
Decoupling Exploration and Exploitation for Meta-Reinforcement Learning
without Sacrifices

Evan Zheran Liu 1 Aditi Raghunathan 1 Percy Liang 1 Chelsea Finn 1

Abstract
The goal of meta-reinforcement learning (meta-
RL) is to build agents that can quickly learn new
tasks by leveraging prior experience on related
tasks. Learning a new task often requires both
exploring to gather task-relevant information and
exploiting this information to solve the task. In
principle, optimal exploration and exploitation
can be learned end-to-end by simply maximiz-
ing task performance. However, such meta-RL
approaches struggle with local optima due to a
chicken-and-egg problem: learning to explore
requires good exploitation to gauge the explo-
ration’s utility, but learning to exploit requires in-
formation gathered via exploration. Optimizing
separate objectives for exploration and exploita-
tion can avoid this problem, but prior meta-RL ex-
ploration objectives yield suboptimal policies that
gather information irrelevant to the task. We alle-
viate both concerns by constructing an exploita-
tion objective that automatically identifies task-
relevant information and an exploration objective
to recover only this information. This avoids lo-
cal optima in end-to-end training, without sacri-
ficing optimal exploration. Empirically, DREAM
substantially outperforms existing approaches
on complex meta-RL problems, such as sparse-
reward 3D visual navigation. Videos of DREAM:
https://ezliu.github.io/dream/

1. Introduction
A general-purpose agent should be able to perform multiple
related tasks across multiple related environments. Our goal
is to develop agents that can perform a variety of tasks in
novel environments, based on previous experience and only
a small amount of experience in the new environment. For
example, we may want a robot to cook a meal (a new task) in

1Department of Computer Science, Stanford University. Corre-
spondence to: Evan Zheran Liu <evanliu@cs.stanford.edu>.

Proceedings of the 38 th
International Conference on Machine

Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

a new kitchen (the environment) after it has learned to cook
other meals in other kitchens. To adapt to a new kitchen,
the robot must both explore to find the ingredients, and
use this information to cook. Existing meta-reinforcement
learning (meta-RL) methods can adapt to new tasks and
environments, but, as we identify in this work, struggle
when adaptation requires complex exploration strategies.

In the meta-RL setting, the agent is presented with a set
of meta-training problems, each in an environment (e.g., a
kitchen) with some task (e.g., make pizza); at meta-test time,
the agent is given a new, but related environment and task. It
is allowed to gather information in a few initial exploration
episodes, and its goal is to then maximize returns on all sub-
sequent exploitation episodes, using this information. A
common meta-RL approach is to learn to explore and exploit
end-to-end by training a policy and updating exploration be-
havior based on how well the policy later exploits using the
information discovered from exploration (Duan et al., 2016;
Wang et al., 2016a; Stadie et al., 2018; Zintgraf et al., 2019;
Humplik et al., 2019). With enough model capacity, such
approaches can express optimal exploration and exploita-
tion, but they create a chicken-and-egg problem that leads to
bad local optima and poor sample efficiency: Learning to ex-
plore requires good exploitation to gauge the exploration’s
utility, but learning to exploit requires information gathered
via exploration. Therefore, with only final performance as
signal, one cannot be learned without already having learned
the other. For example, a robot chef is only incentivized to
explore and find the ingredients if it already knows how to
cook with those ingredients, but the robot can only learn to
cook if it can already find the ingredients by exploration.

To avoid this chicken-and-egg problem, we propose to op-
timize separate objectives for exploration and exploitation
by leveraging the problem ID—an easy-to-provide unique
one-hot for each training meta-training task and environ-
ment. Such a problem ID can be realistically available in
real-world meta-RL tasks: e.g., in a robot chef factory, each
training kitchen (problem) can be easily assigned a unique
ID, and in a personalized recommendation system, each
user (problem) is typically identified by a unique username.
Some prior works (Humplik et al., 2019; Kamienny et al.,
2020) also use these problem IDs, but not in a way that
avoids the chicken-and-egg problem. Others (Rakelly et al.,

Decoupling Exploration and Exploitation for Meta-Reinforcement Learning

2019; Zhou et al., 2019b; Gupta et al., 2018; Gurumurthy
et al., 2019; Zhang et al., 2020) also optimize separate ob-
jectives, but their exploration objectives learn suboptimal
policies that needlessly gather task-irrelevant information.

Instead, we propose an exploitation objective that automati-
cally identifies task-relevant information, and an exploration
objective to recover only this information. We learn an ex-
ploitation policy without the need for exploration, by condi-
tioning on a learned representation of the problem ID, which
provides task-relevant information (e.g., by memorizing the
locations of the ingredients for each ID / kitchen). We apply
an information bottleneck to this representation to encourage
discarding of any information not required by the exploita-
tion policy (i.e., task-irrelevant information). Then, we learn
an exploration policy to only discover task-relevant informa-
tion by training it to produce trajectories containing the same
information as the learned ID representation (Section 4).
Crucially, unlike prior work, we prove that our separate ob-
jectives are consistent: optimizing them yields optimal ex-
ploration and exploitation, assuming expressive-enough pol-
icy classes and enough meta-training data (Section 5.1).

Overall, this work’s main contribution is a consistent decou-
pled meta-RL algorithm, called DREAM: Decoupling ex-
ploRation and ExploitAtion in Meta-RL, which overcomes
the chicken-and-egg problem (Section 4.2). Theoretically,
in a simple tabular example, we show that addressing the
coupling problem with DREAM provably improves sam-
ple complexity over existing end-to-end approaches by a
factor exponential in the horizon (Section 5). Empirically,
we stress test DREAM’s ability to learn sophisticated explo-
ration strategies on 3 challenging, didactic benchmarks and
a sparse-reward 3D visual navigation benchmark. On these,
DREAM learns to optimally explore and exploit, achieving
90% higher returns than existing state-of-the-art approaches
(PEARL, E-RL2, IMPORT, VARIBAD), which struggle to
learn an effective exploration strategy (Section 6).

2. Related Work
We draw on a rich literature on learning to adapt to related
tasks (Schmidhuber, 1987; Thrun & Pratt, 2012; Naik &
Mammone, 1992; Bengio et al., 1991; 1992; Hochreiter
et al., 2001; Andrychowicz et al., 2016; Santoro et al., 2016).
Many meta-RL works focus on adapting efficiently to a new
task from few samples without optimizing the sample collec-
tion process, via updating the policy parameters (Finn et al.,
2017; Agarwal et al., 2019; Yang et al., 2019; Houthooft
et al., 2018; Mendonca et al., 2019), learning a model (Naga-
bandi et al., 2018; Sæmundsson et al., 2018; Hiraoka et al.,
2020), multi-task learning (Fakoor et al., 2019), or leverag-
ing demonstrations (Zhou et al., 2019a). In contrast, we fo-
cus on problems where targeted exploration is critical for
few-shot adaptation.

