
A Sharp Analysis of Model-based RL with Self-Play

A. Multiplayer General-sum Markov Games
In this section, we extend both our model-based algorithms (Algorithm 1 and Algorithm 2) to the setting of multiplayer
general-sum Markov games, and present corresponding theoretical guarantees.

A.1. Problem formulation

A general-sum Markov game (general-sum MG) with m players is a tuple MG(H,S, {Ai}mi=1,P, {ri}mi=1), where H , S
denote the length of each episode and the state space. Different from the two-player zero-sum setting, we now have m
different action spaces, where Ai is the action space for the ith player and |Ai| = Ai. We let a := (a1, · · · , am) denote
the (tuple of) joint actions by all m players. P = {Ph}h∈[H] is a collection of transition matrices, so that Ph(·|s,a) gives
the distribution of the next state if actions a are taken at state s at step h, and ri = {rh,i}h∈[H] is a collection of reward
functions for the ith player, so that rh,i(s,a) gives the reward received by the ith player if actions a are taken at state s at
step h.

In this section, we consider three versions of equlibrium for general-sum MGs: Nash equilibrium (NE), correlated equilibrium
(CE), and coarse correlated equilibrium (CCE), all being standard solution notions in games (Nisan et al., 2007). These
three notions coincide on two-player zero-sum games, but are not equivalent to each other on multi-player general-sum
games; any one of them could be desired depending on the application at hand. Below we introduce their definitions.

(Approximate) Nash equilibrium in general-sum MGs. The policy of the ith player is denoted as πi :=
{
πh,i : S →

∆Ai

}
h∈[H]

. We denote the product policy of all the players as π := π1 × · · · × πM , and denote the policy of all the players

except the ith player as π−i. We define V πh,i(s) as the expected cumulative reward that will be received by the ith player if
starting at state s at step h and all players follow policy π. For any strategy π−i, there also exists a best response of the

ith player, which is a policy µ†(π−i) satisfying V µ
†(π−i),π−i

h,i (s) = supπi
V
πi,π−i

h,i (s) for any (s, h) ∈ S × [H]. We denote

V
†,π−i

h,i := V
µ†(π−i),π−i

h,i . The Q-functions of the best response can be defined similarly.

Our first objective is to find an approximate Nash equilibrium of Markov games.

Definition 7 (ε-approximate Nash equilibrium in general-sum MGs). A product policy π is an ε-approximate Nash
equilibrium if maxi∈[m] (V

†,π−i

1,i − V π1,i)(s1) ≤ ε.

The above definition requires the suboptimality gap (V
†,π−i

1,i − V π1,i)(s1) to be less than ε for all player i. This is consistent
with the two-player case (Definition 1) up to a constant of 2, since in the two-player zero-sum setting, we have V π1,1(s1) =

−V π1,2(s1) for any product policy π = (µ, ν), and therefore (V †,ν1,1 − V µ,†1,1 )(s1) ≤ 2 maxi∈[2] (V
†,π−i

1,i − V π1,i)(s1) ≤
2(V †,ν1,1 − V

µ,†
1,1 )(s1).We can similarly define the regret.

Definition 8 (Nash-regret in general-sum MGs). Let πk denote the (product) policy deployed by the algorithm in the kth

episode. After a total of K episodes, the regret is defined as

RegretNash(K) =

K∑
k=1

max
i∈[m]

(V
†,πk
−i

1,i − V π
k

1,i )(s1).

(Approximate) CCE in general-sum MGs. The coarse correlated equilibrium (CCE) is a relaxed version of Nash
equilibrium in which we consider general correlated policies instead of product policies. Let A = A1 × · · · × Am denote
the joint action space.

Definition 9 (CCE in general-sum MGs). A (correlated) policy π := {πh(s) ∈ ∆A : (h, s) ∈ [H] × S} is a CCE if
maxi∈[m] V

†,π−i

h,i (s) ≤ V πh,i(s) for all (s, h) ∈ S × [H].

Compared with a Nash equilibrium, a CEE is not necessarily a product policy, that is, we may not have πh(s) ∈ ∆A1
×

· · · ×∆Am
. Similarly, we also define ε-approximate CCE and CCE-regret below.

Definition 10 (ε-approximate CCE in general-sum MGs). A policy π := {πh(s) ∈ ∆A : (h, s) ∈ [H] × S} is an
ε-approximate CCE if maxi∈[m] (V

†,π−i

1,i − V π1,i)(s1) ≤ ε.
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Definition 11 (CCE-regret in general-sum MGs). Let policy πk denote the (correlated) policy deployed by the algorithm in
the kth episode. After a total of K episodes, the regret is defined as

RegretCCE(K) =

K∑
k=1

max
i∈[m]

(V
†,πk
−i

1,i − V π
k

1,i )(s1).

(Approximate) CE in general-sum MGs. The correlated equilibrium (CE) is another relaxation of the Nash equilibrium.
To define CE, we first introduce the concept of strategy modification: A strategy modification φ := {φh,s}(h,s)∈[H]×S for
player i is a set of S ×H functions from Ai to itself. Let Φi denote the set of all possible strategy modifications for player i.

One can compose a strategy modification φ with any Markov policy π and obtain a new policy φ � π such that when policy
π chooses to play a := (a1, . . . , am) at state s and step h, policy φ � πwill play (a1, . . . , ai−1, φh,s(ai), ai+1, . . . , am)
instead.

Definition 12 (CE in general-sum MGs). A policy π := {πh(s) ∈ ∆A : (h, s) ∈ [H] × S} is a CE if
maxi∈[m] maxφ∈Φi

V φ�πh,i (s) ≤ V πh,i(s) holds for all (s, h) ∈ S × [H].

Similarly, we have an approximate version of CE and CE-regret.

Definition 13 (ε-approximate CE in Markov games). A policy π := {πh(s) ∈ ∆A : (h, s) ∈ [H]×S} is an ε-approximate
CE if maxi∈[m] maxφ∈Φi(V

φ�π
1,i − V π1,i)(s1) ≤ ε.

Definition 14 (CE-regret in multiplayer Markov games). Let policy πk denote the policy deployed by the algorithm in the
kth episode. After a total of K episodes, the regret is defined as

RegretCE(K) =

K∑
k=1

max
i∈[m]

max
φ∈Φi

( V φ�π
k

1,i − V π
k

1,i )(s1).

Relationship between Nash, CE, and CCE For general-sum MGs, we have {Nash} ⊆ {CE} ⊆ {CCE}, so that they
form a nested set of notions of equilibria (Nisan et al., 2007). Indeed, one can easily verify that if we restrict the choice of
strategy modification φ to those consisting of only constant functions, i.e., φh,s(a) being independent of a, Definition 12
will reduce to the definition of CCE policy. In addition, any Nash equilibrium is a CE by definition. Finally, since a Nash
equilibrium always exists, so does CE and CCE.

A.2. Multiplayer optimistic Nash value iteration

Here we present the Multi-Nash-VI algorithm, which is an extension of Algorithm 1 for multi-player general-sum Markov
games.

The EQUILIBRIUM Subroutine. Our EQUILIBRIUM subroutine in Line 11 could be taken from either one of the
{NASH,CE,CCE} subroutines for one-step games. When using NASH, we compute the Nash equilibrium of a one-
step multi-player game (see, e.g., Berg & Sandholm (2016) for an overview of the available algorithms); the worst-case
computational complexity of such a subroutine will be PPAD-hard (Daskalakis, 2013). When using CE or CCE, we find CEs
or CCEs of the one-step games respectively, which can be solved in polynomial time using linear programming. However,
the policies found are not guaranteed to be a product policy. We remark that in Algorithm 1 we used the CCE subroutine
for finding Nash in two-player zero-sum games, which seemingly contrasts the principle of using the right subroutine for
finding the right equilibrium, but nevertheless works as the Nash equilibrium and CCE are equivalent in zero-sum games.

Now we are ready to present the theoretical guarantees for Algorithm 3. We let πk denote the policy computed in line 11 of
Algorithm 3 in the kth episode.

Theorem 15 (Multi-Nash-VI). There exists an absolute constant c, for any p ∈ (0, 1], let ι = log(SABT/p), then with
probability at least 1− p, Algorithm 3 with bonus βt = c

√
SH2ι/t and EQUILIBRIUM being one of {NASH,CE,CCE}

satisfies (repsectively):

• πout is an ε-approximate {NASH,CE,CCE}, if the number of episodes K ≥ Ω(H4S2(
∏m
i=1Ai)ι/ε

2).
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Algorithm 3 Multiplayer Optimistic Nash Value Iteration (Multi-Nash-VI)

1: Initialize: for any (s,a, h, i), Qh,i(s,a)← H , Q
h,i

(s,a)← 0, ∆← H , Nh(s,a)← 0.
2: for episode k = 1, . . . ,K do
3: for step h = H,H − 1, . . . , 1 do
4: for (s,a) ∈ S ×A1 × · · · × Am do
5: t← Nh(s,a);
6: if t > 0 then
7: for player i = 1, 2, . . . ,m do
8: Qh,i(s,a)← min{(rh,i + P̂hV h+1,i)(s,a) + βt, H}.
9: Q

h,i
(s,a)← max{(rh,i + P̂hV h+1,i)(s,a)− βt, 0}.

