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Abstract
Deep neural networks (DNNs) are considered as
intellectual property of their corresponding own-
ers and thus are in urgent need of ownership
protection, due to the massive amount of time
and resources invested in designing, tuning and
training them. In this paper, we propose a novel
watermark-based ownership protection method
by using the residuals of important parameters.
Different from other watermark-based ownership
protection methods that rely on some specific neu-
ral network architectures and during verification
require external data source, namely ownership in-
dicators, our method does not explicitly use own-
ership indicators for verification to defeat various
attacks against DNN watermarks. Specifically,
we greedily select a few and important model pa-
rameters for embedding so that the impairment
caused by the changed parameters can be reduced
and the robustness against different attacks can be
improved as the selected parameters can well pre-
serve the model information. Also, without the ex-
ternal data sources for verification, the adversary
can hardly cast doubts on ownership verification
by forging counterfeit watermarks. The extensive
experiments show that our method outperforms
previous state-of-the-art methods in five tasks.

1. Introduction
Due to the impressive performance on predictive tasks, ma-
chine learning, and deep neural networks (DNNs) partic-
ularly have become an increasingly popular method for
a variety of usages in real-world applications. Such ap-
plications need models to be well-trained, which requires
massive training data and computing resources (Strubell
et al., 2019). The process of training data collecting, cleans-
ing, storing, and model training can be quite troublesome
and time-consuming, not to mention the potential security
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and privacy issues (Shokri et al., 2017; Song et al., 2017;
Salem et al., 2019), and thus the models are considered to
be the valuable intellectual property of their legitimate own-
ers. However, since the models are supposed to be exposed
and serve users with some helpful information for commer-
cial use, the threat of well-trained model theft seems to be
inevitable (Oh et al., 2018; Orekondy et al., 2019). Also, al-
though well-trained models are closely protected in general,
if the cost of the theft is much lower than that of legal pur-
chase, the value incorporated in such models makes stealing
a lucrative task for malicious adversaries.

One solution to the model theft problem is watermarking
DNN models (Uchida et al., 2017), which is an insightful
way to identify model ownership of the legal owner. Water-
marking objects is a well-studied problem in the security
community under the general theme of digital watermarking.
Essentially, the aim of watermarking is to mark the model
with some kind of identity information, in favor of further
ownership tracking. To ensure that the embedded identity
information will not greatly affect the model performance,
this watermarking process usually takes place during model
training. An external data source, e.g., a carefully selected
picture (Adi et al., 2018), is usually used for ownership
verification of the watermarked model. We refer to this
data source as the ownership indicator by analogy with the
acid-based indicator in elementary chemistry.

Designing a practical yet robust watermarking method for
DNN models, however, is not easy. On the one hand, with
the embedding of additional information, the model may not
be able to maintain its original performance. On the other
hand, the model can be easily modified due to the intrinsic
nature of DNN, making it possible to perform removal at-
tacks, such as fine-tuning for transfer learning (Pan & Yang,
2010) and pruning for model compression (Li et al., 2017).
Besides, in some cases, the adversary can always make an
adversarial example of the ownership indicator (Fan et al.,
2019) or directly overwriting the existing watermark to cast
doubt on the ownership verification. The various attacks that
DNN watermarks need to face are summarized in Figure 1
and described in Section 3.1 in detail. Furthermore, as for
practicality and robustness, most current methods have to
rely on specific DNN architectures, which greatly limits the
application scenarios of watermarking.
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In this paper, we propose a novel watermarking method
called greedy residuals. Our essential insight is that by mak-
ing greedy residuals depend on less information, a more
robust watermarking method can be constructed (i.e., less
is more). There are two main aspects of the understanding
of less here: a) we greedily select those fewer and more im-
portant model parameters for embedding, and the residuals
are built upon the selected parameters; b) we hardly need
to use external data sources, that is, we do not need explicit
ownership indicators to complete ownership verification,
since ownership information in the residuals can be verified
with only fixed and simple steps.

Contributions: a) To our knowledge, it is the first robust
DNN watermark method without explicit ownership indica-
tors; b) We propose a novel idea of using less information
to build a more robust watermark with detailed analysis
and empirically demonstration; c) Through extensive exper-
iments, our proposed method outperforms previous state-of-
the-art methods in five tasks.

2. Related Work
At present, the DNN watermarking methods are designed
for classification tasks. For both white-box methods (i.e., in
need of accessing weights) and black-box methods (i.e., in
no need of accessing weights), all previous methods need
ownership indicators for verification, which can be divided
into two following camps.

Images as ownership indicators. Currently, most water-
marking methods use images as their ownership indicators.
In black-box verification settings, models can be water-
marked by training on some specific image-based triggers
and verified by querying these triggers and observing the out-
puts, namely watermarking by backdoors (Adi et al., 2018;
Namba & Sakuma, 2019; Guo & Potkonjak, 2018; Zhang
et al., 2018). Similarly, adversarial examples can be used
for watermarking DNNs (Merrer et al., 2020) by utilizing
the decision boundary of models, and auto-encoder-based
images can also be used as watermarks (Li et al., 2019). In
addition, there are some methods using images as ownership
indicators in white-box settings, e.g., by inserting additional
layers and querying images called passports (Fan et al.,
2019). A rather obvious shortcoming of the above methods
is that most of them can only be used for image classification
tasks and cannot handle text-based tasks, and some of them
cannot survive through transfer learning where the output
layers are usually modified as is discussed in Section 4.