Approaches that specifically explore to obtain the most in-
formative samples fall into two main categories: end-to-end

and decoupled approaches. End-to-end approaches optimize
exploration and exploitation end-to-end by updating explo-
ration behavior from returns achieved by exploitation (Duan
et al., 2016; Wang et al., 2016a; Mishra et al., 2017; Roth-
fuss et al., 2018; Stadie et al., 2018; Zintgraf et al., 2019;
Humplik et al., 2019; Kamienny et al., 2020; Dorfman &
Tamar, 2020). These approaches can represent the optimal
policy (Kaelbling et al., 1998), but they struggle to escape lo-
cal optima due to a chicken-and-egg problem between learn-
ing to explore and learning to exploit (Section 4.1). Several
of these approaches (Humplik et al., 2019; Kamienny et al.,
2020) also leverage the problem ID during meta-training,
but they still learn end-to-end, so the chicken-and-egg prob-
lem remains.

Decoupled approaches instead optimize separate exploration
and exploitation objectives, via, e.g., Thompson-sampling
(TS) (Thompson, 1933; Rakelly et al., 2019), obtaining
exploration trajectories predictive of dynamics or rewards
(Zhou et al., 2019b; Gurumurthy et al., 2019; Zhang et al.,
2020), or exploration noise (Gupta et al., 2018). While these
works do not identify the chicken-and-egg problem, decou-
pled approaches coincidentally avoid it. However, existing
decoupled approaches, including those (Rakelly et al., 2019;
Zhang et al., 2020) that leverage the problem ID, do not
learn optimal exploration: TS (Rakelly et al., 2019) explores
by guessing the task and executing a policy for that task,
and hence cannot represent exploration behaviors that are
different from exploitation (Russo et al., 2017). Predicting
the dynamics (Zhou et al., 2019b; Gurumurthy et al., 2019;
Zhang et al., 2020) is inefficient when only a small subset
of the dynamics are relevant to solving the task. In contrast,
we propose a separate mutual information objective for ex-
ploration, which both avoids the chicken-and-egg problem
and yields optimal exploration when optimized (Section 5).
Past work (Gregor et al., 2016; Houthooft et al., 2016; Ey-
senbach et al., 2018; Warde-Farley et al., 2018) also opti-
mize mutual information objectives, but not for meta-RL.

Beyond meta-RL, learning a policy in the general RL set-
ting (i.e., learning from scratch) also requires targeted ex-
ploration to gather informative samples. In contrast to ex-
ploration algorithms for general RL (Bellemare et al., 2016;
Pathak et al., 2017; Burda et al., 2018; Leibfried et al., 2019),
which must visit many novel states to find regions with high
reward, exploration in meta-RL can be substantially more
targeted by leveraging prior experience from related prob-
lems during meta-training. As a result, DREAM can learn
new tasks in just two episodes (Section 6), while learning
from scratch can require millions of episodes to learn a new
task.

Decoupling Exploration and Exploitation for Meta-Reinforcement Learning

...
r

0
r

1
r

0
r

1
r

0 r
0

r
1

Cook pizza
(gather information)

... ...
...s

1
 ...

Cook soup

s
0

 s
1

 s
T

exploration episode

Trial 2

...s
0

 s
0

 s
1

 s
0

 s
1

r
1

exploitation episode N
(solve the task and maximize returns)(gather information)

exploitation episode 1

s
T

exploration episode

...

Trial 1

Figure 1. Meta-RL setting: Given a new environment and task, the agent is allowed to first explore and gather information (exploration
episode), and then must use this information to solve the task (in subsequent exploitation episodes).

3. Preliminaries
Meta-reinforcement learning. The meta-RL setting con-
siders a family of Markov decision processes (MDPs)
hS, A, Rµ, Tµi with states S, actions A, rewards Rµ, and
dynamics Tµ, indexed by a one-hot problem ID µ 2 M,
drawn from a distribution p(µ). Colloquially, we refer to the
dynamics as the environment, the rewards as the task, and the
entire MDP as the problem. Borrowing terminology from
Duan et al. (2016), meta-training and meta-testing both con-
sist of repeatedly running trials. Each trial consists of sam-
pling a problem ID µ ⇠ p(µ) and running N+1 episodes on
the corresponding problem. Following prior evaluation set-
tings (Finn et al., 2017; Rakelly et al., 2019; Rothfuss et al.,
2018; Fakoor et al., 2019), we designate the first episode
in a trial as an exploration episode consisting of T steps
for gathering information, and define the goal as maximiz-
ing the returns in the subsequent N exploitation episodes
(Figure 1). Following Rakelly et al. (2019); Humplik et al.
(2019); Kamienny et al. (2020), the easy-to-provide problem
ID is available for meta-training, but not meta-testing trials.

We formally express the goal in terms of an exploration pol-
icy ⇡exp used in the exploration episode and an exploitation
policy ⇡task used in exploitation episodes, but these policies
may be the same or share parameters. Rolling out ⇡exp in
the exploration episode produces an exploration trajectory
⌧

exp = (s0, a0, r0, . . . , sT), which contains information dis-
covered via exploration. The exploitation policy ⇡task may
then condition on ⌧ exp and optionally, its history across all
exploitation episodes in a trial, to maximize exploitation
episode returns. The goal is therefore to maximize:

J (⇡exp
,⇡

task) = Eµ⇠p(µ),⌧ exp⇠⇡exp
⇥
V

task(⌧ exp; µ)
⇤
, (1)

where V
task(⌧ exp; µ) is the expected returns of ⇡task condi-

tioned on ⌧ exp, summed over the N exploitation episodes in
a trial with problem ID µ.

End-to-end meta-RL. A common meta-RL approach
(Wang et al., 2016a; Duan et al., 2016; Rothfuss et al.,
2018; Zintgraf et al., 2019; Kamienny et al., 2020; Hump-
lik et al., 2019) is to learn to explore and exploit end-

to-end by directly optimizing J in (1), updating both
from rewards achieved during exploitation. These ap-
proaches typically learn a single recurrent policy ⇡(at |

st, ⌧:t) for both exploration and exploitation (i.e., ⇡task =

⇡
exp = ⇡), which takes action at given state st and his-

tory of experiences spanning all episodes in a trial ⌧:t =
(s0, a0, r0, . . . , st�1, at�1, rt�1). Intuitively, this policy is
learned by rolling out a trial, producing an exploration tra-
jectory ⌧ exp and, conditioned on ⌧ exp and the exploitation
experiences so far, yielding some exploitation episode re-
turns. Then, credit is assigned to both exploration (produc-
ing ⌧ exp) and exploitation by backpropagating the exploita-
tion returns through the recurrent policy. Directly optimiz-
ing the objective J this way can learn optimal exploration
and exploitation strategies, but optimization is challenging,
which we detail in the next section.