10: for s ∈ S do
11: πh(·|s)← EQUILIBRIUM(Qh,1(s, ·), Qh,2(s, ·), · · · , Qh,M (s, ·)).
12: for player i = 1, 2, . . . ,m do
13: V h,i(s)← (Dπh

Qh,i)(s); V h,i(s)← (Dπh
Q
h,i

)(s).

14: if maxi∈[m](V 1,i − V 1,i)(s1) < ∆ then
15: ∆← maxi∈[m](V 1,i − V 1,i)(s1) and πout ← π.
16: for step h = 1, . . . ,H do
17: take action ah ∼ πh(·|sh), observe reward rh and next state sh+1.
18: add 1 to Nh(sh,ah) and Nh(sh,ah, sh+1).
19: P̂h(·|sh,ah)← Nh(sh,ah, ·)/Nh(sh,ah).
20: Output πout.

• Regret{Nash,CE,CCE}(K) ≤ O(
√
H3S2(

∏m
i=1Ai)Tι).

In the situation where the EQUILIBRIUM subroutine is taken as NASH, Theorem 15 provides the sample complexity bound
of Multi-Nash-VI algorithm to find an ε-approximate Nash equilibrium and its regret bound. Compared with our earlier
result in two-player zero-sum games (Theorem 3), here the sample complexity scales as S2H4 instead of SH3. This is
because the auxiliary bonus and Bernstein concentration technique do not apply here. Furthermore, the sample complexity
is proportional to

∏m
i=1Ai, which increases exponentially as the number of players increases.

Runtime of Algorithm 3 We remark that while the Nash guarantee is the strongest among the three guarantees presented
in Theorem 15, the runtime of Algorithm 3 in the Nash case is not guaranteed to be polynomial and in the worst case
PPAD-hard (due to the hardness of the NASH subroutine). In contrast, the CE and CCE guarantees are weaker, but the
corresponding algorithms are guaranteed to finish in polynomial time.

A.3. Multiplayer reward-free learning

We can also generalize VI-Zero to the multiplayer setting and obtain Algorithm 4, Multi-VI-Zero, which is almost the same
as VI-Zero except that its exploration bonus βt is larger than that of VI-Zero by a

√
S factor.

Similar to Theorem 5, we have the following theoretical guarantee claiming that any {NASH,CCE,CE} of theM(P̂, r̂i)
(i ∈ [N ]) is also an approximate {NASH,CCE,CE} of the true Markov gameM(P, ri), where P̂out is the empirical transition
outputted by Algorithm 4 and r̂i is the empirical estimate of ri.

Theorem 16 (Multi-VI-Zero). There exists an absolute constant c, for any p ∈ (0, 1], ε ∈ (0, H],N ∈ N, if we choose bonus
βt = c

√
H2Sι/t with ι = log(NSABT/p) and K ≥ c(H4S2(

∏m
i=1Ai)ι/ε

2), then with probability at least 1 − p, the
output P̂out of Algorithm 4 has the following property: for any N fixed reward functions r1, . . . , rN , any {NASH,CCE,CE}
of Markov gameM(P̂out, r̂i) is also an ε-approximate {NASH,CCE,CE} of the true Markov gameM(P, ri) for all i ∈ [N ].

The proof of Theorem 16 can be found in Appendix F.2. It is worth mentioning that the empirical Markov gameM(P̂out, r̂i)
may have multiple {Nash equilibria,CCEs,CEs} and Theorem 16 ensures that all of them are ε-approximate {Nash
equilibria,CCEs,CEs} of the true Markov game. Also, note that the sample complexity here is quadratic in the number of
states because we are using the exploration bonus βt =

√
H2Sι/t that is larger than usual by a

√
S factor.
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Algorithm 4 Multiplayer Optimistic Value Iteration with Zero Reward (Multi-VI-Zero)

1: Initialize: for any (s,a, h), Ṽh(s,a)← H , ∆← H , Nh(s,a)← 0.
2: for episode k = 1, . . . ,K do
3: for step h = H,H − 1, . . . , 1 do
4: for (s,a) ∈ S ×A1 × · · · × Am do
5: t← Nh(s,a).
6: if t > 0 then
7: Q̃h(s,a)← min{(P̂hṼh+1)(s,a) + βt, H}.
8: for s ∈ S do
9: πh(s)← arg maxa∈A1×···×Am

Q̃h(s,a).
10: Ṽh(s)← (Dπh

Q̃h)(s).
11: if Ṽ1(s1) < ∆ then
12: ∆← Ṽ1(s1) and P̂out ← P̂.
13: for step h = 1, . . . ,H do
14: take action ah ∼ πh(·, ·|sh), observe next state sh+1.
15: add 1 to Nh(sh,ah) and Nh(sh,ah, sh+1).
16: P̂h(·|sh,ah)← Nh(sh,ah, ·)/Nh(sh,ah).
17: Output P̂out.

B. Bellman Equations for Markov Games
In this section, we present the Bellman equations for different types of values in Markov games.

Fixed policies. For any pair of Markov policy (µ, ν), by definition of their values in (1) (2), we have the following Bellman
equations:

Qµ,νh (s, a, b) = (rh + PhV µ,νh+1)(s, a, b), V µ,νh (s) = (Dµh×νhQ
µ,ν
h )(s)

for all (s, a, b, h) ∈ S ×A× B × [H], where V µ,νH+1(s) = 0 for all s ∈ S.

Best responses. For any Markov policy µ of the max-player, by definition, we have the following Bellman equations for
values of its best response:

Qµ,†h (s, a, b) = (rh + PhV µ,†h+1)(s, a, b), V µ,†h (s) = inf
ν∈∆B

(Dµh×νQ
µ,†
h )(s),

for all (s, a, b, h) ∈ S ×A× B × [H], where V µ,†H+1(s) = 0 for all s ∈ S.

Similarly, for any Markov policy ν of the min-player, we also have the following symmetric version of Bellman equations
for values of its best response:

Q†,νh (s, a, b) = (rh + PhV †,νh+1)(s, a, b), V †,νh (s) = sup
µ∈∆A

(Dµ×νhQ
†,ν
h )(s).

for all (s, a, b, h) ∈ S ×A× B × [H], where V †,νH+1(s) = 0 for all s ∈ S.

Nash equilibria. Finally, by definition of Nash equilibria in Markov games, we have the following Bellman optimality
equations:

Q?h(s, a, b) =(rh + PhV ?h+1)(s, a, b)

V ?h (s) = sup
µ∈∆A

inf
ν∈∆B

(Dµ×νQ?h)(s) = inf
ν∈∆B

sup
µ∈∆A

(Dµ×νQ?h)(s)

for all (s, a, b, h) ∈ S ×A× B × [H], where V ?H+1(s) = 0 for all s ∈ S.
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C. Properties of Coarse Correlated Equilibrium
Recall the definition for CCE in our main paper (4), we restate it here after rescaling. For any pair of matrices P,Q ∈
[0, 1]n×m, the subroutine CCE(P,Q) returns a distribution π ∈ ∆n×m that satisfies:

E(a,b)∼πP (a, b) ≥max
a?

E(a,b)∼πP (a?, b) (5)

E(a,b)∼πQ(a, b) ≤min
b?

E(a,b)∼πQ(a, b?)

We make three remarks on CCE. First, a CCE always exists since a Nash equilibrium for a general-sum game with payoff
matrices (P,Q) is also a CCE defined by (P,Q), and a Nash equilibrium always exists. Second, a CCE can be efficiently
computed, since above constraints (5) for CCE can be rewritten as n+m linear constraints on π ∈ ∆n×m, which can be
efficiently resolved by standard linear programming algorithm. Third, a CCE in general-sum games needs not to be a Nash
equilibrium. However, a CCE in zero-sum games is guaranteed to be a Nash equalibrium.
Proposition 17. Let π = CCE(Q,Q), and (µ, ν) be the marginal distribution over both players’ actions induced by π.
Then (µ, ν) is a Nash equilibrium for payoff matrix Q.

Proof of Proposition 17. Let N? be the value of Nash equilibrium for Q. Since π = CCE(Q,Q), by definition, we have:

E(a,b)∼πQ(a, b) ≥max
a?