Matrices as ownership indicators. It is reported that
the first formal watermark-based DNN ownership verifi-
cation method is using a projection matrix for watermark-
ing (Uchida et al., 2017), which is believed to be easily
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Figure 1. The threat of various attacks against DNN watermarks.
There are two main types of attacks: the first is the removal attack,
which includes fine-tuning attacks that modify model weights and
model pruning attacks that subtract unnecessary weights; the sec-
ond is the ambiguity attack, which includes forging attacks that aim
to forge the counterfeit watermark without modifying the model
and overwriting attacks that overwrite the already watermarked
model with adversarial watermarks.

detected in later work (Wang & Kerschbaum, 2019). A
related method (Rouhani et al., 2019) is proposed by em-
bedding watermarks into the probability density function
of the data abstraction in DNNs, which is considered to be
more flexible than previous work (Uchida et al., 2017) and
more stable than merely using adversarial examples.

Unlike the above methods, our method does not need ex-
plicit ownership indicators and will be described next.

3. Greedy Residuals
In this part, we will discuss the properties of good DNN
watermarks and how our method meets these properties.

3.1. Background on Watermarking

Threat model. We investigate an adversary Eve with the
goal of falsely claiming the ownership of a watermarked
model and using the model illegally. The following assump-
tions have been made for the interest of Eve: a) Eve has
already got the model and tries to perform attacks to make
the existing watermark invalid; b) The attack is ineffective
if it significantly impairs the original performance of the
model; c) Eve either has limited data or limited computing
resources, because an attack is not necessary if Eve has the
ability to train the model from scratch legally.

Objectives of the watermark. In addition to having au-
thenticity (i.e., the watermark can uniquely identify the
owner of the model), a watermark also needs to have the fol-
lowing properties: a) Universality: The watermark should
have as few requirements as possible on the model itself
and cannot only be applied to a small number of model
architectures; b) Capacity: The watermark should be able
to contain large amounts of identity information. c) Se-
crecy: The adversarial process of detecting the presence
of the watermark should be as difficult as possible. d) Fi-
delity: The impairment on the model performance, which is
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caused by the watermark, should be as little as possible; e)
Removal-resistance: The watermark should be robust to re-
moval attacks, including model fine-tuning for transfer learn-
ing and model pruning for neural compression; f) Forging-
resistance: During verification, Eve can perform forging
attacks by forging the counterfeit watermark (i.e., counter-
feit ownership indicator) to falsely claim ownership of the
model. Such a counterfeit watermark is usually an adversar-
ial example and extracted by some transformations without
modifying the model weights. g) Overwriting-resistance:
Once Eve knows the underlying watermarking method, a re-
embedding process can be executed to overwrite the existing
watermark in the model.

We refer to forging attacks and overwriting attacks as ambi-
guity attacks in this paper, because both attacks can make
the original owner unable to claim the unique ownership,
thus casting ambiguity of the model ownership verification.
To distinguish these two ambiguity attacks, assuming the
watermarkW has already been embedded into the model
Fθ, the main difference between these two attacks is that the
overwriting attacks change the model parameters θ by re-
embedding Eve’s watermarkWEve, yet the forging attacks
only forge the watermark WF , which can be regarded as
the forged ownership indicator during verification, without
modifying the model. The knowledge for performing forg-
ing attacks usually comes from the valid watermarkW , and
typically the forged watermarkWF is statistically similar
toW but looks different (i.e.,WF is statistically different
from WEve yet contains the adversarial identity of Eve).
Unlike other approaches, our proposed method only relies
on less information of parameters, which is robust against
multiple attacks while proving legitimate ownership, and
will be described in the following in detail.

3.2. Embedding Greedy Residuals

A deep learning model Fθ with trainable parameters θ can
be optimized using the dataset D = {xi, yi}Ni=1 and a loss
function Lθ by solving:

argmin
θ

N∑
i=1

Lθ(xi, yi) + Eθ (1)

where Eθ is a penalty term for regularizing models. Since
penalty terms can impose restrictions on models while op-
timizing, we denote Eθ as the embedding term which can
also be used to embed the watermarkW .

Watermarking while training. As it is vital to maintain
the original performance of the watermark-free model, we
perform watermarking DNN models while training. Inspired
by the hinge loss function (Rosasco et al., 2004), the embed-
ding term Eθ in Equation 1 aims to embed the ownership

information into the model, which can be defined as:

Eθ = λ

b∑
i=1

ReLU(µ− ωi(α)ψi) (2)

where ψi is the residual information which is the sum of
values in the extracted weights and will be described in
Equation 8 later, α is the ownership information signature, b
is the actual number of bits of the ownership signature (i.e.,
α), the b-bit sequence {ωi(α)}bi=1 ∈ {−1, 1}

b is the sign
factor using α as the input, λ is the adjustable parameter, and
µ is the threshold. The adjustable parameter λ = 0.01 and
the threshold µ = 0.1 by default unless stated otherwise.

