ ∈ Rn of a n-dimensional distribution
D from a list of i.i.d. samples where an unknown number
of arbitrary corruptions has been introduced in the samples.
Given access to a collection of N samples x1, x2, . . . , xN
from D on Rn when a fraction of them have been fully or
partially corrupted, robust mean estimation seeks to find
a vector µ̂ such that ‖µ − µ̂‖ is as small as possible. We
consider two norms to measure the mean estimation error.
The first norm is the Euclidean (`2) distance and the second
is the scale-invariant Mahalanobis distance defined as ‖µ−
µ̂‖Σ = |(µ−µ̂)TΣ−1(µ−µ̂)|1/2, where Σ is the covariance
matrix. When the covariance matrix is the identity matrix,
the Mahalanobis distance reduces to the Euclidean distance.

Sample-level Corruption A typical model to describe
worst-case corruptions is that of a sample-level adversary,
hereafter denoted Aε1. In this paper, we assume that this
adversary is allowed to inspect the samples and corrupt an
ε-fraction of them in an arbitrary manner. All coordinates
of those samples are considered corrupted. Corruptions
introduce a shift of the distribution D, which we can mea-
sure using the total variation distance (dTV). Total variation
distance between two distributions P and Q on Rn is de-
fined as dTV(P,Q) = supE⊆Rn |P (E)−Q(E)| or equiva-
lently 1

2‖P −Q‖1. For two Gaussians D1 = N (µ1,Σ) and
D2 = N (µ2,Σ) with dTV(D1, D2) = ε < 1/2 it is that
‖µ1 − µ2‖Σ = Θ(ε), i.e., their total variation distance and
the Mahalanobis distance of their means are equivalent up
to constants. This result allows tight analyses of Gaussian
mean estimation for a bounded fraction of corruptions.

Motivation Total variation only provides a coarse measure
of distribution shift, and hence, leads to a coarse characteri-
zation of the mean estimation error. For example, corruption
of one coordinate per sample versus corruption of all co-
ordinates results in the same distribution shift under total
variation. However, the optimal mean estimation error can
be different for these two cases. For example, if a corrupted
coordinate has identical copies in other uncorrupted coordi-
nates, the effect to mean estimation should be zero as we can
repair the corrupted coordinate. This motivates our study.
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3. Information Theoretic Analysis
We study robust mean estimation under fine-grained corrup-
tion schemes. First, we introduce two new coordinate-level
corruption adversaries (models) and a new measure of dis-
tribution shift (dENTRY) that characterizes the effect of those
adversaries on the observed distribution. Second, we present
an information theoretic analysis of robust mean estima-
tion and prove information-theoretically optimal bounds for
mean estimation over Gaussians N (µ,Σ) under coordinate-
level corruption with respect to Mahalanobis distance. The
results in this section hold for replacement-based corrup-
tions as well as missing values. All proofs are deferred to
the supplementary material of our paper.

3.1. Coordinate-level Corruption Adversaries

We introduce two new adversaries and compare them to the
sample-level adversary Aε1 from Section 2:

First, we consider an extension of Aε1 to coordinates, and
define a value-fraction adversary, denoted by Aρ2. Given N
samples from distributionD on Rn, adversaryAρ2 is allowed
to corrupt up to a ρ-fraction of values in each coordinate of
theN samples. This adversary can corrupt a total of ρ ·N ·n
values in the N samples; these values can be distributed
strategically across samples leading to cases where most
of the samples are corrupted but still the corruption per
coordinate is bounded by ρN .

Second, we define the more powerful coordinate-fraction
adversary Aα3 that can corrupt all samples in the worst case.
Aα3 is allowed to corrupt up to α-fraction of all values in
the N samples, i.e., up to a total of α ·N · n values. When
α ≥ 1

n , adversary Aα3 can corrupt all N samples.

Note that similar to Aε1, the coordinate-level adversaries we
consider (Aρ2, and Aα3 ) are adaptive, i.e., they are allowed
to inspect the samples before choosing a fraction of the
coordinates to corrupt.

Adversary Comparison Aε1 corresponds to the standard
adversary associated with the strong contamination model
considered by Diakonikolas & Kane (2019), which either
corrupts a sample completely or leaves it intact. Adversaries
Aρ2 and Aα3 are more fine-grained since they can corrupt
only part of the entries of a sample. As a result, Aρ2 and
Aα3 can corrupt more samples than Aε1 for similar budget-
fractions ε, ρ, and α.