E(a,b)∼πQ(a?, b) = max
a?

Eb∼νQ(a?, b) ≥ N?

E(a,b)∼πQ(a, b) ≤min
b?

E(a,b)∼πQ(a, b?) = min
b?

Ea∼µQ(a, b?) ≤ N?

This gives:
max
a?

Eb∼νQ(a?, b) = min
b?

Ea∼µQ(a, b?) = N?

which finishes the proof.

Intuitively, a CCE procedure can be used in Nash Q-learning for finding an approximate Nash equilibrium, because the
values of upper confidence and lower confidence (Q and Q) will be eventually very close, so that the preconditions of
Proposition 17 becomes approximately satisfied.

D. Proof for Section 3 – Optimistic Nash Value Iteration
D.1. Proof of Theorem 3

We denote V k, Qk, πk, µk and νk 4 for values and policies at the beginning of the k-th episode. In particular, Nk
h (s, a, b)

is the number we have visited the state-action tuple (s, a, b) at the h-th step before the k-th episode. Nk
h (s, a, b, s′)

is defined by the same token. Using this notation, we can further define the empirical transition by P̂kh(s′|s, a, b) :=

Nk
h (s, a, b, s′)/Nk

h (s, a, b). If Nk
h (s, a, b) = 0, we set P̂kh(s′|s, a, b) = 1/S.

As a result, the bonus terms can be written as

βkh(s, a, b) := C

(√
ιH2

max{Nk
h (s, a, b), 1}

+
H2Sι

max{Nk
h (s, a, b), 1}

)
(6)

γkh(s, a, b) :=
C

H
P̂h(V

k

h+1 − V
k
h+1)(s, a, b) (7)

for some large absolute constant C > 0.
Lemma 18. Let c1 be some large absolute constant. Define event E0 to be: for all h, s, a, b, s′ and k ∈ [K],

|[(P̂kh − Ph)V ?h+1](s, a, b)| ≤ c1

√
H2ι

max{Nk
h (s, a, b), 1}

,

|(P̂kh − Ph)(s′ | s, a, b)| ≤ c1

√min{Ph(s′ | s, a, b), P̂kh(s′ | s, a, b)}ι
max{Nk

h (s, a, b), 1}
+

ι

max{Nk
h (s, a, b), 1}

.
4recall that (µkh, ν

k
h) are the marginal distributions of πkh.
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We have P(E1) ≥ 1− p.

Proof. The proof is standard and folklore: apply standard concentration inequalities and then take a union bound. For
completeness, we provide the proof of the second one here.

Consider a fixed (s, a, b, h) tuple.

Let’s consider the following equivalent random process: (a) before the agent starts, the environment samples
{s(1), s(2), . . . , s(K)} independently from Ph(· | s, a, b); (b) during the interaction between the agent and environment, the
ith time the agent reaches (s, a, b, h), the environment will make the agent transit to s(i). Note that the randomness induced
by this interaction procedure is exactly the same as the original one, which means the probability of any event in this context
is the same as in the original problem. Therefore, it suffices to prove the target concentration inequality in this ’easy’ context.
Denote by P̂(t)

h (· | s, a, b) the empirical estimate of Ph(· | s, a, b) calculated using {s(1), s(2), . . . , s(t)}. For a fixed t and s′,
by applying the Bernstein inequality and its empirical version, we have with probability at least 1− p/S2ABT ,

|(Ph − P̂(t)
h )(s′ | s, a, b)| ≤ O


√

min{Ph(s′ | s, a, b), P̂(t)
h (s′ | s, a, b)}ι

t
+
ι

t

.
Now we can take a union bound over all s, a, b, h, s′ and t ∈ [K], and obtain that with probability at least 1 − p, for all
s, a, b, h, s′ and t ∈ [K],

|(Ph − P̂(t)
h )(s′ | s, a, b)| ≤ O


√

min{Ph(s′ | s, a, b), P̂(t)
h (s′ | s, a, b)}ι

t
+
ι

t

.
Note that the agent can reach each (s, a, b, h) for at most K times, this directly implies that the third inequality also holds
with probability at least 1− p.

We begin with an auxiliary lemma bounding the lower-order term.

Lemma 19. Suppose event E0 holds, then there exists absolute constant c2 such that: if function g(s) satisfies |g|(s) ≤
(V

k

h+1 − V
k
h+1)(s) for all s, then

|(P̂kh − Ph)g(s, a, b)|

≤c2
(

1

H
min{P̂kh(V

k

h+1 − V
k
h+1)(s, a, b),Ph(V

k

h+1 − V
k
h+1)(s, a, b)}+

H2Sι

max{Nk
h (s, a, b), 1}

)
.

Proof. By triangle inequality,

|(P̂kh − Ph)g(s, a, b)| ≤
∑
s′

|(P̂kh − Ph)(s′|s, a, b)||g|(s′)

≤
∑
s′

|(P̂kh − Ph)(s′|s, a, b)|(V kh+1 − V
k
h+1)(s′)

(i)

≤O

∑
s′

(

√
ιP̂kh(s′|s, a, b)

max{Nk
h (s, a, b), 1}

+
ι

max{Nk
h (s, a, b), 1}

)(V
k

h+1 − V
k
h+1)(s′)


(ii)

≤O

(∑
s′

(
P̂kh(s′|s, a, b)

H
+

Hι

max{Nk
h (s, a, b), 1}

)(V
k

h+1 − V
k
h+1)(s′)

)

≤O

(
P̂kh(V

k

h+1 − V
k
h+1)(s, a, b)

H
+

H2Sι

max{Nk
h (s, a, b), 1}

)
,
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where (i) is by the second inequality in event E0 and (ii) is by AM-GM inequality. This proves the empirical version.
Similarly, we can show

|(P̂kh − Ph)g(s, a, b)| ≤ O

(
Ph(V

k

h+1 − V
k
h+1)(s, a, b)

H
+

H2Sι

max{Nk
h (s, a, b), 1}

)
,

Combining the two bounds completes the proof.

Now we can prove the upper and lower bounds are indeed upper and lower bounds of the best reponses.

Lemma 20. Suppose event E0 holds. Then for all h, s, a, b and k ∈ [K], we haveQ
k

h(s, a, b) ≥ Q†,ν
k

h (s, a, b) ≥ Qµ
k,†
h (s, a, b) ≥ Qk

h
(s, a, b),

V
k

h(s) ≥ V †,ν
k

h (s) ≥ V µ
k,†

h (s) ≥ V kh(s).
(8)

Proof. The proof is by backward induction. Suppose the bounds hold for the Q-values in the (h + 1)th step, we now
establish the bounds for the V -values in the (h+ 1)th step and Q-values in the hth-step. For any state s:

V
k

h+1(s) = Dπk
h+1

Q
k

h+1(s)

≥ max
µ

Dµ×νk
h+1

Q
k

h+1(s)

≥ max
µ

Dµ×νk
h+1

Q†,ν
k

h+1(s) = V †,ν
k

h+1 (s).

(9)

Similarly, we can show V kh+1(s) ≤ V µ
k,†

h+1 (s). Therefore, we have: for all s,

V
k

h+1(s) ≥ V †,ν
k

h+1 (s) ≥ V ?h+1(s) ≥ V µ
k,†

h+1 (s) ≥ V kh+1(s).

Now consider an arbitrary triple (s, a, b) in the hth step. We have

(Q
k

h −Q
†,νk

h )(s, a, b)

≥min

{
(P̂khV

k

h+1 − PhV †,ν
k

h+1 + βkh + γkh)(s, a, b), 0

}
≥min

{
(P̂khV

†,νk

h+1 − PhV †,ν
k

h+1 + βkh + γkh)(s, a, b), 0

}
= min

{
(P̂kh − Ph)(V †,ν

k

h+1 − V
?
h+1)(s, a, b)︸ ︷︷ ︸

(A)

+ (P̂kh − Ph)V ?h+1(s, a, b)︸ ︷︷ ︸
(B)

+ (βkh + γkh)(s, a, b), 0

}
.

(10)

Invoking Lemma 19 with g = V †,ν
k

h+1 − V ?h+1,

|(A)| ≤ O

(
P̂kh(V

k

h+1 − V
k
h+1)(s, a, b)

H
+

H2Sι

max{Nk
h (s, a, b), 1}

)
.

By the first inequality in event E0,

|(B)| ≤ O

(√
H2ι

max{Nk
h (s, a, b), 1}

)
.

Plugging the two inequalities above back into (10) and recalling the definition of βkh and γkh , we obtain Q
k

h(s, a, b) ≥
Q†,ν

k

h (s, a, b). Similarly, we can show Qk
h
(s, a, b) ≤ Qµ

k,†
h (s, a, b).
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Finally we come to the proof of Theorem 3.