The sign factor sequence ω(α) = {ωi(α)}bi=1, which
controls the signs of ψ = {ψi}bi=1, indirectly forces the
model to remember the signs of the ownership signature
α ∈ {0, 1}b using private key κs (we take κp as the corre-
sponding public key):

α = S(κs,msg) (3)

where msg is the message to be signed (e.g., a copyright
statement of the legitimate person or party), and S is the
signature function. In experiments we use the RSA (Rivest
et al., 1978) algorithm, then there is b = 256 in Equation 2.

More specifically, the sign factor ω(α) = {ωi(α)}bi=1 ∈
{−1, 1}b is described in the following equation:

ω(α) = {sgn(αi)}bi=1 (4)

where sgn is used to project bits as {1, 0} sgn−−→ {1,−1}.
During training, the embedding term Eθ in Equation 1 func-
tions as guidance to encourage ψi to stay the same sign
as that of ωi(α), and the threshold µ will enlarge the gap
between different signs of values, and thus we can take the
watermarkW = {α} in our proposed method.

Weight extraction. Generally, there are two ways to em-
bed the watermark: embed the watermark in the model
hyper-parameters (e.g., the model architecture) or embed
it in the trainable model parameters (e.g., the weights and
the bias in the model). Here, we embed the watermark into
the model weights in favor of subsequent ownership track-
ing. First of all, we need to decide which weights should
be chosen to embed the watermark. The flattened weight
wl ∈ Rm in layer l, where m is decided by the original
DNN model Fθ, are extracted from the model Fθ and trans-
formed to γl ∈ Rd (e.g., d = 256× 253 = 64768) by using
the following convolution ∗ operation:

(wl ∗ k)(t) =
∞∑

u=−∞
wl(u)kt(u), t ∈ [1, d] (5)



Watermarking Deep Neural Networks with Greedy Residuals

where t is the position of the target element in γl. In order
to make each weight equally important, we try to design an
average operation and thus small groups of whether high or
low values are compensated by the average value, and thus
the convolution kernel function are defined as:

ki(x) =

{
1
σi

if b (i−1)md c < x ≤ d imd e
0 otherwise

(6)

where the kernel width sequence σ = {σi}di=1 is the output
of the following ceiling function d·e and floor function b·c:

σ = {d im
d
e − b (i− 1)m

d
c}di=1 (7)

Actually, in order to match the target shape (i.e., transform
the shape of wl ∈ Rm to that of γl ∈ Rd), the above
convolution plays the role of 1-d average pooling, which
builds on the statistical robustness of the average operation
when m > d, and the convolution also works when m ≤
d. Considering the fact that the ownership information
signature α has b bits, in order to embed the ownership
information as is mentioned in Equation 2, the extracted
weight γl ∈ Rd needs to be reshaped into γl ∈ Rb×b′ and
b′ = bdb c in general. In most cases, d is a multiple of b (e.g.,
b′ = 253 when b = 256 and d = 64768).

Residual construction. After extracting the weights (i.e.,
γl), we can construct residuals upon them. As one of the
main aspects of our insight less is more, we define the com-
ponent ratio η for embedding since only those fewer and
more important weights are selected greedily. Then we fo-
cus on the i-th row γli,∗ ∈ Rb′ in γl ∈ Rb×b′ and refer the
bb′ηc-biggest-absolute-value element set as Bi. Since the
element value in a row of γl is either positive or negative,
naturally the greedy residual ψi in i-th row is defined as the
average of element values in Bi in the i-th row:

ψi =
1

b′

∑
j∈Bi

j (8)

Please note that both positive and negative numbers may
appear in the set Bi, and they are all elements with larger
absolute values in the i-th row γli,∗. Without loss of general-
ity, we only take half of all values to calculate, so we have
η = 0.5 and the b b

′

2 c-biggest elements will be calculated.

The embedding progress is formally described in Algo-
rithm 1. Since the ownership signature α only needs to
be calculated once in the beginning, the primary computa-
tional complexity of the algorithm is the calculation of the
embedding term Eθ in Equation 1. The calculation of Eθ is
composed of the process of extracting the weights and the
process of constructing residuals. With regard to the process
of extracting the weights, as is mentioned in Equation 5

Algorithm 1 Embedding of Greedy Residuals
Parameter: public-key cryptography key set κ =
{κs, κp}, message to be signed msg, dataset D and pre-
defined model Fθ to be watermarked with all the hyper-
parameters.

