In-Time Over-Parameterization

Appendices

A. Experimental Settings of Hypothesis Evaluation

In this Appendix, we describe the experimental settings of the hypothesis evaluation in Section 3.2.

A.1. Models

We use MLP on CIFAR-10, VGG-16 on CIFAR-10, ResNet-34 on CIFAR-100 to work through our hypothesis. We describe
these models in detail as follows:

MLP. MLP is a clean three-layer MLP with ReLU activation for CIFAR-10. The number of neurons of each layer is 1024,
512, 10, respectively. No other regularization such as dropout or batch normalization is used further.

VGG-16. VGG-16 is a modified CIFAR-10 version of the original VGG model introduced by Lee et al. (2019). The size of
the fully-connected layer is reduced to 512 and the dropout layers are replaced with batch normalization to avoid any other
sparsification.

ResNet-34. ResNet-34 is the CIFAR-100 version of ResNet with 34 layers introduced by He et al. (2016).

A.2. Algorithm

We choose Sparse Evolutionary Training (SET) (Mocanu et al., 2018) as the DST method to evaluate our hypothesis. SET
helps to avoid the dense over-parameterization bias introduced by the gradient-based methods e.g., RigL and SNFS, as
the latter utilize dense gradients in the backward pass to explore new weights. SET starts from a random sparse topology
(Erdds-Rényi), and optimize the sparse connectivity towards a scale-free topology during training.

This algorithm contains three key steps:
1. Initializing a sparse neural network with Erdds-Rényi random graph at a sparsity of S.
2. Training the sparse neural network for AT iterations.

3. Removing weights according to the standard magnitude pruning and growing new weights in a random fashion.

Steps 2 and 3 will be repeated iteratively until the end of the training. By doing this, SET maintains a fixed parameter count
throughout training.

A.3. Training

Table 3. Experiment hyperparameters of the hypothesis evaluation in Section 3.2. The hyperparameters include Learning Rate (LR), Batch
Size (BS), Typical Training Epochs (TT Epochs), Learning Rate Drop (LR Drop), Weight Decay (WD), Sparse Initialization (Sparse Init),
Update Interval of the Extended Training (A7), Pruning Rate Schedule (Sched), Initial Pruning Rate (P), etc.

Model Data Methods LR BS TTEpochs LRDrop WD Sparsenit AT Sched P
MLP CIFAR-10 RigL 0.01 128 200 10x S5e-4 ER 4000 Cosine 0.5
MLP CIFAR-10 SET 0.01 128 200 10x Se-4 ER 1500 Cosine 0.5
VGG-16 CIFAR-10 SET 0.1 128 250 10x Se-4 ERK 2000 Cosine 0.5
ResNet-34 CIFAR-100 SET 0.1 128 200 10x le-4 ERK 1000 Cosine 0.5

We basically follow the experimental settings from Dettmers & Zettlemoyer (2019).

For models trained for a typical time, we train them with various update interval AT reported in Figure 3. We use a set
of 10% training data as the validation set and train on the remaining training data. Weight growth is guided by random
sampling and weight pruning is guided by magnitude. We do not specifically finetune the starting point and the finishing
point of the parameter exploration. The exploring operation is performed throughout training. The initial sparse connectivity
is sampled by the Erdds-Rényi distribution introduced in Mocanu et al. (2018). We set the initial pruning rate as 0.5 and

In-Time Over-Parameterization

gradually decay it to O with a cosine annealing, as introduced in Dettmers & Zettlemoyer (2019). The remaining training
hyperparameters are set as follows:

MLP. We train sparse MLPs for 200 epochs by momentum SGD with a learning rate of 0.01 and a momentum coefficient of
0.9. We use a small learning rate 0.01 rather than 0.1, as the dense MLP doesn’t converge with a learning rate of 0.1. We
decay the learning rate by a factor of 10 every 24000 iterations. We set the batch size as 128. The weight decay is set as
5.0e-4.

VGG-16. We strictly follow the experimental settings from Dettmers & Zettlemoyer (2019) for VGG-16. All sparse models
are trained with momentum SGD for 250 epochs with a learning rate of 0.1, decayed by 10 every 30000 mini-batches. We
use a batch size of 128 and weight decay to 5.0e-4.

ResNet-34. We train sparse ResNet-34 for 200 epochs with momentum SGD with a learning rate of 0.1, decayed by 10 at
the 100 and 150 epoch. We use a batch size of 128 and weight decay to 1.0e-4.

For models trained for an extended training time, we simply extend the training time and the anchor epochs of the learning
rate schedule, while using a large AT. The update interval AT is chosen according to the trade-off shown in Figure 3.
Besides the learning steps, the anchor epochs of the learning rate schedule and the pruning rate schedule are also scaled by
the same factor. For each training time, the accuracy are averaged over 3 seeds with mean and standard deviation. More
detailed training hyperparameters are shared in Table 3.