Proof of Theorem 3. Suppose event E0 holds. We first upper bound the regret. By Lemma 20, the regret can be upper
bounded by ∑

k

(V †,ν
k

1 (sk1)− V µ
k,†

1 (sk1)) ≤
∑
k

(V
k

1(sk1)− V k1(sk1)).

For brevity’s sake, we define the following notations:
∆k
h := (V

k

h − V
k
h)(skh),

ζkh := ∆k
h − (Q

k

h −Q
k

h
)(skh, a

k
h, b

k
h),

ξkh := Ph(V
k

h+1 − V
k
h+1)(skh, a

k
h, b

k
h)−∆k

h+1.

(11)

Let Fkh be the σ-field generated by the following random variables:

{(sji , a
j
i , b

j
i , r

j
i )}(i,j)∈[H]×[k−1]

⋃
{(ski , aki , bki , rki )}i∈[h−1]

⋃
{skh}.

It’s easy to check ζkh and ξkh are martingale differences with respect to Fkh . With a slight abuse of notation, we use βkh to
refer to βkh(skh, a

k
h, b

k
h) and Nk

h to refer to Nk
h (skh, a

k
h, b

k
h) in the following proof.

We have

∆k
h =ζkh +

(
Q
k

h −Q
k

h

) (
skh, a

k
h, b

k
h

)
≤ζkh + 2βkh + 2γkh + P̂kh(V

k

h+1 − V
k
h+1)

(
skh, a

k
h, b

k
h

)
(i)

≤ζkh + 2βkh + 2γkh + Ph(V
k

h+1 − V
k
h+1)

(
skh, a

k
h, b

k
h

)
+ c2

(
Ph(V

k

h+1 − V
k
h+1)(skh, a

k
h, b

k
h)

H
+

H2Sι

max{Nk
h , 1}

)
(ii)

≤ ζkh + 2βkh + Ph(V
k

h+1 − V
k
h+1)

(
skh, a

k
h, b

k
h

)
+ 2c2C

(
Ph(V

k

h+1 − V
k
h+1)(skh, a

k
h, b

k
h)

H
+

H2Sι

max{Nk
h , 1}

)

≤ζkh +

(
1 +

2c2C

H

)
Ph(V

k

h+1 − V
k
h+1)

(
skh, a

k
h, b

k
h

)
+ 4c2C

(√
ιH2

max{Nk
h , 1}

+
H2Sι

max{Nk
h , 1}

)

=ζkh +

(
1 +

2c2C

H

)
ξkh +

(
1 +

2c2C

H

)
∆k
h+1 + 4c2C

(√
ιH2

max{Nk
h , 1}

+
H2Sι

max{Nk
h , 1}

)

where (i) and (ii) follow from Lemma 19.

Define c3 := 1 + 2c2C and κ := 1 + c3/H . Recursing this argument for h ∈ [H] and summing over k,

K∑
k=1

∆k
1 ≤

K∑
k=1

H∑
h=1

[
κh−1ζkh + κhξkh +O

(√
ιH2

max{Nk
h , 1}

+
H2Sι

max{Nk
h , 1}

)]
.

By Azuma-Hoeffding inequality, with probability at least 1− p,

K∑
k=1

H∑
h=1

κh−1ζkh ≤ O
(
H
√
HKι

)
= O

(√
H2Tι

)
,

K∑
k=1

H∑
h=1

κhξkh ≤ O
(
H
√
HKι

)
= O

(√
H2Tι

)
.

(12)
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By pigeon-hole argument,

K∑
k=1

H∑
h=1

1√
max{Nk

h , 1}
≤

∑
s,a,b,h: NK

h (s,a,b)>0

NK
h (s,a,b)∑
n=1

1√
n

+HSAB ≤ O
(√

HSABT +HSAB
)
,

K∑
k=1

H∑
h=1

1

max{Nk
h , 1}

≤
∑

s,a,b,h: NK
h (s,a,b)>0

NK
h (s,a,b)∑
n=1

1

n
+HSAB ≤ O(HSABι).

Put everything together, with probability at least 1− 2p (one p comes from P(E0) ≥ 1− p and the other is for equation
(12)),

K∑
k=1

(V †,ν
k

1 (sk1)− V µ
k,†

1 (sk1)) ≤ O
(√

H3SABTι+H3S2ABι2
)

For the PAC guarantee, recall that we choose πout = πk
?

such that k? = argmink

(
V
k

1 − V
k
1

)
(s1). As a result,

(V †,ν
k?

1 − V µ
k?
,†

1 )(s1) ≤ (V
k?

1 − V
k?

1 )(s1) ≤ 1

K
O
(√

H3SABTι+H3S2ABι2
)
,

which concludes the proof.

D.2. Proof of Theorem 4

We use the same notation as in Appendix D.1 except the form of bonus. Besides, we define the empirical variance operator

V̂khV (s, a, b) := Vars′∼P̂k
h(·|s,a,b)V (s′)

and the true (population) variance operator

VhV (s, a, b) := Vars′∼Ph(·|s,a,b)V (s′)

for any function V ∈ ∆S . If Nk
h (s, a, b) = 0, we simply set V̂khV (s, a, b) := H2 regardless of the choice of V .

As a result, the bonus terms can be written as

βkh(s, a, b) := C


√√√√ ιV̂kh[(V

k

h+1 + V kh+1)/2](s, a, b)

max{Nk
h (s, a, b), 1}

+
H2Sι

max{Nk
h (s, a, b), 1}

 (13)

for some absolute constant C > 0.

Lemma 21. Let c1 be some large absolute constant. Define event E1 to be: for all h, s, a, b, s′ and k ∈ [K],

|[(P̂kh − Ph)V ?h+1](s, a, b)| ≤ c1

√ V̂khV ?h+1(s, a, b)ι

max{Nk
h (s, a, b), 1}

+
Hι

max{Nk
h (s, a, b), 1}

,
|(P̂kh − Ph)(s′ | s, a, b)| ≤ c1

√min{Ph(s′ | s, a, b), P̂kh(s′ | s, a, b)}ι
max{Nk

h (s, a, b), 1}
+

ι

max{Nk
h (s, a, b), 1}

,
‖(P̂kh − Ph)(· | s, a, b)‖1 ≤ c1

√
Sι

max{Nk
h (s, a, b), 1}

.

We have P(E1) ≥ 1− p.
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The proof of Lemma 21 is highly similar to that of Lemma 18. Specifically, the first two can be proved by following basically
the same argument in Lemma 18; the third one is standard (e.g., equation (12) in (Azar et al., 2017)). We omit the proof here.

Since the proof of Lemma 19 does not depend on the form of the bonus, it can also be applied in this section. As in
Appendix D.1, we will prove the upper and lower bounds are indeed upper and lower bounds of the best reponses.

Lemma 22. Suppose event E1 holds. Then for all h, s, a, b and k ∈ [K], we haveQ
k

h(s, a, b) ≥ Q†,ν
k

h (s, a, b) ≥ Qµ
k,†
h (s, a, b) ≥ Qk

h
(s, a, b),

V
k

h(s) ≥ V †,ν
k

h (s) ≥ V µ
k,†

h (s) ≥ V kh(s).
(14)

Proof. The proof is by backward induction and very similar to that of Lemma 20. Suppose the bounds hold for the Q-values
in the (h+ 1)th step, we now establish the bounds for the V -values in the (h+ 1)th step and Q-values in the hth-step.

The proof for the V -values is the same as (9).

For the Q-values, the decomposition (10) still holds and (A) is bounded using Lemma 19 as before. The only difference is
that we need to bound (B) more carefully.

First, by the first inequality in event E1,

|(B)| ≤ O

√ V̂khV ?h+1(s, a, b)ι

max{Nk
h (s, a, b), 1}

+
Hι

max{Nk
h (s, a, b), 1}

 .

By the relation of V -values in the (h+ 1)th step,

|[V̂kh(V
k

h+1 + V kh+1)/2]− V̂khV ?h+1|(s, a, b)

≤|[P̂kh(V
k

h+1 + V kh+1)/2]2 − (P̂khV ?h+1)2|(s, a, b) + |P̂kh[(V
k

h+1 + V kh+1)/2]2 − P̂kh(V ?h+1)2|(s, a, b)

≤4HP̂kh|(V
k

h+1 + V kh+1)/2− V ?h+1|(s, a, b)

≤4HP̂kh(V
k

h+1 − V
k
h+1)(s, a, b),

(15)

which implies √
ιV̂khV ?h+1(s, a, b)

max{Nk
h (s, a, b), 1}

≤

√√√√ ι[V̂kh[(V
k

h+1 + V kh+1)/2] + 4HP̂kh(V
k

h+1 − V
k
h+1)](s, a, b)

max{Nk
h (s, a, b), 1}

≤

√√√√ ιV̂kh[(V
k

h+1 + V kh+1)/2](s, a, b)

max{Nk
h (s, a, b), 1}

+

√√√√4ιHP̂kh(V
k

h+1 − V
k
h+1)](s, a, b)

max{Nk
h (s, a, b), 1}

(i)

≤

√√√√ ιV̂kh[(V
k

h+1 + V kh+1)/2](s, a, b)

max{Nk
h (s, a, b), 1}

+
P̂kh(V

k

h+1 − V
k
h+1)

H
+

4H2ι

max{Nk
h (s, a, b), 1}

,

(16)

where (i) is by AM-GM inequality.