1: Initialize dataset D and model Fθ with parameters θ;
2: Initialize ownership signature α using κs and msg;
3: for it = 1, iteration do
4: Sample minibatch of n samples from D;
5: Compute cross-entropy loss Lθ;
6: Update θ by descending the gradient: ∇θLθ;
7: Compute the embedding term Eθ using α;
8: Update θ by descending the gradient: ∇θEθ;
9: end for

10: return Fθ∗ with optimized parameters θ∗;

and Equation 6, this process is essentially viewed as the
convolution operation through a convolution kernel with a
width in the sequence σ. Since this process aims to map the
flattened weight wl ∈ Rm in layer l to γl ∈ Rd, the time
complexity of weight extraction is O(d · σmax) = O(m),
where σmax denotes the max width in kernel width sequence
σ. As for the process of constructing residuals, the most
time-consuming part is the sorting operation, which has
a complexity of O(d log b′). Therefore, the overall time
complexity of the calculation of the embedding term Eθ
is O(m + d log b′). Considering that the above two pro-
cesses are essentially convolution operations and sorting
operations, the space complexity of the calculation of the
embedding termEθ isO(d·σmax+log b′) = O(m+log b′).

Also, it is the dependence imposed by Eθ on less but more
important weights for the primary task during training that
makes our proposed method robust against multiple attacks
including fine-tuning attacks, pruning attacks and overwrit-
ing attacks, which will be described in Section 4.

3.3. Verification

There are two things that need to be done in the verification
progress. First, determine whether the identity informa-
tion (e.g., the signature of a person or party) exists in the
constructed residuals ψ of the watermarked model. Then
determine whom the identity information belongs to. In fact,
the verification process of our proposed method is similar to
the embedding process, that is, after extracting the weight
γl to construct residuals ψ, it verifies whether the signature
α exists or not. If the signature α does exist, then figure
out whom this signature actually belongs to, by using the
public key κp corresponding to the private key κs, since α
is signed using κs in Equation 3 and only the corresponding
public key κp can complete the verification. From the above
verification process, our method does not need an explicit
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external data source, namely ownership indicators, and the
ownership information can be verified with only fixed and
simple steps. Therefore, the adversary Eve cannot forge an
adversarial example to perform forging attacks, thus mak-
ing the verification of our proposed method an unforgeable
verification.

There is a chance that one may argue the hyper-parameters
of the watermark serve as an ownership indicator. However,
our proposed method is still robust. On the one hand, it
is very difficult for Eve to reverse the msg that suits Eve
from the encrypted signature α, which is proved by the
RSA encryption method (Rivest et al., 1978). On the other
hand, the ownership information contained in the residuals
is limited. According to Proposition 1, given a 256-bit en-
crypted signature, for example, a DNN with 18 layers where
there are 64768 extracted weight values for each layer, the
probability of claiming that certain ownership information
extracted from the DNN is P ≤ 4 × 10−74. Also, we run
the empirical evaluations in Section 4 to demonstrate the
robustness of our proposed method.

Proposition 1. Given a b-bit binary code and a water-
marked model with M layers where there are d weights
for each layer, the probability of the binary code extracted
from the residuals of the watermarked model matching the
given binary code is bounded as: P ≤ Mb db c

2b

Proof. The process of extracting the binary code from the
residuals of the watermarked model includes weight extrac-
tion and residual construction. For weight extraction, there
are M choices of selecting the layer from a watermarked
model with M layers. For residual construction, as in the
layer there is 1 ≤ bdb c, there are bdb c choices of constructing
the residual information from the selected layer according
to Equation 8. Therefore, there are at most Mbdb c choices
of residual construction for a watermarked model with M
layers. Since there are 2b combinations for a b-bit binary
code, the probability of the binary code extracted from the
residuals of the watermarked model matching the given
binary code is P ≤ Mb db c

2b
.

4. Experiments
In addition to using models without watermark as the base-
line, we perform empirical evaluations of our proposed
greedy residuals against three other approaches:

• Passport method (Fan et al., 2019): We focus on the
passport verification scheme 2 mentioned in their paper,
which embeds selected passport images into the model
and verifies a watermarked model based on the model
performance and the pre-defined signature with given

passports. Since a new passport layer needs to be
inserted during the verification process, this method is
in a white-box setting.

• Backdoor method (Adi et al., 2018): It also uses im-
ages as the watermarks, with a set of backdoor clas-
sification rules. By intentionally showing the set of
backdoor rules in a watermarked model, one can prove
the ownership in a black-box setting.

• Weight-hash method: To clarify the difference between
our method and simple hashing, we naively take the
hash value of the file of model weights as the water-
mark. It is worth noting that this method also does not
require too much extra information during verification,
and it is in a white-box setting.

Experiment setup. For a fair comparison, we refer
to (Fan et al., 2019) to build the experiment setup. We
run experiments of AlexNet (Krizhevsky et al., 2012) and
ResNet-18 (He et al., 2016) on Caltech-101, Caltech-256 (Li
et al., 2006), CIFAR-10 and CIFAR-100 (Krizhevsky, 2012)
for image classification tasks. Also, we run TextCNN (Kim,
2014) and LSTM (Hochreiter & Schmidhuber, 1997) on
IMDB-2 (Maas et al., 2011) and TREC-6 (Li & Roth,
2002) for sentiment and question classification respectively.
We also evaluate our proposed method on ImageNet (Rus-
sakovsky et al., 2015) subset1 for image classification.