B. Implementation Details of RigL.-ITOP in Section 4.2

Table 4. Experiment hyperparameters in Section 4.2 and Section 5. The hyperparameters include Learning Rate (LR), Batch Size (typical
training time / extended training time) (BS), Training Epochs (typical training time / extended training time) (Epochs), Learning Rate
Drop (LR Drop), Weight Decay (WD), Sparse Initialization (Sparse Init), Update Interval (AT’), Pruning Rate Schedule (Sched), Initial
Pruning Rate (P), etc.

Model Data Methods LR BS Epochs LR Drop WD Sparse Init AT Sched P
MLP CIFAR-10 SET-ITOP 0.01 32/128 200/4000 10x Se-4 ER 1500 Cosine 0.5
MLP CIFAR-10 RigL-ITOP 0.01 32/128 200/4000 10x Se-4 ER 4000 Cosine 0.5

ResNet-34 CIFAR-100 SET-ITOP 0.1 32/128 200/4000 10x le-4 ERK 1500 Cosine 0.5
ResNet-34 CIFAR-100 RigL-ITOP 0.1 32/128 200/4000 10x le-4 ERK 4000 Cosine 0.5
ResNet-50 ImageNet RigL-ITOP 0.1 64 /- 100/ - 10x le-4 ERK 4000 Cosine 0.5

In this Appendix, we describe our replication of RigL (Evci et al., 2020a) and the hyperparameters we used for RigL.-ITOP.

RigL is a state-of-the-art DST method growing new weights that are expected to receive gradient with high magnitude
in the next iteration. Besides, it shows the proposed sparse distribution Erdds-Rényi-Kernel (ERK) improves the sparse
performance over the Erdds-Rényi (ER). Since RigL is originally implemented with TensorFlow, we replicate it with
PyTorch based on the implementation from Dettmers & Zettlemoyer (2019). We note that RigL tunes the starting epoch and
the ending point of the mask update. To encourage more exploration, we do not follow this strategy and explore sparse
connectivities throughout training. We train sparse ResNet-50 for 100 epochs, the same as Dettmers & Zettlemoyer (2019);
Evci et al. (2020a). The learning rate is linearly increased to 0.1 with a warm-up in the first 5 epochs and decreased by a
factor of 10 at epochs 30, 60, and 90. To reach a high and reliable In-Time Over-Parameterization rate, we use a small batch
size of 64 and an update interval of 4000. Batch sizes lower than 64 lead to worse test accuracy. ImageNet experiments were
run on 2x NVIDIA Tesla V100. With more fine-tuning, the results of RigL-ITOP (e.g. extended training time) can likely be
improved, but we lack the resources to do it. We share the hyperparameters of RigL-ITOP in Table 4.

C. Implementation Details in Section 5

In this Appendix, we describe the hyperparameters of SET-ITOP used in 5 in Table 4. The replication details of LTH and
SNIP are given below.

LTH. Lottery Ticket Hypothesis (LTH) (Frankle & Carbin, 2019) shows that there exist sub-networks that can match the
accuracy of the dense network when trained with their original initializations. We follow the PyTorch implementation

In-Time Over-Parameterization

provide by Liu et al. (2019) on GitHub' to replicate LTH.

Give the fact that the iterative pruning process of LTH would lead to much larger training resource costs than SNIP and
static sparse training, we use one-shot pruning for LTH. For the typical training time setting, we first train a dense model for
200 epochs, after which we use global and one-shot magnitude pruning to prune the model to the target sparsity and retrain
the pruned model with its original initializations for 200 epochs.

SNIP. Single-shot network pruning (SNIP) proposed in Lee et al. (2019), is a method that attempts to prune at initialization
before the main training based on the connection sensitivity score s; = adTLwl\ The weights with the smallest score
are pruned. We replicate SNIP based on the PyTorch implementation on GitHub'. Same as Lee et al. (2019), we use a
mini-batch of data to calculate the important scores and obtain the sparse model in a one-shot fashion before the initialization.
After that, we train the sparse model without any sparse exploration for 200 epochs.

D. Extended Training Performance of RigL. with AT = 1500

According to the results from Figure 5, we can see the AT = 4000 is a good choice for the update interval of RigL.. What
if we choose a small update interval, e.g., AT = 1500? Here we compare the extended training performance of RigL
with two different update intervals 1500 and 4000. The results are shown in Figure 9. It is clear to see models trained
with AT = 1500 fall short of models trained with AT = 4000, which indicates small update intervals is not sufficient for
newly weights to catch up the existing weights in terms of magnitude. More importantly, although expected to perform
sparse exploration more frequently, models trained with AT = 1500 end up with a lower R, than the ones trained with
AT = 4000. These results highlight the importance of the sufficient training time for the new weights.