Plugging the above inequalities back into (10) and recalling the definition of βkh and γkh completes the proof.

We need one more lemma to control the error of the empirical variance estimator:

Lemma 23. Suppose event E1 holds. Then for all h, s, a, b and k ∈ [K], we have

|V̂kh[(V
k

h+1 + V kh+1)/2]− VhV π
k

h+1|(s, a, b)
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≤4HPh(V
k

h+1 − V
k
h+1)(s, a, b) +O

(
1 +

H4Sι

max{Nk
h (s, a, b), 1}

)
.

Proof. By Lemma 22, we have V
k

h(s) ≥ V πk

h (s) ≥ V kh(s). As a result,

|V̂kh[(V
k

h+1 + V kh+1)/2]− VhV π
k

h+1|(s, a, b)

=|[P̂kh(V
k

h+1 + V kh+1)2/4− Ph(V π
k

h+1)2](s, a, b)− [(P̂kh(V
k

h+1 + V kh+1))2/4− (PhV π
k

h+1)2](s, a, b)|

≤[P̂kh(V
k

h+1)2 − Ph(V kh+1)2 − (P̂khV
k
h+1)2 + (PhV

k

h+1)2](s, a, b)

≤[|(P̂kh − Ph)(V
k

h+1)2|+ |Ph[(V
k

h+1)2 − (V kh+1)2]|

+ |(P̂khV
k
h+1)2 − (PhV kh+1)2|+ |(PhV kh+1)2 − (PhV

k

h+1)2|](s, a, b)

These terms can be bounded separately by using event E1:

|(P̂kh − Ph)(V
k

h+1)2|(s, a, b) ≤ H2‖(P̂kh − Ph)(· | s, a, b)‖1 ≤ O(H2

√
Sι

max{Nk
h (s, a, b), 1}

),

|Ph[(V
k

h+1)2 − (V kh+1)2]|(s, a, b) ≤ 2H[Ph(V
k

h+1 − V
k
h+1)](s, a, b),

|(P̂khV
k
h+1)2 − (PhV kh+1)2|(s, a, b) ≤ 2H[(P̂kh − Ph)V kh+1](s, a, b) ≤ O(H2

√
Sι

max{Nk
h (s, a, b), 1}

),

|(PhV kh+1)2 − (PhV
k

h+1)2|(s, a, b) ≤ 2H[Ph(V
k

h+1 − V
k
h+1)](s, a, b).

Combining with H2
√

Sι
max{Nk

h (s,a,b),1} ≤ 1 + H4Sι
max{Nk

h (s,a,b),1} completes the proof.

Finally we come to the proof of Theorem 4.

Proof of Theorem 4. Suppose event E1 holds. We define ∆k
h, ζkh abd ξkh as in the proof of Theorem 3. As before we have

∆k
h ≤ζkh +

(
1 +

c3
H

)
Ph(V

k

h+1 − V
k
h+1)

(
skh, a

k
h, b

k
h

)
+ 4c2C


√√√√ ιV̂kh[(V

k

h+1 + V kh+1)/2](skh, a
k
h, b

k
h)

max{Nk
h (skh, a

k
h, b

k
h), 1}

+
H2Sι

max{Nk
h (skh, a

k
h, b

k
h), 1}

 .
(17)

By Lemma 23, √√√√ ιV̂kh[(V
k

h+1 + V kh+1)/2](s, a, b)

max{Nk
h (s, a, b), 1}

≤O


√
ιVhV π

k

h+1(s, a, b) + ι

max{Nk
h (s, a, b), 1}

+

√√√√HιPh(V
k

h+1 − V
k
h+1)(s, a, b)

max{Nk
h (s, a, b), 1}

+
H2
√
Sι

max{Nk
h (s, a, b), 1}


≤c4

√ ιVhV π
k

h+1(s, a, b) + ι

max{Nk
h (s, a, b), 1}

+
Ph(V

k

h+1 − V
k
h+1)(s, a, b)

H
+

H2
√
Sι

max{Nk
h (s, a, b), 1}

,
(18)

where c4 is some absolute constant. Define c5 := 4c2c4C + c3 and κ := 1 + c5/H . Plugging (18) back into (17), we have

∆k
h ≤ κ∆k

h+1 + κξkh + ζkh +O
(√

ιVhV π
k

h+1(skh, a
k
h, b

k
h)

Nk
h (skh, a

k
h, b

k
h)

+

√
ι

Nk
h (skh, a

k
h, b

k
h)

+
H2Sι

Nk
h (skh, a

k
h, b

k
h)

)}
. (19)
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Recursing this argument for h ∈ [H] and summing over k,

K∑
k=1

∆k
1 ≤

K∑
k=1

H∑
h=1

[
κh−1ζkh + κhξkh +O

√ ιVhV π
k

h+1(skh, a
k
h, b

k
h)

max{Nk
h , 1}

+

√
ι

max{Nk
h , 1}

+
H2Sι

max{Nk
h , 1}

].
The remaining steps are the same as that in the proof of Theorem 3 except that we need to bound the sum of variance term.

By Cauchy-Schwarz,

K∑
k=1

H∑
h=1

√
VhV π

k

h+1(skh, a
k
h, b

k
h)

max{Nk
h (skh, a

k
h, b

k
h), 1}

≤

√√√√ K∑
k=1

H∑
h=1

VhV π
k

h+1(skh, a
k
h, b

k
h) ·

K∑
k=1

H∑
h=1

1

max{Nk
h (skh, a

k
h, b

k
h), 1}

.

By the Law of total variation and standard martingale concentration (see Lemma C.5 in Jin et al. (2018) for a formal proof),
with probability at least 1− p, we have

K∑
k=1

H∑
h=1

VhV π
k

h+1(skh, a
k
h, b

k
h)≤O

(
HT +H3ι

)
.

Putting all relations together, we obtain that with probability at least 1− 2p (one p comes from P(E1) ≥ 1− p and the other
comes from the inequality for bounding the variance term),

Regret(K) =

K∑
k=1

(V †,ν
k

1 − V µ
k,†

1 )(s1) ≤ O(
√
H2SABTι+H3S2ABι2).

Rescaling p completes the proof.

E. Proof for Section 4 – Reward-Free Learning
E.1. Proof of Theorem 5

In this section, we prove Theorem 5 for the single reward function case, i.e., N = 1. The proof for multiple reward functions
(N > 1) simply follows from taking a union bound, that is, replacing the failure probability p by Np.

Let (µk, νk) be an arbitrary Nash-equilibrium policy of M̂k := (P̂k, r̂k), where P̂k and r̂k are our empirical estimate of the
transition and the reward at the beginning of the k’th episode in Algorithm 2, respectively. We use Nk

h (s, a, b) to denote the
number we have visited the state-action tuple (s, a, b) at the h’=th step before the k’th episode. And the bonus used in the
k’th episode can be written as

βkh(s, a, b) := C

(√
H2ι

max{Nk
h (s, a, b), 1}

+
H2Sι

max{Nk
h (s, a, b), 1}

)
, (20)

where ι = log(SABT/p) and C is some large absolute constant.

We use Q̂k and V̂ k to denote the empirical optimal value functions of M̂k as following.

Q̂
k
h(s, a, b) = (P̂khV̂h+1)(s, a, b) + r̂kh(s, a, b),

V̂ kh (s) = max
µ

min
ν

Dµ×νQ̂kh(s).
(21)

Since (µk, νk) is a Nash-equilibrium policy of M̂k, we also have V̂ kh (s) = Dµk×νkQ̂kh(s).