The source codes of greedy residuals and the corresponding
datasets are publicly available2.

4.1. Low-impairment

Universality. The restrictions imposed on the model by
the watermark are evaluated in Table 1. We notice that
the Passport method is only suitable for a small part of the
model architectures, e.g., models with batch normalization
layers (Ioffe & Szegedy, 2015). Since the watermark de-
pends on specific images, both the Passport method and the
Backdoor method are only applied to image classification
tasks. Our proposed method has little requirement on the
model architecture, because residuals are only constructed
on a few weights. Considering that modern DNNs usually
have more parameters than are statistically needed to fit
training data, our proposed method can be easily applied to
a tremendous amount of DNNs. Therefore, our proposed
method has the property of universality.

Secrecy. Following Kerckhoffs’s Principle, we assume
that our proposed method is known to adversaries. However,
as secrecy can reduce the possibility of potential attacks,

1The subset of the first 100 classes in ImageNet is used as the
entire dataset for efficiency.

2https://github.com/eil/greedy-residuals

https://github.com/eil/greedy-residuals
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Table 1. Experiment results of low-impairment. Baseline means the accuracy of a normal-training model without the watermark on the
test set. Ours denotes the model accuracy on the test set watermarked by greedy residuals. N/A means the results are not applicable
because such watermarks cannot be applied to the model. The accuracy inside the bracket represents the accuracy of the model with batch
normalization. The watermark detection rates are omitted because all of the rates are 100% when watermarked models converge.

Dataset Baseline (%) Ours (%) Passport (Fan et al., 2019) (%) Backdoor (Adi et al., 2018) (%) Weight-hash (%)

AlexNet ResNet-18 AlexNet ResNet-18 AlexNet ResNet-18 AlexNet ResNet-18 AlexNet ResNet-18

Caltech-101 63.95 (68.72) 66.36 (71.19) 64.43 (67.76) 64.91 (71.14) N/A (48.42) N/A (68.96) 63.52 (68.88) 64.59 (70.76) 63.95 (68.72) 66.36 (71.19)
Caltech-256 36.80 (44.79) 42.37 (56.09) 36.84 (43.46) 42.72 (54.29) N/A (39.75) N/A (51.53) 36.68 (44.54) 41.40 (53.57) 36.80 (44.79) 42.37 (56.09)
CIFAR-10 90.09 (90.98) 93.41 (94.90) 89.29 (90.69) 93.52 (94.94) N/A (90.72) N/A (94.89) 89.76 (90.77) 93.01 (94.69) 90.09 (90.98) 93.41 (94.90)

CIFAR-100 63.58 (68.26) 69.59 (76.74) 63.15 (67.91) 69.56 (76.49) N/A (63.91) N/A (74.11) 63.15 (67.99) 69.27 (76.38) 63.58 (68.26) 69.59 (76.74)

Dataset LSTM TextCNN LSTM TextCNN LSTM TextCNN LSTM TextCNN LSTM TextCNN

IMDB-2 87.24 88.65 86.93 88.28 N/A N/A N/A N/A 87.24 88.65
TREC-6 83.00 92.00 82.60 93.00 N/A N/A N/A N/A 83.00 92.00
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Figure 2. Distribution of ResNet-18 weights with or without water-
marks. Embedding greedy residuals will not change the statistical
features of the model, thus making our proposed method covert.

the watermark should not significantly change the statistical
features of models. As is depicted in Figure 2, both the
baseline model and the watermarked model follow almost
the same distribution, and it is difficult for an adversary
to tell whether the model is embedded with our proposed
watermark.

Fidelity. To illustrate the effectiveness of our proposed
greedy residuals, we evaluate the accuracy of baseline mod-
els and watermarked models on the test set to check the
impairment caused by watermarking. We train the networks
for 200 epochs with the multi-step learning rate which sched-
ules the learning rate as 0.01, 0.001 and 0.0001 between
epochs 1 to 100, 101 to 150 and 151 to 200 respectively.
We also use the weight decay and the momentum which
are 5 × 10−4 and 0.9 respectively. The batch size of the
training set is set as 64, and the batch size of the test set for
image classification tasks is 128, and for text classification
tasks is 64. As is shown in Table 1, we find out that the
other three methods, except the Weight-hash method, all
have a certain impact on the model performance, and our
proposed method outperforms the Passport method and the
Backdoor method in most experiments. As most other ap-
proaches cannot process text classification tasks, even on
image classification tasks which other methods are good at,
the accuracy of our proposed method is 4.30% higher than
that of the Passport method on average and 0.13% than that
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Figure 3. The impacts of different watermark parameters on the
accuracy of the model. Experiments evaluate the model accuracy
of AlexNet on CIFAR-10. The accuracy when 1 ÷ (1 − η) = 0
means the model accuracy when full weights are selected (i.e.,
η = 1).

of the Backdoor method on average. Compared with the
baseline where models are normally trained, the maximum
accuracy drop caused by our proposed method is only 1.8%
for ResNet-18 with batch normalization on Caltech-256, and
in the 6 tasks including text classification, the accuracy has
slightly increased. It is empirically proved that our proposed
method has the property of fidelity. Though the weight-hash
method has no effect on the accuracy of the DNN models,
the following experiments show that simply hashing the
weight file is not a robust watermarking method.