We formalize the comparison among Aε1, Aρ2, and Aα3 in
the next propositions. We seek to understand when an ad-
versary A can simulate another A′, i.e., A can perform any
corruption performed by A′.
Proposition 1. If α, ρ ≤ ε/n, then Aε1 can simulate Aρ2
and Aα3 . If α ≤ ρ/n, Aρ2 can simulate Aα3 .

Proposition 2. If α, ρ ≥ ε, then Aρ2 and Aα3 can simulate

Aε1. If α ≥ ρ, Aα3 can simulate Aρ2.

These propositions show that the two adversary types
(sample- and coordinate-level) can simulate each other un-
der different budget conditions, thus, enabling reductions
between the two types.

Proposition 1 implies that we can reduce coordinate-level
corruption to sample-level corruption by considering Aα3
as Aε1 with ε = αn. This reduction guarantees that any
algorithm for mean estimation with guarantees for Aε1 en-
joys the same guarantees for coordinate-level corruption
when ε ≥ α · n. Similarly, Proposition 2 means that any
lower-bound guarantee on mean estimation for Aε1 also
holds for Aα3 when ε = α. However, this characterization
is loose as the gap between α and αn is large, raising the
question: Are there distributions for which this gap is more
tight and are there data properties we can exploit to reduce
the dimensional factor of n? Next, we show that structure
in data affects the power of coordinate-level corruption and
introduces information-theoretically tight bounds for mean
estimation under coordinate-level corruption.

3.2. Distribution Shift in Coordinate-level Corruption

We propose a new type of distribution shift metric, referred
to as dENTRY, which can capture fine-grained coordinate-
level corruption. We have the next definition:
Definition 1 (dENTRY). Consider the coupling γ of two dis-
tributions P,Q, i.e., a joint distribution of P and Q such
that the marginal distributions are P,Q. Let the set of all
couplings of P,Q be Γ(P,Q), and define for x, y ∈ Rn,
I(x, y) = [1x1 6=y1 , . . . ,1xn 6=yn ]>. For D1, D2 on Rn,

d1
ENTRY(D1, D2) = inf

γ∈Γ(D1,D2)

1

n
‖ E

(x,y)∼γ
[I(x, y)] ‖1

d∞ENTRY(D1, D2) = inf
γ∈Γ(D1,D2)

‖ E
(x,y)∼γ

[I(x, y)] ‖∞

The following theorem shows the relation between d1
ENTRY

and Aα3 .
Theorem 1. Let D1, D2 be two distributions such that
d1

ENTRY(D1, D2) = α′. Aα3 corrupts α fraction of N sam-
ples from D1. If α > 2α′, Aα3 has a way to make corrup-
tions so that with probability at least 1 − e−Ω(α2N) it is
indistinguishable whether the N samples come from D1 or
D2. If α < α′/4, no matter how Aα3 makes corruptions,
with probability at least 1− e−Ω(α2N), we can tell that the
N samples come from D1.

The relation above also holds for d∞ENTRY and Aρ2. The
theorem shows that dENTRY gives a tight asymptotic bound
on the power of coordinate-level adversaries.

Intuitively d1
ENTRY(D1, D2) represents how many coordi-

nates need to be corrupted (out of n on average) for D1
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(a) Corruption of both coordinates

(B) Corruption of one coordinate(b) Corruption of one coordinate

Figure 1. Comparing dTV and dENTRY: D1 is the original 2D uni-
form distribution. D2 is obtained after corruptions from Aα3 with
α = 1/2, and D3 after corruption from Aα3 with α = 3/8.

and D2 to be indistinguishable. Then, given the original
distribution D and sufficiently large sample size, {D′ :
d1

ENTRY(D,D′) ≤ α} represents the set of distributions that
Aα3 can show us after corruption, and thus d1

ENTRY allows us
to capture all possible actions of this adversary. Similarly,
d∞ENTRY captures all possible actions of Aρ2. We use dENTRY
when both d1

ENTRY and d∞ENTRY apply.