4. Decoupling Exploration and Exploitation
In this section, we first illustrate how end-to-end optimiza-
tion approaches face a chicken-and-egg problem between
learning exploration and exploitation, leading to local op-
tima and poor sample complexity (Section 4.1). Next, in
Section 4.2, we propose DREAM to sidestep this chicken-
and-egg problem by optimizing separate objectives for ex-
ploration and exploitation. Finally, we describe a practical
implementation of DREAM in Section 4.3. Prior decoupled
approaches also optimize separate exploration and exploita-
tion objectives. However, crucially, as we show in the next
section, the optimum of DREAM’s objectives maximizes re-
turns, while the optimum of prior objectives does not.

4.1. The Problem with Coupling Exploration and
Exploitation

We begin by showing that end-to-end optimization struggles
with local optima due to a chicken-and-egg problem, illus-
trated in Figure 2. Learning ⇡exp relies on gradients passed
through ⇡task. If ⇡task cannot effectively solve the task, then
these gradients will be uninformative. However, to learn to
efficiently solve the task, ⇡task needs good exploration data
(trajectories ⌧ exp) from a good exploration policy ⇡exp. This
results in bad local optima as follows: if our current (sub-
optimal) ⇡task obtains low rewards with a good informative
trajectory ⌧ exp

good, the low reward would cause ⇡exp to learn to
not generate ⌧ exp

good. This causes ⇡exp to instead generate tra-
jectories ⌧ exp

bad that lack information required to obtain high
reward, further preventing the exploitation policy ⇡task from
learning. Typically, early in training, both ⇡exp and ⇡task are

Decoupling Exploration and Exploitation for Meta-Reinforcement Learning

Figure 2. Coupling between the exploration policy ⇡exp and ex-
ploitation policy ⇡task. These policies are illustrated separately for
clarity, but may be a single policy. Since the two policies depend
on each other (for gradient signal and the ⌧ exp distribution), it is
challenging to learn one when the other policy has not learned.

suboptimal and hence will likely reach this local optimum.

More succinctly, estimates of the expected exploitation re-
turns V

task(⌧ exp; µ) in (1) (e.g., from value-function approx-
imation) form the learning signal for exploration. Escaping
the local optima requires accurately estimating V

task, which
requires many episodes, leading to sample inefficiency. In
Section 5.2, we illustrate this in a simple example.

4.2. DREAM: Decoupling Exploration and Exploitation
in Meta-Reinforcement Learning

While we can sidestep the local optima of end-to-end train-
ing by optimizing separate objectives for exploration and ex-
ploitation, the challenge is to construct objectives that yield
the same optimal solution as the end-to-end approach. We
now discuss how we can use the problem IDs during meta-
training to do so. Intuitively, a good exploration objective
should encourage discovering task-relevant distinguishing
attributes of the problem (e.g., ingredient locations), and ig-
noring task-irrelevant attributes (e.g., wall color). To create
this objective, the key idea behind DREAM is to learn to ex-
tract only the task-relevant information from the problem
ID, which encodes all information about the problem. Then,
DREAM’s exploration objective seeks to recover only this
task-relevant information.

Concretely, DREAM extracts only the task-relevant infor-
mation from the problem ID µ via a stochastic encoder
F (z | µ). To learn this encoder, we train an exploitation
policy ⇡task(a | s, z) to maximize rewards, conditioned on
samples z ⇠ F (z | µ), while simultaneously applying
an information bottleneck to z to discard information not
needed by ⇡task (i.e., task-irrelevant information). Then,
DREAM learns an exploration policy ⇡exp to produce trajec-
tories with high mutual information with z. In this approach,
the exploitation policy ⇡task no longer relies on effective ex-
ploration from ⇡

exp to learn, and once F (z | µ) is learned,
the exploration policy also learns independently from ⇡

task,
decoupling the two optimization processes. During meta-
testing, µ is either unavailable or uninformative because it
is simply a novel one-hot ID. However, the two policies can
be easily combined, since the trajectories generated by ⇡exp

are optimized to contain the same information as the encod-
ings z ⇠ F (z | µ) that the exploitation policy ⇡task trained
on. Next we describe each of these components in detail.

Learning the problem ID encodings and exploitation
policy. We first learn a stochastic encoder F (z | µ)
parametrized by and exploitation policy ⇡task

✓
(a | s, z)

parametrized by ✓, which conditions on z, by solving the
following constrained optimization problem:

minimize I(z; µ) (2)

subject to Ez⇠F (z|µ)

h
V
⇡

task
✓ (z; µ)

i
= V

⇤(µ) for all µ,

where V
⇡

task
✓ (z; µ) is the expected returns of ⇡task

✓
on prob-

lem µ, given encoding z, and V
⇤(µ) is the maximum ex-

pected returns achievable by any policy on problem µ.
Intuitively, optimizing this problem discards any (task-
irrelevant) information from z (the objective) that does not
help maximize returns (the constraint), and importantly, is
independent of exploration.

In practice, we solve this problem (without knowing V
⇤(µ)),

by maximizing the Lagrangian, with dual variable ��1:

maximize
 ,✓

Eµ⇠p(µ),z⇠F (z|µ)

h
V
⇡

task
✓ (z; µ)

i

| {z }
Returns

�� I(z; µ).
| {z }

Information bottleneck
(3)

We maximize the returns via standard RL and min-
imize the mutual information I(z; µ) by minimizing
a variational upper bound on it (Alemi et al., 2016),
Eµ [DKL(F (z | µ)||j(z))], where j is any prior and z is
distributed as p (z) =

R
µ

F (z | µ)p(µ)dµ. Note that the
returns are optimized with respect to both the exploitation
policy ⇡task

✓
and the encoder F , while the information bot-

tleneck only depends on and is only optimized with respect
to F .

Learning an exploration policy given problem ID encod-
ings. Once we’ve obtained an encoder F (z | µ) to extract
only the necessary task-relevant information required to op-
timally solve each task, we can optimize the exploration pol-
icy ⇡exp to produce trajectories that contain this same infor-
mation by maximizing their mutual information I(⌧ exp; z).
We slightly abuse notation to use ⇡exp to denote the proba-
bility distribution over the trajectories ⌧ exp. Then, the mu-
tual information I(⌧ exp; z) can be efficiently maximized by
maximizing a variational lower bound (Barber & Agakov,
2003) as follows:

I(⌧ exp; z) = H(z)�H(z | ⌧
exp) (4)

� H(z) + Eµ,z⇠F ,⌧
exp⇠⇡exp [log q!(z | ⌧

exp)]

= H(z) + Eµ,z⇠F
[log q!(z)] +

Eµ,z⇠F ,⌧
exp⇠⇡exp

"
TX

t=1

log
q!(z | ⌧

exp
:t)

q!(z | ⌧
exp
:t�1)

#
,

where q! is any distribution parametrized by !, and the
last line comes from expanding a telescoping series. We

Decoupling Exploration and Exploitation for Meta-Reinforcement Learning

Algorithm 1 DREAM meta-training trial
1: Sample a problem µ ⇠ p(µ)
2: Compute problem ID encoding z ⇠ F (z | µ)

3: // Exploration episode
4: Roll out exploration policy ⌧ exp ⇠ ⇡exp

� (at | st, ⌧ exp
:t)

5: Update ⇡exp
� and q! to maximize I(⌧ exp; z) via rewards in (5)

6: // Exploitation episode
7: Every other episode, choose z ⇠ q!(z | ⌧ exp)
8: Roll out exploitation policy ⇡task

✓ (a | s, z)
9: Update ⇡task

✓ and F to maximize (3)

maximize the above expression over ⌧ exp and over ! to
learn q! that approximates the true conditional distribution
p(z | ⌧

exp), which makes this bound tight. In addition, we
do not have access to the problem µ at test time and hence
cannot sample from F (z | µ). Therefore, q! serves as a
decoder that generates the encoding z from the exploration
trajectory ⌧ exp.