Impacts on accuracy. As is mentioned previously in Sec-
tion 3.2 that the embedding term Eθ can function as an
additional term for regularizing parametric deep learning
models, we try different hyper-parameters of greedy residu-
als for 9 iterations with the objective of model accuracy re-
gardless of the watermark detection rates. Figure 3 presents
the impacts of our proposed method on the model accuracy
when different parameters are set for AlexNet on CIFAR-10.
In Table 1 we notice that the typical accuracy of AlexNet
on CIFAR-10 is 89.29% when η = 0.5 (i.e., half of the
extracted weight values are selected), yet in this contour
figure we observe that most of the in-sample point values
are around 88.50%. In Section 4.3 we will dive deeper and
figure out whether the robustness or accuracy will change
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Table 2. Evaluations on ImageNet subset. The subset consists of
the first 100 classes of ImageNet. The accuracy inside the bracket
denotes the accuracy of the model with batch normalization. The
watermark detection rates are omitted because all of the rates are
100% when watermarked models converge.

Dataset Baseline (%) Ours (%)

AlexNet ResNet-18 AlexNet ResNet-18

ImageNet Subset 54.09 (57.34) 61.72 (67.79) 53.33 (56.79) 61.49 (67.69)

when all the extracted values are selected (i.e., η = 1). Also,
we evaluate our proposed method on ImageNet subset, and
the results are shown in Table 2. It is revealed that our pro-
posed method can achieve 100% watermark detection rate
while largely preserving the model accuracy.

Capacity. In particular, we use RSA as our public-key
cryptography algorithm, to generate a 256-bit sequence as
the signature of our copyright statement. Since the copyright
statement is essentially a string sequence, no matter how
long it is, it will be converted into a 256-bit sequence, thus
achieving capacity of our proposed method.

4.2. Robustness

Fine-tuning resistance. When the labels of the source
dataset and the target dataset are both available, fine-tuning
is a method for transfer learning, which transfers the knowl-
edge to solve new tasks, and the output layer is always al-
tered during transfer learning. As is summarized in Table 3,
we evaluate the worst case, where the adversary replaces
the last output layer and retrains the parameters of all layers.
The Backdoor method is compromised immediately since
this method relies heavily on the output layer, and because
the types of target tasks are generally different, adversaries
are unlikely to keep the output layer in transfer learning.
For the Passport method, the watermark detection rate has
slightly declined in more than half of the experiments. How-
ever, not only is the accuracy of our method higher than that
of the Passport method, but also the watermark detection
rate of our method is 100% in all experiments. That is to say,
our proposed method not only achieves the robustness of
fine-tuning attacks, but also maintains relatively high model
accuracy. One explanation for this robustness is that the
threshold defines the strength of the constructed residuals,
and the adversary cannot remove the watermark without
destroying the original knowledge from the source dataset.

Weight pruning resistance. As one of the methods for
model compression, weight pruning is an efficient way to
reduce the storage and computation costs of DNNs. Since
weight pruning will not only affect the size and operation
speed of the model, but also the accuracy of the model, the
pruning rate is actually a trade-off between computational
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Figure 4. Evaluation results of weight pruning resistance (removal-
resistance). Model represents the prediction accuracy of the pruned
model on the test set. Watermark is the detection accuracy of the
embedded greedy residuals under a specific weight sparsity rate
by weight pruning.

cost and accuracy. We consider `1-norm pruning to evalu-
ate our proposed method, as is depicted in Figure 4. The
empirical results show that generally our proposed method
is insensitive to the change of weight sparsity, and even in
the worst case (i.e., ResNet-18 on CIFAR-10), the water-
mark detection rate begins to drop obviously only when the
weight sparsity is as high as about 75%, where the model
accuracy is only around 44.74%. Consequently, the weight
pruning attack is invalid for our proposed method, because
when the watermark detection rate really starts to decline,
the model itself has already become useless. Since our pro-
posed method only selects the more important part of the
model weights to embed ownership information, we achieve
resistance against weight pruning attacks.

Robust to permutation attacks. An adversary may per-
mute the order of the nodes such that γl in layer l, as defined
in Equation 5 will have different values since the distance
between elements will be different. According to the threat
model in Section 3.1, any attacks that may impair the orig-
inal performance of the model will be considered invalid
for the interest of the adversary. As is described in Ta-
ble 4, we assume that the adversary permutes kernels in
the watermarked convolution layer. Results show that our
proposed method is robust against the neuron node permuta-
tions, since all the watermark detection rates are more than
95% when nodes are permuted in the experiments.