We compare d1
ENTRY and dTV in Figure 1. We consider a

2D uniform distribution D1 and two corrupted versions
D2 and D3. D2 is obtained after an adversary corrupts
both coordinates for samples from the upper-left quad-
rant of D1 and one of the coordinates for samples in the
lower-left and upper-right quadrant of D1. D3 is obtained
after an adversary corrupts the horizontal coordinate for
samples obtained from the left-most 3/4 of D1. In both
cases, dTV(D1, D2) = dTV(D1, D3) = 3/4 since 3/4 of
the samples from D1 are corrupted. dENTRY is different:
From Definition 1, we have d1

ENTRY(D1, D2) = 1/2 and
d1

ENTRY(D1, D3) = 3/8, thus, we can distinguish the two.

3.3. Information-theoretic Bounds for Gaussians

We analyze robust mean estimation under coordinate-level
corruptions for Gaussian distributions, the de facto choice
in the robust estimation literature. This choice enables us
to draw comparisons to prior mean estimation approaches.
Our results are summarized in Table 1. We first show an
impossibility result for arbitrary Gaussian distributions: in
the general case, the information-theoretic analysis based on
dTV and sample-level adversaries (Tukey, 1975; Diakoniko-
las et al., 2019a) is tight even for coordinate-level corruption

Table 1. Our results for robust mean estimation (||µ̂ − µ||Σ) un-
der Aε1 (sample-level adversary), Aρ2, and Aα3 (coordinate-level
adversaries). The results are for Gaussian distributions.

Structure Aε1 Aρ2 Aα3
No Structure Θ(ε) Ω(ρ

√
n), O(ρn) Θ(αn)

Linear structure A Θ(ε) O(ρ n
mA

) Θ(α n
mA

)

adversaries. However, we show that this result does not
hold for distributions that exhibit structure, i.e., redundancy
across coordinates. We show that, for structured Gaussian
distributions and corruptions that lead to a dENTRY-bounded
distribution shift, one must exploit the structure to achieve
information-theoretically optimal error for mean estimation.

Mean Estimation of Arbitrary Gaussians We consider
a Gaussian distribution N (µ,Σ) with full rank covariance
matrix Σ. We assume that observed samples are corrupted
by a coordinate-level adversary. We first present a common
upper-bound on the mean estimation error for both Aρ2 and
Aα3 , and then introduce the corresponding lower-bounds.

We obtain an upper-bound on ‖µ̂− µ‖Σ by using Proposi-
tion 1: A sample-level adversary can simulate a coordinate-
level adversary when ε = α · n. But, for Adversary Aε1
the Tukey median achieves optimal error ‖µ̂− µ‖Σ = Θ(ε)
when ε < 1/2. Thus, the Tukey median yields error O(αn)
for the coordinate-level adversaries Aρ2 (when ρ = α) and
Aα3 , when α · n < 1/2. Note that the condition α · n < 1/2
is necessary for achieving such an upper bound. When
α · n ≥ 1/2, the coordinate-level adversary is able to cor-
rupt more than half of the samples in the worst case, leading
to unbounded error, which shows exactly the power of the
coordinate-level adversary.

We now focus on lower-bounds for the mean estimation
error. We first consider adversary Aρ2 who can corrupt at
most ρ-fraction of each coordinate in the samples. For this
setting, the optimal estimation error depends on the disc of
the covariance matrix Σ, where disc is defined as:

Definition 2. (disc) For a positive semi-definite matrix
M , define s(M)ij = Mij/

√
MiiMjj and disc(M) =

maxx∈[−1,1]

√
xT s(M)x.

Theorem 2. Let Σ ∈ Rn×n be full rank. Given a set of i.i.d.
samples from N (µ,Σ) where the set is corrupted by Aρ2,
any algorithm for estimating µ̂ must satisfy ‖µ − µ̂‖Σ =
Ω(ρ · disc(Σ−1)).

From this theorem, we obtain the next corollary for the mean
estimation error for Aρ2:

Corollary 1. Given a set of i.i.d. samples from N (µ,Σ)
where the set is corrupted byAρ2, any algorithm that outputs
a mean estimator µ̂ must satisfy ‖µ− µ̂‖Σ = Ω(ρ

√
n).
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We see that there is a gap between the lower and upper
bound on the mean estimation error for Aρ2. However, we
show that such a gap does not hold for Aα3 . For Aα3 , the
lower bound is the same as the upper bound presented above.
Specifically, for the coordinate-fraction adversary Aα3 , it is
impossible to achieve a mean estimation error better than
O(αn) in the case of arbitrary Gaussian distributions:

Theorem 3. Let Σ ∈ Rn×n be full rank. Given a set of i.i.d.
samples from N (µ,Σ) where the set is corrupted by Aα3 ,
any algorithm that outputs a mean estimator µ̂ must satisfy
‖µ̂− µ‖Σ = Ω(αn).