Recall, our goal is to maximize (4) w.r.t., trajectories ⌧ exp

from the exploration policy ⇡exp. Only the third term de-
pends on ⌧ exp, so we train ⇡exp on rewards set to be this third
term, the information gain:

r
exp
t

(at, rt, st+1, ⌧
exp
t�1; µ) = (5)

Ez⇠F (z|µ)


log

q!(z | ⌧
exp
:t = [st+1; at; rt; ⌧

exp
:t�1])

q!(z | ⌧
exp
:t�1)

�
� c.

Intuitively, the exploration reward for taking action at and
transitioning to state st+1 is high if this transition encodes
more information about the problem (and hence the encod-
ing z ⇠ F (z | µ)) than was already present in the trajec-
tory ⌧ exp

:t�1 = (s0, a0, r0, . . . , st�2, at�2, rt�2). We also in-
clude a small penalty c to encourage exploring efficiently in
as few timesteps as possible. This reward is attractive be-
cause (i) it is independent from the exploitation policy and
hence avoids the local optima described in Section 4.1, and
(ii) it is dense, so it helps with credit assignment. It is also
non-Markov, since it depends on ⌧ exp, so we maximize it
with a recurrent ⇡exp

�
(at | st, ⌧

exp
:t), parametrized by �.

4.3. A Practical Implementation of DREAM

Altogether, DREAM learns four components. We summarize
each component and detail practical choices for parametriz-
ing them as neural networks below.

1. Encoder F (z | µ): The encoder learns to extract only
task-relevant information from the problem ID µ via
Equation 3. Then, DREAM learns to efficiently explore
by recovering the extracted information. For simplicity,
we parametrize the stochastic encoder by learning a de-
terministic encoding f (µ) and apply Gaussian noise,
i.e., F (z | µ) = N (f (µ), ⇢2I). We choose a conve-

nient prior j(z) to be a unit Gaussian with same variance
⇢
2
I , which makes the information bottleneck take the

form of simple `2-regularization I(z; µ) = kf (µ)k22.

2. Decoder q!(z | ⌧
exp): The decoder learns to map explo-

ration trajectories ⌧ exp to encodings z, used by the ex-
ploitation policy during meta-test time, via maximizing
Equation 4. Similar to the encoder, we parametrize the
decoder q!(z | ⌧

exp) as a Gaussian centered around a de-
terministic encoding g!(⌧ exp) with variance ⇢2I . Then,
q! maximizes Eµ,z⇠F (z|µ)

h
kz � g!(⌧ exp)k22

i
w.r.t., !

(Equation 4), and the exploration rewards take the form:
r

exp(a, r, s
0
, ⌧

exp; µ) = kf (µ)� g!([⌧ exp; a; r; s0])k22�

kf (µ)� g!(⌧ exp)k22 � c (Equation 5).

3. Exploitation policy ⇡task
✓

and 4. Exploration policy ⇡exp
�

:
We learn both policies with double deep Q-learning (van
Hasselt et al., 2016), treating (s, z) as the state for ⇡task

✓
.

In practice, we jointly learn all components by following
Algorithm 1 each meta-training trial. Overall, this avoids
the chicken-and-egg problem in Section 4.1 by learning
exploitation and the encoder (lines 6–9) independently from
exploration. This enables the encoder to learn quickly, and
once it is learned, it forms a learning signal for exploration
separate from the expected exploitation returns (lines 3–5),
which improves sample efficiency (Section 5.2).

During meta-testing, µ is unavailable, but since ⇡exp
�

learns
to produce exploration trajectories ⌧ exp containing the same
information as z ⇠ F (z | µ), we can generate z from
q!(z | ⌧

exp) instead of from F (z | µ) for the exploitation
policy ⇡task

✓
(a | s, z). Since the exploitation policy condi-

tions on z ⇠ q!(z | ⌧
exp) from the decoder during meta-

testing, we also train the exploitation policy conditioned on
z ⇠ q!(z | ⌧

exp) every other episode during meta-training
(line 7), which improves stability. See Appendix A for de-
tailed pseudocode and other training details.

5. Analysis of DREAM

5.1. Theoretical Consistency of the DREAM Objective

A key property of DREAM is that it is consistent: maxi-
mizing our decoupled objective also maximizes expected
returns (Equation 1). This contrasts prior decoupled ap-
proaches (Zhou et al., 2019b; Rakelly et al., 2019; Guru-
murthy et al., 2019; Zhang et al., 2020), which also decouple
exploration from exploitation, but do not recover the opti-
mal policy even with infinite meta-training trials. Formally,

Proposition 1. Assume hS, A, Rµ, Tµi is ergodic for all

problems µ 2 M. Let V
⇤(µ) be the maximum expected

returns achievable by any exploitation policy with access

to the problem ID µ, i.e., with complete information. Let

⇡
task

?
,⇡

exp

? , F? and q?(z | ⌧
exp) be the optimizers of the

Decoupling Exploration and Exploitation for Meta-Reinforcement Learning

0 20 40 60 80 100 120

Number of Actions (|A|)

0

50

100

150

200

250

300

S
am

pl
es

(1
e3

)
un

ti
l
O

pt
im

al
it
y

(a)
Sample Complexity

Dream

O(|A|)

RL2

�(|A|
2 log |A|)

0 500 1000 1500 2000

Number of Samples

�0.4

�0.2

0.0

0.2

0.4

0.6

0.8

1.0

Q̂
e
x
p
(a

)

(b)
Exploration Q-values

Sub-optimal a
Optimal a�

0 500 1000 1500 2000

Number of Samples

0.0

0.2

0.4

0.6

0.8

1.0

V̂
i
n
s
(�

e
x
p

�
)

(c)
Exploitation Q-values

0 500 1000 1500 2000

Number of Samples

0.0

0.2

0.4

0.6

0.8

R
et

ur
ns

(d)
Returns

Figure 3. (a) Sample complexity of learning the optimal exploration policy as the action space |A| grows (1000 seeds). (b) Exploration
Q-values Q̂exp(a). The policy arg maxa Q̂

exp(a) is optimal after the dot. (c) Exploitation values given optimal trajectory V̂ task(⌧ exp
?). (d)

Returns achieved on a tabular MDP with |A| = 8 (3 seeds).