R_s of AT = 4000 R_s of AT = 4000 R_s of AT = 4000 R_s of AT = 4000

3
=1
72 1 72

023
- 0.24
032

<
b
S

L

k036
I 0.35
- 0.09
F o033
k039
L o.46
I o.54
- 0.55
ko074
ko7
ko076
o7
L 075

72
70 70 A

68

68 ((mem=—memms=zIooooTT

66 - 66

64 64 64

MLP

62 62 62

CIFAR-10
Test Accuracy [%]

60 60 60

58 58 58

56 56

T T
~ @
3 = b

s o

R_s of AT = 1500 R_s of AT =1500 R_s of AT =1500 R_s of AT =1500

T T
NN
o o
S o

05

25
0.47
0.48 -
0.48 o
073
073
074

TTT T T
Qo ~
o¥Y ¥
Soc o o

0.26 -
027 o
0.27

0.27 o

TT
INES
N
oo

015 -
0.15

0.
0.

—— Dense -== AT =1500, Sparsity 0.98 AT =1500, Sparsity 0.95 AT =1500, Sparsity 0.90 —--- AT =1500, Sparsity 0.80
--- Dense extended = —— AT =4000, Sparsity 0.98 AT = 4000, Sparsity 0.95 AT = 4000, Sparsity 0.90 ~ —— AT = 4000, Sparsity 0.80

Figure 9. Extended training performance of RigL with update interval AT = 1500 and AT = 4000.

E. Test Accuracy of RigL. with Various Batch Sizes

In this Appendix, we evaluate the performance of RigLL with different batch sizes. We choose MLP as our model and the
update interval AT = 4000. The results are shown in Figure 10. Similar with SET, the performance of RigL also increases
as the batch size decrease from 256 to 32. After that, the performance starts to drop due to the noisy input caused by the
extreme small batch sizes. The In-Time Over-Parameterization rate (R5) of RigL is again bounded up to some values. We
also provide the comparison between RigL (solid lines) and SET (dashed lines) in this setting. We find a similar pattern
with the extended training time, that is, RigL outperforms SET when R is small but falls short of SET when sufficient
parameters have been reliably explored.

F. Regrowing from the Non-Activated Weights First

One direct way to increase the In-Time Over-Parameterization rate during a typical training time is to sample from the
non-activated weights first when performing weight growing. We evaluate this idea with SET by regrowing the non-activated
weights first and report the results as SET+ with (mean + std, R;) in Table 5. We training sparse ResNet-18 on CIFAR-10

"https://github.com/Eric-mingjie/rethinking-network-pruning
"https://github.com/mil-ad/snip

https://github.com/Eric-mingjie/rethinking-network-pruning
https://github.com/mil-ad/snip

In-Time Over-Parameterization

70

R_s of Random Growth
0.27 0.44

0.66 0.87 098 10 1.0
L L L 1 L

R_s of Random Growth

0.47 0.69 0.89 0.98

10

0.73

R_s of Random Growth
091 0.99 10 10 1.0 1.0

MLP

CIFAR-10
Test Accuracy [%]

\

—_—

\
AN

T T
256 128

—— Dense

T
64

T
32

Batch Size

gradient, Sparsity 0.95

T T T 56
16 8 4

—— gradient, Sparsity 0.90

T T T T T T T
0.12 018 025 035 046 05 054
R_s of Gradient Growth

—— gradient, Sparsity 0.80

56

T T T T T T T
024 033 044 056 069 075 073

R_s of Gradient Growth

random, Sparsity 0.95

~=- random, Sparsity 0.90

T T T T T T T
0.43 057 069 081 089 095 0.83
R_s of Gradient Growth

==+ random, Sparsity 0.80

Figure 10. Test accuracy of Rigl. with various batch sizes. The update interval AT is set as 4000.

for 250 epochs with a learning rate of 0.1 decayed by 10x at 125, 187 epochs, a batch size of 128, a pruning rate of 0.5.

When the parameter exploration is insufficient (small R;), SET+ consistently achieves higher accuracy and higher R than
SET. Whiling effective, the R, increase achieved by this modification is relatively limited. This observation highlights an
important direction for future work to achieve high R, within a typical training time.

Table 5. Performance of sparse ResNet-18 on CIFAR-10 with various pruning rates. The results are run three times and reported with
(mean + std, R,). The highest test accuracies are marked in bold.

P

AT = 15000

AT = 10000

AT = 8000

AT = 5000

AT = 3000

0.5
0.5

(94.30 £ 0.16, 0.162)
(94.43 £ 0.14, 0.169)

(94.47 £+ 0.14, 0.201)
(94.59 £ 0.11, 0.215)

(94.25 £ 0.10, 0.228)
(94.54 + 0.28, 0.247)

(94.36 £ 0.08, 0.302)
(94.38 £ 0.07, 0.342)

(94.54 £+ 0.05,0.411)
(94.53 £+ 0.03, 0.492)

Sparsity ~ Method
SET
09 SET+
SET
0.95 SET+

0.5
0.5

(93.57 £ 0.16, 0.086)
(93.66 £ 0.14, 0.088)

(93.46 £ 0.04, 0.108)
(93.70 = 0.03, 0.114)

(93.67 £ 0.04, 0.124)
(93.66 = 0.15, 0.133)

(93.60 £ 0.04, 0.170)
(93.78 £ 0.04, 0.186)

(93.61 £ 0.09, 0.241)
(94.00 £ 0.08, 0.272)