To gain some intuition, consider Aα3 with α ≥ 1
n . In this

case, Aα3 can concentrate all corruption in the first coordi-
nate of all samples, and hence, we cannot estimate the mean
for that coordinate. An immediate result is that for worst-
case coordinate-corruptions, i.e., corruptions introduced by
Aα3 , over arbitrary Gaussian distributions the mean estima-
tion error is precisely ‖µ− µ̂‖Σ = Θ(αn).

Mean Estimation of Structured Gaussians The previ-
ous analysis for Aα3 shows that we cannot improve upon
existing algorithms. However, real-world data often exhibit
structural relationships between features such that one may
be able to infer corrupted values via other visible values (Wu
et al., 2020). We show that in the presence of structure due
to dependencies, one must exploit the structure of the data
to achieve information-theoretically optimal error for mean
estimation. To show that structure is key, we focus on sam-
ples xi ∈ Rn that lie in a low-dimensional subspace such
that xi = Azi, where A ∈ Rn×r represents the structure.
Such low-rank subspace-structure is natural in many real-
world scenarios and we assume linearity for the convenience
of analysis. In fact, linear structure can also encode more
complex structures (e.g., polynomials) if one considers an
augmented set of features. We assume zi comes from a
non-degenerate Gaussian in Rr. We consider a data sample
x = Az before corruption and assume that corruption is
introduced in x.

In this setting, the coordinate-level adversary has limited
effect in mean estimation due to the redundancy that A
introduces. We can measure the strength of this redundancy
with respect to coordinate-level corruption by considering
its row space. The coordinates of x = Az, and hence, the
corrupted data, exhibit high redundancy when many rows of
A span a small subspace. We define a quantity mA to derive
information-theoretic bounds for structured Gaussians.

Definition 3 (mA). Given matrix A ∈ Rn×r, mA is the
minimum number of rows one needs to remove from A to
reduce the dimension of its row space by one.

When A = I is the identity matrix, it is mI = 1 and we
can remove any row to reduce its row space; we have low
redundancy. But, for A = [e1, . . . , e1]

> where e1 has 1 in

its first coordinate and 0 in the others, mA = n since we
need to remove all e1’s to reduce A’s row space. It holds
that 1 ≤ mA ≤ n.

We next show that the higher the value that mA takes, the
weaker a coordinate-level adversary becomes due to the
increased redundancy. Intuitively, the coordinate-level ad-
versary has to spend more budget per sample to introduce
corruptions that will counteract the redundancy introduced
by matrix A. Theorem 4 shows thatAρ2,Aα3 cannot alter the
original distribution too far in dTV, leading to information-
theoretically tight bounds for mean estimation.

Theorem 4. Given two probability distributions D1, D2 on
Rn with support in the range of linear transformation A,

(mA/n) · dTV(D1, D2) ≤ dENTRY(D1, D2) ≤ dTV(D1, D2)

Here, D with support in the range of A means a distribu-
tion D that is generated such that it lies on the subspace
generated by A, i.e., there is zero measure outside of this
subspace. Since dTV between two Gaussians is asymptoti-
cally equivalent to the Mahalanobis distance between them,
we get the following corollary using dENTRY.

Corollary 2. Let N (µ,Σ) be a Gaussian with support in
the range of linear transformation A. For µ̂ such that
dENTRY(N (µ,Σ),N (µ̂,Σ)) ≤ α, ‖µ− µ̂‖Σ = O(α n

mA
).

Note that the upper bound above is under the condition that
α < mA/(2n) when the corruption is limited to missing
entries, and α < mA/(4n) when replacement is allowed.
Otherwise, more than half of the samples can be corrupted
and unrecoverable (the proof of Theorem 5 provides the
conditions for recovery, and the break points for mean esti-
mation follow). Corollary 2 shows that Aρ2 (when ρ = α)
and Aα3 can only shift structured distributions by O(α n

mA
).

This result suggests that we can improve upon the previous
O(αn) mean estimation guarantees. Furthermore, the fol-
lowing theorem proves that this upper bound is tight under
Aα3 .