✗ ✔✗

... ...
✗

Figure 4. Simple bandit domain. In problem ID µ, action aµ ob-
tains reward 1; all other actions obtain no reward. In all problems,
action a? = A reveals µ and hence, is optimal for exploration.

DREAM objective. Then, if the function classes DREAM op-

timizes over are well-specified, there exists a finite T such

that if the length of the exploration episode is at least T ,

Eµ⇠p(µ),⌧ exp⇠⇡exp

? ,z⇠q?(z|⌧ exp)

h
V
⇡

task

? (z; µ)
i

= Eµ⇠p(µ) [V ⇤(µ)] .

At the optimum of DREAM’s objective, the exploration and
exploitation policies together achieve the maximal returns
V

⇤(µ) without access to µ during meta-testing (proof in Ap-
pendix C.1). This result depends on an ergodicity assump-
tion, which ensures that it is possible to recover all task-
relevant information in a single exploration episode. How-
ever, this can be easily removed by increasing the number
of exploration episodes. Furthermore, DREAM empirically
achieves near-optimal returns even on non-ergodic MDPs
in the experiments (Section 6).

5.2. Illustrating the Effect of Coupling on Sample
Complexity

With enough capacity, end-to-end approaches can also learn
the optimal policy, but can be highly sample inefficient due
to the coupling problem in Section 4.1. We highlight this in
a simple tabular example to remove the effects of function
approximation, illustrated in Figure 4: Each episode is a
one-step bandit problem with action space A = {1, . . . , A}.
Taking action a? = A in the exploration episode leads to
a trajectory ⌧ exp

? that reveals the problem ID µ; all other
actions a reveal no information and lead to ⌧ exp

a . The ID
µ identifies a unique action aµ that receives reward 1 dur-
ing exploitation; all other actions receive reward 0. There-
fore, taking a? during exploration is necessary and suffi-

cient to obtain optimal reward 1. We now study the number
of samples required for RL2 (the canonical end-to-end ap-
proach) and DREAM to learn the optimal exploration policy
with ✏-greedy tabular Q-learning. We precisely describe a
more general setup in Appendix C.2 and prove that DREAM
learns the optimal exploration policy in ⌦(|A|

H
|M|) times

fewer samples than RL
2 in this simple setting with horizon

H . Figure 3a empirically validates this result and we pro-
vide intuition below.

In the tabular analog of RL2, the exploitation Q-values
form targets for the exploration Q-values: Q̂

exp(a)
V̂

task(⌧ exp
a) := maxa0 Q̂

task(⌧ exp
a , a

0). We drop the fixed ini-
tial state from notation. This creates the local optimum
in Section 4.1. Initially V̂

task(⌧ exp
?) is low, as the exploita-

tion policy has not learned to achieve reward, even when
given ⌧ exp

? . This causes Q̂
exp(a?) to be small and therefore

arg maxa Q̂
exp(a) 6= a? (Figure 3b), which then prevents

V̂
task(⌧ exp

?) from learning (Figure 3c) as ⌧ exp
? is roughly sam-

pled only once per |A|
✏

episodes. This effect is mitigated
only when Q̂

exp(a?) becomes higher than Q̂
exp(a) for the

other uninformative a’s (the dot in Figure 3b-d). Then, learn-
ing both the exploitation and exploration Q-values acceler-
ates, but getting there takes many samples.

In DREAM, the exploration Q-values regress toward the de-
coder q̂: Q̂

exp(a) log q̂(µ | ⌧
exp(a)). This decoder learns

much faster than Q̂
task, since it does not depend on the ex-

ploitation actions. Consequently, DREAM’s exploration pol-
icy quickly becomes optimal (dot in Figure 3b), which en-
ables quickly learning the exploitation Q-values and achiev-
ing high reward (Figures 3c and 3d).

In general, DREAM learns in far fewer samples than end-to-
end approaches, since in end-to-end approaches like RL2,
exploration is learned from a quantity requiring many sam-
ples to accurately estimate (i.e., the exploitation Q-values in
this case). Initially, this quantity is estimated poorly, so the
signal for exploration can erroneously "down weight" good
exploration behavior, leading to the chicken-and-egg prob-
lem. In contrast, in DREAM, the exploration policy learns
from the decoder, which requires far fewer samples to accu-

Decoupling Exploration and Exploitation for Meta-Reinforcement Learning

map

(a)

agent

bus

potential goal

pot

fridge (ingredients)

unhelpful bus stop

(b)

Figure 5. Didactic grid worlds to stress test exploration. (a) Navi-
gation. (b) Cooking.

rately estimate, avoiding the chicken-and-egg problem.

6. Experiments
Many real-world problem distributions (e.g., cooking) re-
quire exploration (e.g., locating ingredients) that is distinct
from exploitation (e.g., cooking these ingredients). There-
fore, we desire benchmarks that require distinct exploration
and exploitation to stress test aspects of exploration in meta-
RL, such as if methods can: (i) efficiently explore, even
in the presence of distractions; (ii) leverage informative
objects (e.g., a map) to aid exploration; (iii) learn explo-
ration and exploitation strategies that generalize to unseen
problems; (iv) scale to challenging exploration problems
with high-dimensional visual observations. Existing bench-
marks (e.g., MetaWorld (Yu et al., 2019) or MuJoCo tasks
like HalfCheetahVelocity (Finn et al., 2017; Rothfuss et al.,
2018)) were not designed to test exploration and are un-
suitable for answering these questions. These benchmarks
mainly vary the rewards (e.g., the speed to run at) across
problems, so naively exploring by exhaustively trying differ-
ent exploitation behaviors (e.g., running at different speeds)
is optimal. They further don’t include visual states, distrac-
tors, or informative objects, which test if exploration is ef-
ficient. We therefore design new benchmarks meeting the
above criteria, testing (i-iii) with didactic benchmarks, and
(iv) with a sparse-reward 3D visual navigation benchmark,
based on Kamienny et al. (2020), that combines complex
exploration with high-dimensional visual inputs. To further
deepen the exploration challenge, we make our benchmarks
goal-conditioned. This requires exploring to discover infor-
mation relevant to any potential goal, rather than just a sin-
gle task (e.g., locating all ingredients for any meal vs. just
the ingredients for pasta).

Comparisons. We compare DREAM with state-of-the-art
end-to-end (E-RL2 (Stadie et al., 2018), VARIBAD (Zint-
graf et al., 2019), and IMPORT (Kamienny et al., 2020)) and
decoupled approaches (PEARL-UB, an upper bound on the
final performance of PEARL (Rakelly et al., 2019)). For
PEARL-UB, we analytically compute the expected rewards
achieved by optimal Thompson sampling (TS) exploration,

Distracting bus (1M steps) Map (1M steps)

�0.6

�0.4

�0.2

0.0

0.2

0.4

0.6

0.8

R
et

ur
ns

Distracting Bus / Map

Dream

Dream (no bottleneck)

E-RL2

Import

VariBAD

Pearl-UB

Optimal

No exploration

Figure 6. Navigation results. Only DREAM optimally explores all
buses and the map.

assuming access to the optimal problem-specific policy and
true posterior problem distribution. Like DREAM, IMPORT
and PEARL also use the one-hot problem ID, during meta-
training. We also report the optimal returns achievable with
no exploration as "No exploration." Where applicable, all
methods use the same architecture. The full architecture and
approach details are in Appendix B.3.