We begin with stating a useful property of matrix game that will be frequently used in our analysis. Since its proof is quite
simple, we omit it here.
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Lemma 24. Let X,Y,Z ∈ RA×B and ∆d be the d-dimensional simplex. Suppose |X−Y| ≤ Z, where the inequality is
entry-wise. Then ∣∣∣∣max

µ∈4A

min
ν∈4B

µ>Xν − max
µ∈4A

min
ν∈4B

µ>Yν

∣∣∣∣ ≤ max
i,j

Zij . (22)

Lemma 25. Let c1 be some large absolute constant such that c21 + c1 ≤ C. Define event E1 to be: for all h, s, a, b, s′ and
k ∈ [K], 

|[(P̂kh − Ph)V ?h+1](s, a, b)| ≤ c1
10

√
H2ι

max{Nk
h (s, a, b), 1}

,

|(r̂kh − rh)(s, a, b)| ≤ c1
10

√
H2ι

max{Nk
h (s, a, b), 1}

,

|(P̂kh − Ph)(s′ | s, a, b)| ≤ c1
10

√ P̂kh(s′ | s, a, b)ι
max{Nk

h (s, a, b), 1}
+

ι

max{Nk
h (s, a, b), 1}

.
(23)

We have P(E1) ≥ 1− p.

Proof. The proof is standard: apply concentration inequalities and then take a union bound. For completeness, we provide
the proof of the third one here.

Consider a fixed (s, a, b, h) tuple.

Let’s consider the following equivalent random process: (a) before the agent starts, the environment samples
{s(1), s(2), . . . , s(K)} independently from Ph(· | s, a, b); (b) during the interaction between the agent and the environment,
the ith time the agent reaches (s, a, b, h), the environment will make the agent transit to s(i). Note that the randomness
induced by this interaction procedure is exactly the same as the original one, which means the probability of any event in
this context is the same as in the original problem. Therefore, it suffices to prove the target concentration inequality in this
’easy’ context. Denote by P̂(t)

h (· | s, a, b) the empirical estimate of Ph(· | s, a, b) calculated using {s(1), s(2), . . . , s(t)}. For
a fixed t and s′, by the empirical Bernstein inequality, we have with probability at least 1− p/S2ABT ,

|(Ph − P̂(t)
h )(s′ | s, a, b)| ≤ O


√

P̂(t)
h (s′ | s, a, b)ι

t
+
ι

t

.
Now we can take a union bound over all s, a, b, h, s′ and t ∈ [K], and obtain that with probability at least 1 − p, for all
s, a, b, h, s′ and t ∈ [K],

|(Ph − P̂(t)
h )(s′ | s, a, b)| ≤ O


√

P̂(t)
h (s′ | s, a, b)ι

t
+
ι

t

.
Note that the agent can reach each (s, a, b, h) for at most K times, so we conclude the third inequality also holds with
probability at least 1− p.

The following lemma states that the empirical optimal value functions are close to the true optimal ones, and their difference
is controlled by the exploration value functions calculated in Algorithm 2.

Lemma 26. Suppose event E1 (defined in Lemma 25) holds. Then for all h, s, a, b and k ∈ [K], we have,
∣∣∣Q̂kh(s, a, b)−Q?h(s, a, b)

∣∣∣ ≤ Q̃kh(s, a, b),∣∣∣V̂ kh (s)− V ?h (s)
∣∣∣ ≤ Ṽ kh (s).

(24)

Proof. Let’s prove by backward induction on h. The case of h = H + 1 holds trivially.
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Assume the conclusion hold for (h+ 1)’th step. For h’th step,∣∣∣Q̂kh(s, a, b)−Q?h(s, a, b)
∣∣∣

≤ min
{∣∣∣[(P̂kh − Ph)V ?h+1](s, a, b)

∣∣∣+ |(r̂kh − rh)(s, a, b)|+
∣∣∣[P̂kh(V̂ kh+1 − V ?h+1)](s, a, b)

∣∣∣ , H}
(i)

≤ min
{
βkh(s, a, b) + (P̂khṼ kh+1)(s, a, b), H

}
(ii)
= Q̃kh(s, a, b),

(25)

where (i) follows from the induction hypothesis and event E1, and (ii) follows from the definition of Q̃kh. By Lemma 24,
we immediately obtain |V̂ kh (s)− V ?h (s)| ≤ Ṽ kh (s).

Now, we are ready to establish the key lemma in our analysis using Lemma 26.
Lemma 27. Suppose event E1 (defined in Lemma 25) holds. Then for all h, s, a, b and k ∈ [K], we have|Q̂

k
h(s, a, b)−Q†,ν

k

h (s, a, b)| ≤ αhQ̃kh(s, a, b),

|V̂ kh (s)− V †,ν
k

h (s)| ≤ αhṼ kh (s),
(26)

and |Q̂
k
h(s, a, b)−Qµ

k,†
h (s, a, b)| ≤ αhQ̃kh(s, a, b),

|V̂ kh (s)− V µ
k,†

h (s)| ≤ αhṼ kh (s),
(27)

where αH+1 = 0 and αh = [(1 + 1
H )αh+1 + 1

H ] ≤ 4.

Proof. We only prove the first set of inequalities. The second one follows exactly the same. Again, the proof is by
performing backward induction on h. It is trivial to see the conclusion holds for (H + 1)’th step with αH+1 = 0. Now,
assume the conclusion holds for (h+ 1)’th step. For h’th step,

|Q̂kh(s, a, b)−Q†,ν
k

h (s, a, b)|

≤min

{
|[(P̂kh − Ph)(V †,ν

k

h+1 − V
?
h+1)](s, a, b)|+ |(P̂kh − Ph)V ?h+1(s, a, b)|

+ |(r̂kh − rh)(s, a, b)|+ |[P̂h(V̂ kh+1 − V
†,νk

h+1 )](s, a, b)|, H
}

≤min

{
|[(P̂kh − Ph)(V †,ν

k

h+1 − V
?
h+1)](s, a, b)|︸ ︷︷ ︸

(T1)

+c1

√
H2ι

max{Nk
h (s, a, b), 1}

+ |[P̂h(V̂ kh+1 − V
†,νk

h+1 )](s, a, b)|︸ ︷︷ ︸
(T2)

, H

}
,

(28)

where the second inequality follows from the definition of event E1.

We can control the term (T1) by combining Lemma 26 and the induction hypothesis to bound |V †,ν
k

h+1 − V ?h+1|, and then
applying the third inequality in event E1:

(T1) ≤
∑
s′

|P̂kh(s′ | s, a, b)− Ph(s′ | s, a, b)||V †,ν
k

h+1 − V
?
h+1(s′)|

≤
∑
s′

|P̂kh(s′ | s, a, b)− Ph(s′ | s, a, b)|
(
|V †,ν

k

h+1 − V̂
k
h+1(s′)|+ |V̂ kh+1 − V ?h+1(s′)|

)
≤
∑
s′

|P̂kh(s′ | s, a, b)− Ph(s′ | s, a, b)|(αh+1 + 1)Ṽ kh+1

≤ (αh+1 + 1)

H
(P̂khṼ kh+1)(s, a, b) +

c21(αh+1 + 1)H2Sι

max{Nk
h (s, a, b), 1}

.

(29)

The term (T2) is bounded by directly applying the induction hypothesis

|[P̂h(V̂ kh+1 − V
†,νk

h+1 )](s, a, b)| ≤ αh+1[P̂hṼ kh+1](s, a, b). (30)
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Plugging (29) and (30) into (28), we obtain∣∣∣Q̂kh(s, a, b)−Q†,ν
k

h (s, a, b)
∣∣∣

≤min

{
(1 +

1

H
)αh+1 +

1

H
[P̂khṼ kh+1](s, a, b) + c1

√
H2ι

max{Nk
h (s, a, b), 1}

+
c21(αh+1 + 1)H2Sι

max{Nk
h (s, a, b), 1}

, H

}
(i)

≤min

{(
(1 +

1

H
)αh+1 +

1

H

)
[P̂khṼ kh+1](s, a, b) + βkh(s, a, b), H

}
(ii)

≤
(

(1 +
1

H
)αh+1 +

1

H

)
Q̃kh(s, a, b),

(31)

where (i) follows from the definition of βkh , and (ii) follows from the definition of Q̃kh. Therefore, by (31), choosing
αh = [(1 + 1

H )αh+1 + 1
H ] suffices for the purpose of induction.

Now, let’s prove the inequality for V functions.

|(V̂ kh − V
†,νk

h )(s)| (i)
= | max

µ∈4A

(Dµ,νkQ̂kh)(s)− max
µ∈4A

(Dµ,νkQ†,ν
k

h )(s)|

(ii)

≤ max
a,b

[
αhQ̃

k
h(s, a, b)

]
= αhṼ

k
h (s),

(32)

where (i) follows from the definition of V̂ kh and V †,ν
k

h , and (ii) uses (31) and Lemma 24.

Theorem 28 (Guarantee for UCB-VI from Azar et al. (2017)). For any p ∈ (0, 1], choose the exploration bonus βt in
Algrothm 2 as (20). Then, with probability at least 1− p,

K∑
k=1

Ṽ k1 (s1) ≤ O(
√
H4SAKι+H3S2Aι2).