Theorem 5. LetN (µ,Σ) be a Gaussian with support in the
range of linear transformation A and let Aα3 adversarially
corrupt the samples. Any algorithm that outputs a mean
estimator µ̂ must satisfy ‖µ− µ̂‖Σ = Ω(α n

mA
).

While our analysis focuses on Gaussian distributions, our
analysis framework generalizes to any class of distributions
that admits an efficient robust mean estimator under sample-
level corruption, e.g. distributions with bounded covariance.
This generality stems from our general reduction scheme
between coordinate-level and sample-level corruption. Such
extension is also feasible for results in Section 4.
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4. Efficient Algorithms
We discuss efficient estimation algorithms the match the
error bounds of our analysis in Section 3.3. Building upon
practical approaches in data cleaning (Wu et al., 2020;
Rekatsinas et al., 2017) that leverage the structure in data
to perform estimation over corrupted data, we study the
practicality and theoretical guarantees obtained by such
recover-and-estimate approaches for robust mean estima-
tion.

Two-Step Meta-Algorithm The meta-algorithm has two
steps: 1) Recover: use the dependencies across coordinates
of the data (i.e., the structure) to recover the values of cor-
rupted samples (when possible); 2) Estimate: After fixing
corruptions, perform statistical estimation using an existing
mean estimation method (e.g., empirical mean estimation).
For theoretical analysis, we require exact recovery in the
first step, i.e., we seek to recover the true sample before
corruption without any errors, and view the samples that
cannot be exactly recovered as the remaining corruptions.

We first show that when the corruption is limited to miss-
ing entries, there exist efficient algorithms with polyno-
mial complexity that perform exact recovery. We show that
plugging these algorithms into the two-step meta-algorithm
yields practical algorithms for robust mean estimation under
coordinate-level corruption, and these algorithms match the
information-theoretic bounds. We further study corruption
due to replacements. Here, we show that exact recovery
in the presence of coordinate-level corruptions is NP-hard
by building connections to sparse recovery. To overcome
such hardness, we propose a randomized algorithm with a
probabilistic guarantee with respect to the recovery, and as
such, mean estimation.

4.1. Efficient Algorithms for Missing Entries

We show two computationally efficient algorithm instances
that achieve near-optimal guarantees for known and un-
known structure in the presence of missing entries. Details
of the recovery step in the two algorithms are provided in
the supplementary material. We assume a sufficiently large
sample size (infinite in the case of unknown structure) for
all the analysis.

Mean Estimation with Known Structure When matrix
A is known, we recover missing coordinates as follows:
we solve the linear system of equations formed by the non-
corrupted data in the sample and A to estimate z, and then
use this estimation to complete the missing values of x.
Such a recovery step has a complexity of O(r3). Given the
recovered samples, we proceed with mean estimation.

The above algorithm achieves error Θ(α n
mA

): the best strat-
egy of Aρ2 or Aα3 is to corrupt coordinates so that recovery

is impossible. To this end, a coordinate-level adversary
must corrupt at least mA coordinates for a sample to make
coordinate recovery impossible. The two-step approach of
recovery by solving a linear system and mean estimation
with the Tukey median over full samples is information
theoretically-optimal. However, the Tukey median is com-
putationally intractable, and we use the empirical mean to
obtain a computationally efficient algorithm. This approach
yields a near-optimal guarantee of Õ( αnmA

) that is tight up
to logarithmic factors—here Õ(ε) = O(ε

√
log(1/ε)).

Theorem 6. Assume samples xi = Azi and zi comes from a
Gaussian such that xi ∼ N (µ,Σ) with support in the range
of linear transformation A. Given a set of i.i.d. samples
corrupted by Aρ2 (when ρ = α) or Aα3 , recover missing
coordinates by solving a linear system of equations then
discard all unrecoverable samples. The empirical mean µ̂
of the remaining samples satisfies ‖µ̂ − µ‖Σ = Õ( αnmA

),
while the Tukey median µ̂Tukey of the remaining samples
satisfies ‖µ̂Tukey − µ‖Σ = O( αnmA

).

Theorem 6 shows that for A with mA ≈ n, while the strong
adversary Aα3 introduces corruptions that shift the observed
distribution by dENTRY = α, it can only affect the mean
estimation as much as the weaker adversary Aε1 (with ε =
α), which shifts the observed distribution only by dTV = ε.
This result implies that recovery by leveraging the structure
reduces the strength of Aα3 (and also Aρ2 with ρ = ε) to
that of Aε1. In fact, mA = n − r + 1 for almost every A
with respect to the Lebesgue measure on Rn×r, so mA ≈ n
when r is sufficiently low-dimensional. The above means
that we can tolerate coordinate-level corruptions with large
ρ and α only if we first recover and then estimate.