We report the average returns achieved by each approach
in trials with one exploration and one exploitation episode,
averaged over 3 seeds with 1-standard deviation error bars
(full details in Appendix B). We evaluate each approach on
100 meta-testing trials, every 2K meta-training trials. In all
plots, the training timesteps includes all timesteps from both
exploitation and exploration episodes in meta-training trials.

6.1. Didactic Experiments

We first evaluate on the grid worlds shown in Fig-
ures 5a and 5b. The state consists of the agent’s (x, y)-
position, a one-hot indicator of the object at the agent’s po-
sition (none, bus, map, pot, or fridge), a one-hot indicator
of the agent’s inventory (none or an ingredient), and the
goal. The actions are move up, down, left, or right; ride

bus, which, at a bus, teleports the agent to another bus of
the same color; pick up, which, at a fridge, fills the agent’s
inventory with the fridge’s ingredients; and drop, which, at
the pot, empties the agent’s inventory into the pot. Episodes
consist of 20 timesteps and the agent receives �0.1 reward
at each timestep until the goal, described below, is met (de-
tails in Appendix B.1; qualitative results in Appendix B.2).

Targeted exploration. We first test if these methods can
efficiently explore in the presence of distractions in two ver-
sions of the benchmark in Figure 5a: distracting bus and
map. In both, there are 4 possible goals (the 4 green loca-
tions). During each episode, a goal is randomly sampled.
Reaching the goal yields +1 reward and ends the episode.
The 4 colored buses each lead to near a different potential
green goal location when ridden and in different problems

Decoupling Exploration and Exploitation for Meta-Reinforcement Learning

0 500 1000 1500 2000 2500

Timesteps (1e3)

�2.0

�1.5

�1.0

�0.5

0.0

A
ve

ra
ge

R
et

ur
ns

Cooking (Training Problems)

0 500 1000 1500 2000 2500

Timesteps (1e3)

�2.0

�1.5

�1.0

�0.5

0.0

0.5
Cooking (Unseen Problems)

Pearl-UB

Optimal

No exploration

Dream

Dream (no bottleneck)

E-RL2

Import

VariBAD

0 500 1000 1500 2000 2500 3000 3500

Timesteps (1e3)

0.0

0.2

0.4

0.6

0.8

1.0

3D Visual Navigation

0.46

0.12

}4x

Figure 7. Cooking results: only DREAM achieves optimal reward on training problems (left), and on generalizing to unseen problems
(middle). 3D visual navigation results: only DREAM reads the sign and solves the task (right).

µ, their destinations are set to be 1 of the 4! different permu-
tations. The distracting bus version tests if the agent can ig-
nore distractions by including unhelpful gray buses, which
are never needed to optimally reach any goal. In different
problems, the gray buses lead to different permutations of
the gray locations. The map version tests if the agent can
leverage objects for exploration by including a map that re-
veals the destinations of the colored buses when touched.

Figure 6 shows the results after 1M steps. DREAM learns
to optimally explore and thus receives optimal reward in
both versions: In distracting bus, it ignores the unhelpful
gray buses and learns the destinations of all helpful buses
by riding them. In map, it learns to leverage informative
objects by visiting the map. During exploitation, DREAM
immediately reaches the goal by riding the correct colored
bus. In contrast, IMPORT and E-RL2 get stuck in a local
optimum, indicative of the coupling problem (Section 4.1),
which achieves the same returns as no exploration at all.
They do not explore the helpful buses or map and conse-
quently sub-optimally exploit by just walking to the goal.
VARIBAD learns slower, likely because it learns a dynam-
ics model, but eventually matches the sub-optimal returns
of IMPORT and RL2 in ~3M steps (not shown).

PEARL achieves sub-optimal returns, even with infinite
meta-training (see line for PEARL-UB), as follows. TS ex-
plores by sampling a problem ID from its posterior and exe-
cuting its policy conditioned on this ID. Since for any given
problem (bus configuration) and goal, the optimal problem-
specific policy rides the one bus leading to the goal, TS does
not explore optimally (i.e., explore all the buses or read the
map), even with the optimal problem-specific policy and
true posterior problem distribution.

Recall that DREAM tries to discard extraneous task-
irrelevant information from the problem ID with an infor-
mation bottleneck that minimizes the mutual information
I(z; µ) between problem IDs and the encoder F (z | µ).
This makes exploration targeted, since DREAM only ex-

plores to recover information in z. We hypothesize that the
bottleneck only improves exploration in domains with dis-
tracting task-irrelevant information to discard from the prob-
lem ID. This empirically holds when we ablate the infor-
mation bottleneck from DREAM, plotted under DREAM (no
bottleneck): In distracting bus, DREAM without the bottle-
neck wastes its exploration on the distracting gray unhelpful
buses and consequently achieves low returns, as seen in Fig-
ure 6 (left). In contrast, map and other below domains do
not contain any distracting information in the problem ID.
Consistent with our hypothesis, DREAM achieves compa-
rable returns with or without the information bottleneck in
these domains, as seen in Figure 6 (right) and Figure 7.

Generalization to new problems. We test generalization
to unseen problems in a cooking benchmark (Figure 5b).
The fridges each contain 1 of 4 different (color-coded) ingre-
dients, determined by the problem ID. The fridges’ contents
are unobserved until the agent uses the "pick up" action at
the fridge. Goals (recipes) specify placing 2 correct ingredi-
ents in the pot in the right order. The agent receives positive
reward for picking up and placing the correct ingredients,
and negative reward for using wrong ingredients. We hold
out 1 of the 43 = 64 problems for meta-testing.

Figure 7 shows the results on training (left) and held-out
(middle) problems. Only DREAM achieves near-optimal re-
turns on both. During exploration, it investigates each fridge
with the "pick up" action, and then directly retrieves the cor-
rect ingredients during exploitation. E-RL2 gets stuck in a
local optimum, only sometimes exploring the fridges. This
achieves 3.8x lower returns, only slightly higher than no
exploration at all. Here, leveraging the problem ID actu-
ally hurts IMPORT compared to E-RL2. IMPORT success-
fully solves the task, given access to the problem ID, but
fails without it. As before, VARIBAD learns slowly and TS
(PEARL-UB) cannot learn optimal exploration.

Decoupling Exploration and Exploitation for Meta-Reinforcement Learning

Figure 8. 3D Visual Navigation. The agent must read the sign to
determine what colored object to go to.