Robust to scaling attacks. For scaling attacks, neural net-
works with ReLUs are invariant to scaling in the sense that
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Table 3. Experiment results of fine-tuning resistance (removal-resistance). Baseline means the accuracy of the watermark-free model under
fine-tuning with the appropriate training settings. Accuracies inside and outside the bracket denote the detection rate of the watermark and
the accuracy of the trained model respectively. All model architectures are built with batch normalization for comparison.

Source Target Baseline (%) Ours (%) Passport (Fan et al., 2019) (%) Backdoor (Adi et al., 2018) (%) Weight-hash (%)

AlexNet ResNet-18 AlexNet ResNet-18 AlexNet ResNet-18 AlexNet ResNet-18 AlexNet ResNet-18

CIFAR-10
CIFAR-100 66.11 72.88 65.51 (100) 73.36 (100) 63.30 (99.78) 70.60 (98.67) 65.30 (0) 73.45 (3.00) 66.11 (0) 72.88 (0)
Caltech-101 73.39 76.93 72.48 (100) 76.61 (100) 71.06 (100) 70.98 (99.88) 73.39 (8.00) 76.82 (2.00) 73.39 (0) 76.93 (0)
Caltech-256 46.62 53.05 46.26 (100) 52.44 (100) 42.55 (99.87) 44.81 (97.93) 46.71 (0) 53.55 (0) 46.62 (0) 53.05 (0)

CIFAR-100
CIFAR-10 89.44 93.70 89.45 (100) 93.64 (100) 87.95 (100) 93.09 (100) 89.18 (8.00) 93.50 (11.00) 89.44 (0) 93.70 (0)

Caltech-101 77.15 79.94 75.27 (100) 81.65 (100) 72.77 (100) 74.01 (100) 75.38 (8.00) 80.36 (7.00) 77.15 (0) 79.94 (0)
Caltech-256 49.57 56.43 49.55 (100) 56.32 (100) 45.20 (99.91) 51.84 (99.88) 49.60 (0) 56.89 (0) 49.57 (0) 56.43 (0)
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Figure 5. Evaluation results of forging attacks against greedy resid-
uals. The signatures are randomly generated to evaluate whether
other identity information can be extracted from the watermarked
model. BN denotes models with batch normalization.

if the weights in the incoming edges to a given neuron in a
hidden are multiplied or divided by a factor δ > 0 and all
the edges that go out of this node are multiplied or divided
by 1

δ then the network will evaluate to the same result. Our
proposed method is robust against scaling attacks. During
verification we simply check whether the extracted signs
of residuals match that of the given signature α in Equa-
tion 4. When the weights are multiplied or divided by a
factor δ > 0, the signs will not change, and the watermark
detection rates will not change, too. As is shown in Table 5,

Table 4. Results of permutation attacks against greedy residuals.
Under a specific number of permuted nodes, accuracies inside
and outside the bracket denote the watermark detection rates of
AlexNet models with or without batch normalization respectively.

Nodes CIFAR-10 (%) CIFAR-100 (%) Caltech-101 (%) Caltech-256 (%)

2 100 (98.05) 98.05 (98.05) 98.83 (97.66) 98.05 (98.05)
3 99.22 (96.48) 96.48 (98.44) 98.05 (97.66) 97.27 (98.05)
4 98.05 (96.48) 96.09 (97.27) 95.70 (97.66) 95.70 (97.27)

Table 5. Results of scaling attacks against greedy residuals. Accu-
racies inside and outside the bracket denote the watermark detec-
tion rates of AlexNet models when the weights are multiplied by δ
and divided by δ, respectively.

δ CIFAR-10 (%) CIFAR-100 (%) Caltech-101 (%) Caltech-256 (%)

10 100 (100) 100 (100) 100 (100) 100 (100)
100 100 (100) 100 (100) 100 (100) 100 (100)

Table 6. Results of forging attacks. Accuracies inside and outside
the bracket denote the watermark detection rates with or without
batch normalization respectively. N/A means not applicable.

Dataset Passport (Fan et al., 2019) (%) Backdoor (Adi et al., 2018) (%)

AlexNet ResNet-18 AlexNet ResNet-18

CIFAR-10 N/A (100) N/A (100) 100 (100) 100 (100)
CIFAR-100 N/A (100) N/A (100) 100 (100) 100 (100)

experiment results show that all the watermark detection
rates remain 100%, which demonstrates the robustness of
our proposed method against scaling attacks.

Robust to forging attacks. Table 6 and Figure 5 show the
results of forging attacks where the counterfeit watermark is
supposed to be illegally verified in a watermarked DNN. For
the Passport method and the Backdoor method, such coun-
terfeit watermarks can be successfully forged with the 100%
watermark detection rates, which means these methods are
totally compromised in forging attacks and thus ownership
ambiguity emerges. As for our proposed method, since
Proposition 1 proves that it is unlikely to compromise our
proposed method by forging adversarial examples or other
counterfeits of existing watermarks, we randomly generate
a batch of 200 signatures to verify whether it is possible to
detect these forged signatures from the watermarked model.
The evaluation results reveal that the detection accuracy of
the forged watermark is only near 50% for all experiments,
which is because there are only two positive and negative
values. Since there is only a small probability of forging
attacks, our proposed method fulfills the requirement of
forging-resistance.