Mean Estimation with Unknown Structure If A is un-
known, we can estimate it using the visible entries before
we use them to impute the missing ones. We build on the
next result: matrix completion can help robust mean esti-
mation in the setting of xi = Azi when A is unknown but
has full rank, in which case mA = n − r + 1. Corollary
1 by Pimentel-Alarcón et al. (2016) gives the conditions
in which we can uniquely recover a low rank matrix with
missing entries. This result goes beyond random missing
values and considers deterministic missing-value patterns.
We state it as follows:

Lemma 1. Assume samples xi = Azi and zi comes from
a Gaussian such that xi ∼ N (µ,Σ) with support in the
range of A, but A is unknown and full rank. If there exist
r + 1 disjoint groups of n− r samples, and in each group,
any k samples have at least r+ k dimensions which are not
completely hidden, all the samples with at least r visible
entries can be uniquely recovered.

The above leads to the next algorithm: We recover the miss-
ing coordinates via matrix completion. A typical algorithm
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for matrix completion is iterative hard-thresholded SVD
(ITHSVD) (Chunikhina et al., 2014), which has a com-
plexity of O(TNnr), where T is the maximum number of
iterations and N is the sample size. Then, we use either
Tukey median or a empirical mean estimation. We next
analyze the guarantees of this algorithm.

Matrix completion requires learning the r-dimensional sub-
space spanned by the samples. Samples with more than r
visible entries provide information to identify this subspace.
Given the subspace, samples with at least r visible entries
can be uniquely recovered. For corruptions byAα3 we show:

Lemma 2. IfA is unknown and the data is corrupted byAα3
where α ≥ 1

n , we cannot recover any missing coordinate,
otherwise we can recover all the samples with less than mA

missing entries.

If we combine this lemma with Theorem 6, we can ob-
tain optimal mean estimation error—we obtain the same
error guarantees with Theorem 6—using matrix completion
only when the budget of Aα3 is bounded as a function of
the data dimensions, i.e., when α < 1/n (see A.11 in the
supplementary material). These guarantees are information-
theoretically optimal but pessimistic: Aα3 can hide all coor-
dinates from the same dimension which can be unrealistic.
Thus, we focus on adversary Aρ2.

Theorem 7. Assume samples xi = Azi and zi comes from
a Gaussian such that xi ∼ N (µ,Σ) with support in the
range of A, but A is unknown and full rank. Under Aρ2
where ρ < mA−1

n+(mA−1)(mA−2) , the above two-step algorithm

obtains ‖µ− µ̂‖Σ = Õ( ρnmA
), while the Tukey median µ̂Tukey

of the remaining samples satisfies ‖µ̂Tukey−µ‖Σ = O( ρnmA
).

Lemma 3. Assume A is unknown and full rank. Under Aρ2,
if ρ ≥ mA−1

n , we cannot recover any corrupted sample; if
ρ < mA−1

n+(mA−1)(mA−2) , we can recover all samples with at
least r visible entries.

4.2. Discussion of Corruptions due to Replacements

The above two-step approach relies on exact recovery to
provide guarantees for mean estimation. As we showed
in the previous section, exact recovery is possible in the
presence of missing values. However, when corruptions are
introduced due to adverarial replacements, recovery is NP-
hard in general. We show this by reducing the problem of
sparse recovery to it. Sparse recovery is the problem of find-
ing sparse solutions to underdetermined systems of linear
equations, and it is shown to be computationally intractable
by Berlekamp et al. (1978). Details of the connection be-
tween the two can be found in the supplementary material.

Works on decoding and signal processing have proposed
efficient algorithms for exact recovery under replacements
with probabilistic guarantees. Typical algorithms include ba-

sis pursuit (Candes & Tao, 2005) and orthogonal matching
pursuit (Davenport & Wakin, 2010). However, these algo-
rithms pose strict conditions on A, and have guarantees only
on a limited family of matrices (e.g. Gaussian matrices).
We defer the details of those conditions and guarantees to
the supplementary material. For a genericA, as the matrices
we consider in our problem setting, existing algorithms fail
to provide any guarantee.