6.2. Sparse-Reward 3D Visual Navigation

We conclude with a challenging benchmark testing both so-
phisticated exploration and scalability to pixel inputs. We
modify a benchmark from Kamienny et al. (2020) to in-
crease both the exploration and scalability challenge by in-
cluding more objects and a visual sign, illustrated in Fig-
ure 8. In the 3 different problems, the sign on the right
says “blue”, “red” or “green.” The goals specify whether
the agent should collect the key or block. The agent receives
+1 reward for collecting the correct object (color specified
by the sign, shape specified by the goal), -1 reward for the
wrong object, and 0 reward otherwise. The agent begins the
episode on the far side of the barrier and must walk around
the barrier to visually “read” the sign. The agent’s observa-
tions are 80⇥ 60 RGB images and its actions are to rotate
left or right, move forward, or end the episode.

DREAM is the only method that learns to read the sign and
achieve reward (Figure 7 right). All end-to-end approaches
get stuck in local optima due to the chicken-and-egg cou-
pling problem, where they do not learn to read the sign and
hence stay away from all the objects, in fear of receiving
negative reward. This achieves close to 0 returns, consis-
tent with the results in Kamienny et al. (2020). As before,
PEARL-UB cannot learn optimal exploration.

7. Conclusion
In summary, this work identifies a chicken-and-egg prob-
lem that end-to-end meta-RL approaches suffer from, where
learning good exploitation requires already having learned
good exploration and vice-versa. This creates challeng-
ing local optima, since typically neither exploration nor ex-
ploitation is good at the beginning of meta-training. We
show that appropriately leveraging simple one-hot problem
IDs allows us to break this cyclic dependency with DREAM.
Consequently, DREAM has strong empirical performance on
meta-RL problems requiring complex exploration, as well
as substantial theoretical sample complexity improvements
in the tabular setting. Though prior works also leverage

the problem ID and use decoupled objectives that avoid the
chicken-and-egg problem, no other existing approaches can
recover optimal exploration empirically and theoretically
like DREAM.

Reproducibility. Our code is publicly available at https:
//github.com/ezliu/dream.

Acknowledgements
We thank Luisa Zintgraf for her insights about VARIBAD.
We also thank Sahaana Suri, Suraj Nair, Minae Kwon, and
Ramtin Keramati for their feedback on drafts of this paper.

We thank Arkira Chantaratananond for creating animations
of the grid world tasks in the project web page. Icons used
in this paper were made by Freepik, ThoseIcons, dDara,
Pixel perfect, ThoseIcons, mynamepong, Icongeek26, and
Vitaly Gorbachev from www.flaticon.com.

EL is supported by a National Science Foundation Graduate
Research Fellowship under Grant No. DGE-1656518. AR
is supported by a Google PhD Fellowship and Open Philan-
thropy Project AI Fellowship. This work was also supported
in part by Google.

References
Agarwal, R., Liang, C., Schuurmans, D., and Norouzi, M.

Learning to generalize from sparse and underspecified
rewards. arXiv preprint arXiv:1902.07198, 2019.

Alemi, A. A., Fischer, I., Dillon, J. V., and Murphy, K.
Deep variational information bottleneck. arXiv preprint

arXiv:1612.00410, 2016.

Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M. W.,
Pfau, D., Schaul, T., Shillingford, B., and Freitas, N. D.
Learning to learn by gradient descent by gradient descent.
In Advances in neural information processing systems,
pp. 3981–3989, 2016.

Barber, D. and Agakov, F. V. The IM algorithm: a vari-
ational approach to information maximization. In Ad-

vances in neural information processing systems, 2003.

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T., Sax-
ton, D., and Munos, R. Unifying count-based exploration
and intrinsic motivation. In Advances in Neural Informa-

tion Processing Systems (NeurIPS), pp. 1471–1479, 2016.

Bengio, S., Bengio, Y., Cloutier, J., and Gecsei, J. On the
optimization of a synaptic learning rule. In Preprints Conf.

Optimality in Artificial and Biological Neural Networks,
volume 2, 1992.

Bengio, Y., Bengio, S., and Cloutier, J. Learning a synaptic
learning rule. In IJCNN-91-Seattle International Joint

Decoupling Exploration and Exploitation for Meta-Reinforcement Learning

Conference on Neural Networks, volume 2, pp. 969–969,
1991.

Burda, Y., Edwards, H., Storkey, A., and Klimov, O. Ex-
ploration by random network distillation. arXiv preprint

arXiv:1810.12894, 2018.

Chevalier-Boisvert, M. Gym-Miniworld environment for
openai gym. https://github.com/maximecb/
gym-miniworld, 2018.

Dorfman, R. and Tamar, A. Offline meta reinforcement
learning. arXiv preprint arXiv:2008.02598, 2020.

Duan, Y., Schulman, J., Chen, X., Bartlett, P. L., Sutskever,
I., and Abbeel, P. RL2: Fast reinforcement learn-
ing via slow reinforcement learning. arXiv preprint

arXiv:1611.02779, 2016.

Eysenbach, B., Gupta, A., Ibarz, J., and Levine, S. Diversity
is all you need: Learning skills without a reward function.
arXiv preprint arXiv:1802.06070, 2018.

Fakoor, R., Chaudhari, P., Soatto, S., and Smola, A. J. Meta-
Q-learning. arXiv preprint arXiv:1910.00125, 2019.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In Interna-

tional Conference on Machine Learning (ICML), 2017.

Gregor, K., Rezende, D. J., and Wierstra, D. Variational
intrinsic control. arXiv preprint arXiv:1611.07507, 2016.

Gupta, A., Mendonca, R., Liu, Y., Abbeel, P., and Levine,
S. Meta-reinforcement learning of structured exploration
strategies. In Advances in Neural Information Processing

Systems (NeurIPS), pp. 5302–5311, 2018.

Gurumurthy, S., Kumar, S., and Sycara, K. Mame:
Model-agnostic meta-exploration. arXiv preprint

arXiv:1911.04024, 2019.

Hiraoka, T., Imagawa, T., Tangkaratt, V., Osa, T., Onishi,
T., and Tsuruoka, Y. Meta-model-based meta-policy opti-
mization. arXiv preprint arXiv:2006.02608, 2020.

Hochreiter, S., Younger, A. S., and Conwell, P. R. Learning
to learn using gradient descent. In International Confer-

ence on Artificial Neural Networks (ICANN), pp. 87–94,
2001.

Houthooft, R., Chen, X., Duan, Y., Schulman, J., Turck,
F. D., and Abbeel, P. Vime: Variational information max-
imizing exploration. In Advances in Neural Information

Processing Systems (NeurIPS), pp. 1109–1117, 2016.

Houthooft, R., Chen, Y., Isola, P., Stadie, B., Wolski, F.,
Ho, O. J., and Abbeel, P. Evolved policy gradients.
In Advances in Neural Information Processing Systems

(NeurIPS), pp. 5400–5409, 2018.

Humplik, J., Galashov, A., Hasenclever, L., Ortega, P. A.,
Teh, Y. W., and Heess, N. Meta reinforcement learning as
task inference. arXiv preprint arXiv:1905.06424, 2019.