Robust to overwriting attacks. From the perspective of
whether the adversary has the knowledge of the original
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Table 7. Results of overwriting attacks with or without original
training data. Accuracies outside and inside the bracket denote the
watermark detection rates of existing watermark and adversarial
watermark respectively. Models are built with batch normalization.

Train with Data CIFAR-10 (%) CIFAR-100 (%)

AlexNet ResNet-18 AlexNet ResNet-18

Ours 100 (53.52) 99.22 (49.22) 100 (49.22) 99.61 (47.66)
Passport(Fan et al., 2019) 100 (100) 100 (100) 99.91 (99.91) 100 (100)

Backdoor(Adi et al., 2018) 85.00 (98.00) 93.00 (100) 87.00 (97.00) 95.00 (100)

Train without Data AlexNet ResNet-18 AlexNet ResNet-18

Ours 100 (47.27) 98.44 (52.34) 100 (42.97) 97.66 (53.13)
Passport(Fan et al., 2019) 100 (100) 100 (100) 100 (100) 100 (100)

Backdoor(Adi et al., 2018) 13.00 (78.00) 16.00 (74.00) 10.00 (78.00) 8.00 (82.00)
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Figure 6. Evaluation of the comparison between different water-
mark parameters under pruning attacks. Watermark is the detection
accuracy of the embedded watermark under a specific weight spar-
sity rate. All models are built with batch normalization.

training data set, as is shown in Table 7 we consider two
types of overwriting attacks. When the original training
dataset is accessible, for both the Passport method and the
Backdoor method, the adversarial watermark has been suc-
cessfully re-embedded, since the detection rates of these
overwritten watermarks are more than 97%. To make mat-
ters worse, the watermark of the Backdoor method is even
slightly erased, and its detection accuracy is lower than that
of the adversarial watermark by 5% at least. The situation
is basically similar when the original training dataset is
inaccessible, as all the adversarial watermarks have been
successfully re-embedded. It is worth noting that the water-
mark detection rates of the Backdoor method drop sharply
at this time, because the only factor of the model change is
the re-embedding of adversarial watermarks. Therefore, the
model changes more drastically and the existing watermarks
are no longer valid.

In all the above evaluations of overwriting attacks, our pro-
posed method is so robust that the detection rates of real
watermarks almost stay 100% with few exceptions, while
the adversarial watermarks are only around 49.42% which is
equivalent to randomly guessing. Thus our proposed method
has overwriting-resistance compared with other methods.

4.3. A Case Study on All Selected Weights

Previously we discuss only fewer yet more important
weights are selected for embedding, since it is better than

Table 8. Results of comparison between half or all selected weights.
Accuracies outside and inside the bracket denote the model accu-
racy on the test set and the watermark detection rate respectively.
Tuning to CIFAR-10 means the source dataset is CIFAR-100 while
the target dataset is CIFAR-10. Tuning to CIFAR-100 means the
source dataset is CIFAR-10 while the target dataset is CIFAR-100.
All models are built with batch normalization.

Comparison Item Ours (%) Ours, η = 1 (%)

AlexNet ResNet-18 AlexNet ResNet-18

CIFAR-10 Training 90.69 (100) 94.94 (100) 90.61 (100) 94.88 (100)
CIFAR-100 Training 67.91 (100) 76.49 (100) 67.69 (100) 76.31 (100)
Tuning to CIFAR-10 89.45 (100) 93.64 (100) 89.09 (99.61) 93.64 (100)

Tuning to CIFAR-100 65.51 (100) 73.36 (100) 65.14 (99.22) 73.13 (100)

choosing all the extracted weights. In this part we evaluate
the impact of the component ratio η values on robustness
and impairments through experiments, where η = 0.5 repre-
sents our default watermark parameter and η = 1 means that
all extracted weights are selected for constructing residuals.
Table 8 shows the influence of different η on model perfor-
mance and watermark detection rates, where we find out
that the model accuracy on the test set and the watermark
detection rate decrease by up to 0.22% and 0.78% respec-
tively, when all weights are selected. As for pruning which
is depicted in Figure 6, the watermark is more vulnerable
to attacks when all weights are selected, since the curve of
η = 1 drops even when weight sparsity is around 55% and
50% on CIFAR-10 and CIFAR-100 respectively, and the
experiments demonstrate that our proposed method achieves
more robustness by depending on less but more important
model parameters.

5. Conclusions
Protecting the intellectual properties of DNN model owners
by watermarking is a decent way, yet there are also many
attacks against this approach. In this paper, we provide
the insight of less is more in DNN ownership protection,
and propose the first watermarking method that does not
explicitly use ownership indicators for verification with su-
perior robustness based on the insight. As for evaluating
our proposed watermarking method, we consider multiple
attacks and carry out extensive experiments, and it is empir-
ically proved that our method achieves state-of-the-art and
outperforms other methods in five fundamental tasks.
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