Proof of Theorem 5. Recall that out = arg mink∈[K] Ṽ
k
h (s). By Lemma 27 and Theorem 28, with probability at least

1− 2p,

V †,ν
out

h (s)− V µ
out,†

h (s) ≤|V †,ν
out

h (s)− V̂ out
h (s)|+ |V̂ out

h (s)− V µ
out,†

h (s)|

≤8Ṽ out
h (s) ≤ O(

√
H4SAι

K
+
H3S2Aι2

K
).

(33)

Rescaling p completes the proof.

E.2. Vanilla Nash Value Iteration

Here, we provide one optional algorithm, Vanilla Nash VI, for computing the Nash equilibrium policy for a known model.
Its only difference from the value iteration algorithm for MDPs is that the maximum operator is replaced by the minimax
operator in Line 7. We remark that the Nash equilibrium for a two-player zero-sum game can be computed in polynomial
time.

By recalling the definition of best responses in Appendix B, one can directly see that the output policy (µ̂, ν̂) is a Nash
equilibrium for M̂.

E.3. Proof of Theorem 6

In this section, we first prove a Θ(AB/ε2) lower bound for reward-free learning of matrix games, i.e., S = H = 1, and
then generalize it to Θ(SABH2/ε2) for reward-free learning of Markov games.
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Algorithm 5 Vanilla Nash Value Iteration

1: Input: model M̂ = (P̂, r̂).
2: Initialize: for all (s, a, b), VH+1(s, a, b)← 0.
3: for step h = H,H − 1, . . . , 1 do
4: for (s, a, b) ∈ S ×A× B do
5: Qh(s, a, b)← [P̂hVh+1](s, a, b) + r̂h(s, a, b).
6: for s ∈ S do
7: (µ̂h(· | s), ν̂h(· | s))← NASH-ZERO-SUM(Qh(s, ·, ·)).
8: Vh(s)← µ̂h(· | s)>Qh(s, ·, ·)ν̂h(· | s).
9: Output (µ̂, ν̂)← {(µ̂h(· | s), ν̂h(· | s))}(h,s)∈[H]×S .

E.3.1. REWARD-FREE LEARNING OF MATRIX GAMES

In the matrix game, let the max-player pick row and the min-player pick column. We consider the following family of
Bernoulli matrix games:

M(ε) =

{
Ma?b? ∈ RA×B withMa?b?

ab =
1

2
+ (1− 2 · 1{a 6= a?&b = b?})ε : (a?, b?) ∈ [A]× [B]

}
, (34)

where in matrix gameMa?b? , the reward is sampled from Bernoulli(Ma?b?

ab ) if the max-player picks the a’th row and the
min-player picks the b’th column.

Min-player

Max-player

action 1 . . . b? − 1 b? b? + 1 . . . B
1 + . . . + − + . . . +
...

...
. . .

...
...

...
. . .

...
a? − 1 + . . . + − + . . . +
a? + . . . + + + . . . +

a? + 1 + . . . + − + . . . +
...

...
. . .

...
...

...
. . .

...
A + . . . + − + . . . +

(35)

Above, we visualizeMa?b? by using + and − to represent 1/2 + ε and 1/2 − ε, respectively. It is direct to see that the
optimal (Nash equilibrium) policy for the max-player is always picking the a?’th row. If the max-player picks the a?’th row
with probability smaller than 2/3, it is at least ε/10 suboptimal.

Lemma 29. Consider an arbitrary fixed matrix gameMa?b? from M(ε) and N ∈ N. If there exists an algorithm A such
that when running onMa?b? , it uses at most N samples and outputs an ε/10-optimal policy with probability at least p, then
there exists an algorithm Â that can identify a? with probability at least p using at most N samples.

Proof. We simply define Â as running algorithm A and choosing the most played row by its output policy as the guess for
a?. Because any ε/10-optimal policy must play a? with probability at least 2/3, we obtain Â will correctly identify a? with
probability at least p.

Lemma 29 directly implies that in order to prove the desired lower bound for reward-free matrix games:

Claim 30. for any reward-free algorithm A using at most N = AB/(103ε2) samples, there exists a matrix gameMa?b? in
M(ε) such that when running A onMa?b? , it will output a policy that is at least ε/10 suboptimal for the max-player with
probability at least 1/4,

it suffices to prove the following claim:

Claim 31. for any reward-free algorithm Â using at most N = AB/(103ε2) samples, there exists a matrix gameMa?b? in
M(ε) such that when running Â onM, it will fail to identify the optimal row with probability at least 1/4.



A Sharp Analysis of Model-based RL with Self-Play

Remark 32. By Lemma 29, the existence of such ’ideal’ A implies the existence of an ’ideal’ Â, so to prove such ’ideal’ A
does not exist (Claim 30), it suffices to show such ’ideal’ Â does not exist (Claim 31).

Proof of Claim 31. WLOG, we assume Â is deterministic. Since Â is reward-free, being deterministic means that in the
exploration phase algorithm Â always pulls each arm (a, b) for some fixed n(a, b) times (because there is no information
revealed in this phase), and in the planning phase it outputs a guess for a?, which is a deterministic function of the reward
information revealed.

We define the following notations:

• L: the stochastic reward information revealed after algorithm Â’s pulling.

• P?: the probability measure induced by pickingMa?b? uniformly at random from M(ε) and then running Â onM.

• Pab: the probability measure induced by running Â onMab.

• P0b: the probability measure induced by running A on matrixM0b, whose b’th column are all (1/2− ε)’s and other
columns are all (1/2 + ε)’s.5

• f(L): the output of Â based on the stochastic reward information L revealed. More precisely, f is function mapping
from [0, 1]N to [A].

We have
P?(f(L) 6= a?) ≥ 1

AB

∑
a,b

P0b(f(L) 6= a)− 1

AB

∑
a,b

‖Pab(L = ·)− P0b(L = ·)‖1

≥ 1− 1

A
− 1

AB

∑
a,b

√
2KL(P0b‖Pab)

= 1− 1

A
− 1

AB

∑
a,b

√
2n(a, b)[(

1

2
− ε) log

1
2 − ε
1
2 + ε

+ (
1

2
+ ε) log

1
2 + ε
1
2 − ε

]

≥ 1− 1

A
− 10

AB

∑
a,b

√
n(a, b)ε2

≥ 1− 1

A
−
√

100Nε2

AB
,

(36)

where the second inequality follows from
∑
a,b P0b(f(L) 6= a) =

∑
a,b[1− P0b(f(L) = a)] = B(A− 1) and Pinsker’s

inequality. Finally, plugging in N = AB/(103ε2) concludes the proof.

Remark 33. The arguments in proving Claim 31 basically follows the same line in proving lower bounds for multi-arm
bandits (e.g., see Lattimore & Szepesvári, 2018).

E.3.2. REWARD-FREE LEARNING OF MARKOV GAMES

Now let’s generalize the Θ(AB/ε2) lower bound for reward-free learning of matrix games to Θ(SABH2/ε2) for reward-
free learning of Markov games. We can follow the same way of generalizing a lower bound for multi-arm bandits to a lower
bound for MDPs (see e.g., Dann & Brunskill, 2015; Lattimore & Szepesvári, 2018; Zhang et al., 2020b).

Proof sketch. Given the family of Bernoulli matrix games M(·) defined in (34), we simply construct a Markov game to
consist of SH Bernoulli matrix games {Ms,h}(s,h)∈[S]×[H] where Ms,h’s are sampled independently and identically from
the uniform distribution over M(ε/H). We will define the transition measure to be totally ’uniform at random’ so that in
each episode the agent will always reach each Ms,h with probability 1/S (it is not 1/(SH) because in each episode the
agent can visit H matrix games). As a result, to guarantee ε-optimality, the output policy must be at least 2ε/H-optimal
for at least SH/2 different Ms,h’s. Recall Claim 30 shows learning a 2ε/H-optimal policy for a single Ms,h requires
Ω(H2AB/ε2) samples. Therefore, we need Ω(H3AB/ε2) samples in total for learning SH/2 different Ms,h’s.

5We comment that matrixM0b does not belong to M(ε).
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Below, we provide a rigorous proof where the constants may be slightly different from those in our sketch. We remark that
although the notations we will use are involved, they are only introduced for rigorousness and there is no real technical
difficulty or new informative idea in the following proof.

Construction We define the following family of Markov games:

J(ε) :=
{
J (a?, b?) : (a?, b?) ∈ [A]H×S × [B]H×S

}
, (37)

where MG J (a?, b?) is defined as

• States and actions: J (a?, b?) is a finite-horizon MG with S+1 states and of lengthH+1. There is a fixed initial state
s0 in the first step, S states {s1, . . . , sS} in the remaining steps. The two players have A and B actions, respectively.