To alleviate the difficulty of recovery for replacements, we
propose a randomized algorithm that has probabilistic guar-
antees for exact recovery without posing strict restrictions
on matrix A. We fit this algorithm into the aforementioned
two-step meta-algorithm, and provide an analysis similar to
the case of missing entries for known structure.

Algorithm 1 Recovery for Coordinate-level Replacements
input: A ∈ Rn×r, corrupted sample x̃ ∈ Rn, c > 0
if ∃z such that x̃ = Az then

return x̃
end
for i = 1 . . . rc do

Uniformly at random, select r out of n rows of A such
that they are linearly independent
(x̃′, A′)← linear system of the corresponding r coordi-
nates
Compute the solution ẑ to x̃′ = A′z
Store the ẑ that has the smallest ‖x̃−Aẑ‖0 so far

end
return Aẑ

For a corrupted sample x̃ that does not lie on the subspace
generated byA, Algorithm 1 efficiently recovers a candidate
solution Aẑ that is not too far from x̃. More precisely, it
returns Aẑ such that ‖x̃−Aẑ‖0 ≤ r

ln(r)‖x̃−x‖0 with high
probability, assuming the original sample x is information-
theoretically recoverable (less than mA

2 coordinates are cor-
rupted by the proof of Theorem 5). Algorithm 1 requires
solving a linear system of size r multiple times, yielding
a runtime of O(nr4+c), where c is a parameter chosen de-
pending on how accurate we want the solution to be. Since
Algorithm 1 gives us a recovery routine for each corrupted
sample, we have the following result on mean estimation.
Theorem 8. Preprocessing the data with Algorithm 1 and
then applying a robust mean estimator for Gaussians, e.g.
of Diakonikolas et al. (2019a), yields a mean estimate µ̂
such that ‖µ̂− µ‖2 = Õ( r

ln r ·
αn
mA

).

Our exploration of computationally efficient algorithms for
mean estimation under coordinate-level replacements are
preliminary. The randomized algorithm only works when
the structure is known, and the guarantee it provides is
probabilistic. Finding algorithms with better guarantees
and recovery methods when the structure is unknown is an
exciting direction for future research.
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Remark We assume sufficiently large sample size and
ignore the sampling error. In fact, the sample size and
the probability when the error bound holds depend on the
mean estimator in the Estimate step of the meta algorithm.
For example, in Theorem 8, if we apply the robust mean
estimator for Gaussians by Diakonikolas et al. (2019a), with
sample size N = Ω̃(

m2
A log5(1/δ)

α2 ), the upper bound holds
with probability 1− δ.

5. Experiments
We compare the two-step recover-and-estimate procedure
against standard robust estimators under missing entries in
real-world data. We consider the following methods:

1) Empirical Mean: Take the mean for each coordinate,
ignoring all missing entries. 2) Data Sanitization: Remove
any samples with missing entries, and then take the mean of
the rest of the data. 3) Coordinate-wise Median (C-Median):
Take the median for each coordinate, ignoring all missing
entries. 4) Two-Step method with Matrix Completion (Two-
Step-M): Use iterative hard-thresholded SVD (Chunikhina
et al., 2014) to impute missing entries and compute the mean.
We use randomized SVD (Halko et al., 2011) to accelerate.

Here, we do not include the exact recovery method in The-
orem 6 since the structure is unknown in real-world data.
In the supplementary material, we provide synthetic experi-
ments showing that the two-step method with exact recovery
outperforms structure-agnostic methods by over 50%.

In each experiment, we inject missing values by hiding the
smallest ε fraction of each dimension, which introduces bias
to the mean. It is the worst possibleAρ2 corruption for Gaus-
sian distributions if the estimation is taking the empirical
mean or median. Note that the worst Aα3 corruption for
empirical mean or median is hiding the tail of the coordinate
with the highest variance. We do not include it in the ex-
periments since such setting yields either zero error (when
α < 1/n, n is the number of coordinates) or unbounded
error (when α ≥ 1/n) if we apply Two-Step-M for data
with linear structure (see Lemma 2).