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. Plan-
ning and acting in partially observable stochastic domains.
Artificial intelligence, 101(1):99–134, 1998.

Kamienny, P., Pirotta, M., Lazaric, A., Lavril, T., Usunier,
N., and Denoyer, L. Learning adaptive exploration strate-
gies in dynamic environments through informed policy
regularization. arXiv preprint arXiv:2005.02934, 2020.

Kapturowski, S., Ostrovski, G., Quan, J., Munos, R., and
Dabney, W. Recurrent experience replay in distributed
reinforcement learning. In International Conference on

Learning Representations (ICLR), 2019.

Kingma, D. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning

Representations (ICLR), 2015.

Leibfried, F., Pascual-Diaz, S., and Grau-Moya, J. A uni-
fied bellman optimality principle combining reward max-
imization and empowerment. In Advances in Neural In-

formation Processing Systems (NeurIPS), pp. 7869–7880,
2019.

Liu, E. Z., Hashemi, M., Swersky, K., Ranganathan, P.,
and Ahn, J. An imitation learning approach for cache
replacement. arXiv preprint arXiv:2006.16239, 2020a.

Liu, E. Z., Keramati, R., Seshadri, S., Guu, K., Pasupat, P.,
Brunskill, E., and Liang, P. Learning abstract models
for strategic exploration and fast reward transfer. arXiv

preprint arXiv:2007.05896, 2020b.

Mendonca, R., Gupta, A., Kralev, R., Abbeel, P., Levine, S.,
and Finn, C. Guided meta-policy search. In Advances

in Neural Information Processing Systems (NeurIPS), pp.
9653–9664, 2019.

Mishra, N., Rohaninejad, M., Chen, X., and Abbeel, P.
A simple neural attentive meta-learner. arXiv preprint

arXiv:1707.03141, 2017.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529–533, 2015.

Nagabandi, A., Clavera, I., Liu, S., Fearing, R. S., Abbeel,
P., Levine, S., and Finn, C. Learning to adapt in dynamic,
real-world environments through meta-reinforcement
learning. arXiv preprint arXiv:1803.11347, 2018.

Decoupling Exploration and Exploitation for Meta-Reinforcement Learning

Naik, D. K. and Mammone, R. J. Meta-neural networks that
learn by learning. In [Proceedings 1992] IJCNN Interna-

tional Joint Conference on Neural Networks, volume 1,
pp. 437–442, 1992.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in pytorch, 2017.

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T.
Curiosity-driven exploration by self-supervised predic-
tion. In Computer Vision and Pattern Recognition

(CVPR), pp. 16–17, 2017.

Rakelly, K., Zhou, A., Quillen, D., Finn, C., and Levine,
S. Efficient off-policy meta-reinforcement learning
via probabilistic context variables. arXiv preprint

arXiv:1903.08254, 2019.

Rothfuss, J., Lee, D., Clavera, I., Asfour, T., and Abbeel,
P. Promp: Proximal meta-policy search. arXiv preprint

arXiv:1810.06784, 2018.

Russo, D., Roy, B. V., Kazerouni, A., Osband, I., and Wen,
Z. A tutorial on thompson sampling. arXiv preprint

arXiv:1707.02038, 2017.

Sæmundsson, S., Hofmann, K., and Deisenroth, M. P. Meta
reinforcement learning with latent variable gaussian pro-
cesses. arXiv preprint arXiv:1803.07551, 2018.

Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., and
Lillicrap, T. One-shot learning with memory-augmented
neural networks. arXiv preprint arXiv:1605.06065, 2016.

Schmidhuber, J. Evolutionary principles in self-referential

learning, or on learning how to learn: the meta-meta-...

hook. PhD thesis, Technische Universität München, 1987.

Stadie, B., Yang, G., Houthooft, R., Chen, P., Duan, Y.,
Wu, Y., Abbeel, P., and Sutskever, I. The importance of
sampling inmeta-reinforcement learning. In Advances in

Neural Information Processing Systems (NeurIPS), pp.
9280–9290, 2018.

Thompson, W. R. On the likelihood that one unknown
probability exceeds another in view of the evidence of
two samples. Biometrika, 25(3):285–294, 1933.

Thrun, S. and Pratt, L. Learning to learn. Springer Science
& Business Media Springer Science & Business Media,
2012.

van der Maaten, L. and Hinton, G. Visualizing data using
t-SNE. Journal of machine learning research, 9(0):2579–
2605, 2008.

van Hasselt, H., Guez, A., and Silver, D. Deep reinforce-
ment learning with double Q-learning. In Association for

the Advancement of Artificial Intelligence (AAAI), vol-
ume 16, pp. 2094–2100, 2016.

Wang, J. X., Kurth-Nelson, Z., Tirumala, D., Soyer, H.,
Leibo, J. Z., Munos, R., Blundell, C., Kumaran, D., and
Botvinick, M. Learning to reinforcement learn. arXiv

preprint arXiv:1611.05763, 2016a.

Wang, Z., Schaul, T., Hessel, M., Hasselt, H. V., Lanctot,
M., and Freitas, N. D. Dueling network architectures for
deep reinforcement learning. In International Conference

on Machine Learning (ICML), 2016b.

Warde-Farley, D., de Wiele, T. V., Kulkarni, T., Ionescu, C.,
Hansen, S., and Mnih, V. Unsupervised control through
non-parametric discriminative rewards. arXiv preprint

arXiv:1811.11359, 2018.

Yang, Y., Caluwaerts, K., Iscen, A., Tan, J., and Finn, C.
Norml: No-reward meta learning. In Proceedings of the

18th International Conference on Autonomous Agents

and MultiAgent Systems, pp. 323–331, 2019.

Yu, T., Quillen, D., He, Z., Julian, R., Hausman, K., Finn, C.,
and Levine, S. Meta-world: A benchmark and evaluation
for multi-task and meta reinforcement learning. arXiv

preprint arXiv:1910.10897, 2019.

Zhang, J., Wang, J., Hu, H., Chen, Y., Fan, C., and Zhang,
C. Learn to effectively explore in context-based meta-RL.
arXiv preprint arXiv:2006.08170, 2020.

Zhou, A., Jang, E., Kappler, D., Herzog, A., Khansari, M.,
Wohlhart, P., Bai, Y., Kalakrishnan, M., Levine, S., and
Finn, C. Watch, try, learn: Meta-learning from demon-
strations and reward. arXiv preprint arXiv:1906.03352,
2019a.

Zhou, W., Pinto, L., and Gupta, A. Environment probing
interaction policies. arXiv preprint arXiv:1907.11740,
2019b.

Zintgraf, L., Shiarlis, K., Igl, M., Schulze, S., Gal, Y., Hof-
mann, K., and Whiteson, S. Varibad: A very good method
for bayes-adaptive deep RL via meta-learning. arXiv

preprint arXiv:1910.08348, 2019.