We show that exploiting redundancy helps improve the ro-
bustness of mean estimation. We consider five data sets with
unknown structure from the UCI repository (Dua & Graff,
2017). Detailed information of these datasets is provided in
the supplemental material. For all the data sets, we report
the l2 error. We use the empirical mean of the samples be-
fore corruption to approximate the true mean. We show the
results in Figure 2. We find that Two-Step-M always out-
performs Empirical Mean and C-Median on Breast Cancer
Wisconsin, Wearable Sensor, Mice Protein Expression. For
Leaf and Blood Transfusion, the error of Two-Step-M can
be as much as 2× lower than the error of the other methods
for small budgets. The estimation error becomes high only

for large values of ε. Data Sanitization performs worse than
Empirical Mean and C-Median.

Note that the error of Two-Step-M is not always increasing
as the missing value fraction increases, even for synthetic
data (see the supplemental material). This is because the
performance of Two-Step-M depends on both the number
of samples that can be recovered and the quality of the
learned structure. When the missing value fraction is low,
the conditions in Lemma 1 are satisfied, and the structure
is learned exactly (for synthetic data) or well approximated
(for the real data) via matrix completion. In this case, the
error grows monotonically. When the missing value fraction
is high, the conditions in Lemma 1 cannot be satisfied, and
thus the quality of the learned structure is not guaranteed.
In this case, the learned structure can be accurate or not by
chance, and the error may not grow monotonically.

6. Related Work
Many works have studied problems in robust statistics.
These include robust mean and covariance estimation (Lai
et al., 2016; Daskalakis et al., 2018; Diakonikolas et al.,
2019a; Cheng et al., 2019; Kontonis et al., 2019; Zhu et al.,
2019), robust optimization (Charikar et al., 2017; Diakoniko-
las et al., 2018; Duchi & Namkoong, 2018; Prasad et al.,
2018), robust regression (Huber et al., 1973; Klivans et al.,
2018; Diakonikolas et al., 2019b; Gao et al., 2020), robust
subspace learning (Maunu & Lerman, 2019; Awasthi et al.,
2020), and computational hardness of robustness (Hardt
& Moitra, 2013; Klivans & Kothari, 2014; Diakonikolas
et al., 2019b; Hopkins & Li, 2019).The works that are most
relevant to ours focus on:

Entry-level Corruption Zhu et al. (2019) define a family
of non-parametric distributions for which robust estima-
tion is well-behaved under a corruption model bounded by
the Wasserstein metric, while we focus on the information-
theoretic analysis of mean estimation. Wang & Gu (2017)
studies robust covariance estimation under a corruption
model similar toAρ2. They assume sparse covariance, which
is different from our low-dimensional-subspace assump-
tion. Phocas (Xie et al., 2018) performs structure agnostic
coordinate-wise estimation without considering recovery
underAρ2-type corruption. Loh & Tan (2018) study learning
a sparse precision matrix of the data under cell-level noise
but for a dTV adversary.

Data Recovery State-of-the-art methods for data im-
putation use data redundancy to obtain high accuracy
even for systematic noise. SVD-based imputation meth-
ods (Mazumder et al., 2010; Troyanskaya et al., 2001a)
assume linear relations across coordinates. There are other
works that consider different models, including K-nearest
neighbors, SVMs, decision trees, and even attention-based
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Figure 2. Error of mean estimation on real-world data sets.

mechanisms (Bertsimas et al., 2017; Wu et al., 2020) to dis-
cover more complex non-linear structures. Our theoretical
analysis provides intuition as to why these methods outper-
form solutions that only rely on coordinate-wise statistics.

Robust Mean Estimators Previous works have studied
the problem of robust mean estimation, and proposed com-
putationally efficient estimators for high-dimensional data,
such as truncated mean (Burdett, 1996), geometric me-
dian (Cohen et al., 2016), and the iterative filtering algorithm
by (Diakonikolas et al., 2016). Those works are orthogo-
nal to ours, since they study robust mean estimation when
there exhibit no structure in the data, while we focus on
the effects of structure and recovery. Those estimators can
be plugged into the two-step meta-algorithm, and the er-
ror bound analysis can be derived following our reduction
scheme.

7. Conclusion
We studied the problem of robust mean estimation under
coordinate-level corruption. We proposed dENTRY, a new
measure of distribution shift for coordinate-level corrup-
tions and introduced adversary models that capture more
realistic corruptions than prior works. We presented an
information-theoretic analysis of robust mean estimation for
these adversaries and showed that when the data exhibits
redundancy one should first fix corrupted samples before
estimation. Our analysis is tight. Finally, we study the
existence of practical algorithms for mean estimation that

matches the information-theoretic bounds from our analysis.
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