• Rewards: there is no reward in the first step. For the remaining steps h ∈ {2, . . . ,H + 1}, if the agent takes action
(a, b) at state si in the hth step, it will receive a binary reward sampled from

Bernoulli
(1

2
+ (1− 2 · 1{a 6= a?h−1,i&b = b?h−1,i})

ε

H

)
• Transitions: The agent always starts at a fixed initial state s0 in the first step Regardless of the current state, actions

and index of steps, the agent will always transit to one of s1, . . . , sS uniformly at random.

It is direct to see that J (a?, b?) is a collection of SH matrix games from M(ε/H). Therefore, the optimal policy for the
max-player is to always pick action a?h−1,i whenever it reaches state si at step h (h ≥ 2).

Formal proof of Theorem 6. Now, let’s use J(ε) to prove the Θ(SABH2/ε2) lower bound (in terms of number of
episodes) for reward-free learning of Markov games. We start by proving an analogue of Lemma 29.

Lemma 34. Consider an arbitrary fixed matrix game J (a?, b?) from J(ε) and N ∈ N. If an algorithm A can output a
policy that is at most ε/103 suboptimal with probability at least p using at most N samples, then there exists an algorithm
Â that can correctly identify at least SH − bSH/500c entries of a? with probability at least p using at most N samples.

Proof. Denote by π the output policy for the max player. Denote by Z the collection of (h, i)’s in [H] × [S] such that
πh+1(a?h,i | si) ≤ 2/3.

Observe that each time the max player picks a suboptimal action, it will incur an 2ε/H suboptimality in expectation. As a
result, if π is at most ε/103-suboptimal, we must have

1

S

∑
(h,i)∈Z

(1− πh+1(a?h,i | si))×
2ε

H
≤ ε

103
,

which implies |Z| ≤ SH/500, that is, for at most bSH/500c different (h, i)’s, πh+1(a?h,i | si) ≤ 2/3. Therefore, we can
simply pick argmaxa πh+1(a | si) as the guess for a?h,i. Since policy π is at most ε/103 suboptimal with probability at least
p, our guess will be correct for at least SH − bSH/500c different (s, h) pairs also with probability no smaller than p.

Similar to the funtion of Lemma 29, Lemma 34 directly implies that in order to prove the desired lower bound for reward-free
learning of Markov games:

Claim 35. for any reward-free algorithmA that interacts with the environment for at most K = SABH2/(104ε2) episodes,
there exists J ∈ J(ε) such that when running A on J , it will output a policy that is at least ε/103 suboptimal for the
max-player with probability at least 1/4,

it suffices to prove the following claim:

Claim 36. for any reward-free learning algorithm Â that interacts with the environment for at most K = ABSH2/(104ε2)
episodes, there existsJ ∈ J(ε) such that when running Â onJ , it will fail to correctly identify a?h,i for at least bSH/500c+1
different (h, i) pairs with probability at least 1/4.
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Proof of Claim 36. Denote by P? (E?) the probability measure (expectation) induced by picking J uniformly at random
from J(ε) and then running Â on J . Denote by nwrong the number of (s, h) pairs for which Â fails to identify the optimal
actions. Denote by errorh,i the indicator function of the event that Â fails to identify the optimal action for (h+ 1, i).

We prove by contradiction. Suppose for any J ∈ J(ε), Â can identify the optimal actions for at least SH − bSH/500c
different (s, h) pairs with probability larger than 3/4. Then we have

E?[nwrong] ≤ 1

4
× SH +

3

4
×
⌊
SH

500

⌋
≤ 101SH

400
.

Since
∑

(h,i)∈[H]×[S] E?[errorh,i] = E?[nwrong], there must exists (h′, i′) ∈ [H]× [S] such that E?[errorh′,i′ ] ≤ 101/400.
However, in the following, we show that for every (h, i) ∈ [H]×[S], E?[errorh,i] ≥ 1/3. As a result, we obtain a contraction
and Claim 36 holds. In the remainder of this section, we will prove for every (h, i) ∈ [H]× [S], E?[errorh,i] ≥ 1/3.

WLOG, we assume Â is deterministic. It suffices to consider an arbitrary fixed (h′, i′) pair and prove E?[errorh′,i′ ] ≥ 1/3.

For technical reason, we introduce a new MG J−(h′,i′)(a
?, b?) as below:

• States, actions and transitions: same as J (a?, b?).

• Rewards: there is no reward in the first step. For the remaining steps h ∈ {2, . . . ,H + 1}, if the agent takes action
(a, b) at state si in the hth step such that (h− 1, i) 6= (h′, i′), it will receive a binary reward sampled from

Bernoulli
(1

2
+ (1− 2 · 1{a 6= a?h−1,i&b = b?h−1,i})

ε

H

)
,

otherwise it will receive a binary reward sampled from

Bernoulli
(1

2
+ (1− 2 · 1{b = b?h−1,i})

ε

H

)
.

Remark 37. Briefly speaking, J−(h′,i′)(a
?, b?) is the same as J (a?, b?) except the matrix game embedded at state si′

at step h′ + 1, where for the max player all its actions are equivalently bad 6. Finally, we remark that J−(h′,i′)(a
?, b?) is

independent of a?h′,i′ .

To proceed, we introduce (and recall) the following notations:

• n(a, b): the number of times Â picks action (a, b) at state si′ at step (h′ + 1) within K episode.

• Pa?b? (Ea?b? ): the probability measure (expectation) induced by running algorithm Â on J (a?, b?).

• P−a?b? (E−a?b? ): the probability measure (expectation) induced by running algorithm Â on J−(h′,i′)(a
?, b?) .

• P? (E?) the probability measure (expectation) induced by picking J (a?, b?) uniformly at random from J(ε) and
running Â on J (a?, b?).

• L: the whole interaction trajectory of states, actions and rewards produced by algorithm Â within K episodes.

• f(L): the guess of Â for a?h′,i′ based on L.

The key observation here is that for any (a, b) ∈ [A]× [B] and (a?, b?) ∈ [A]H×S× [B]H×S , the expectation E−a?b? [n(a, b)]
is independent of (a?, b?) because the agent does not receive any reward information when interacting with the environment
and the transition dynamics of different J−(h′,i′)(a

?, b?)’s are exactly the same. For simplicity of notation, we denote this
expectation by m(a, b). Moreover, note that

∑
a,bm(a, b) = K/S because the agent always reach state si′ in step (h′ + 1)

with probability 1/S regardless of the actions taken.

6A graphic illustration based on (35) would be replacing the column [−, . . . ,−,+,−, . . . ,−]> with a column of all −’s in the matrix
game embedded at state si′ at step h′ + 1.
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By mimicking the arguments in (36), we have

E?[errorh′,i′ ] = P?(f(L) 6= a?h′,i′)

=
1

(AB)SH

∑
(a?,b?)∈[A]H×S×[B]H×S

Pa?b?(f(L) 6= a?h′,i′)

≥ 1

(AB)SH

∑
a?,b?

(
P−a?b?(f(L) 6= a?h′,i′)−

∥∥P−a?b?(L = ·)− Pa?b?(L = ·)
∥∥

1

)
= 1− 1

A
− 1

(AB)SH

∑
a?,b?

∥∥P−a?b?(L = ·)− Pa?b?(L = ·)
∥∥

≥ 1− 1

A
− 1

(AB)SH

∑
a?,b?

√
2KL(P−a?b?(L = ·),Pa?b?(L = ·))

= 1− 1

A
− 1

(AB)SH

∑
a?,b?

√
2m(a?h′,i′ , b

?
h′,i′)

[
(
1

2
− ε

H
) log

1
2 −

ε
H

1
2 + ε

H

+ (
1

2
+

ε

H
) log

1
2 + ε

H
1
2 −

ε
H

]
= 1− 1

A
− 1

AB

∑
(a,b)∈[A]×[B]

√
2m(a, b)

[
(
1

2
− ε

H
) log

1
2 −

ε
H

1
2 + ε

H

+ (
1

2
+

ε

H
) log

1
2 + ε

H
1
2 −

ε
H

]
≥ 1− 1

A
− 10

AB

∑
a,b

√
m(a, b)

ε2

H2

≥ 1− 1

A
− 10ε

ABH

√
AB

∑
a,b

m(a, b) = 1− 1

A
−
√

100Kε2

SABH2
.

(38)

Plugging in K = SABH2/(104ε2) completes the proof.

F. Proof for Appendix A – Multi-player General-sum Markov Games
F.1. Proof of Theorem 15

F.1.1. NE VERSION

In this section, we prove Theorem 15 (NE version). As before, we begin with proving the optimistic estimations are indeed
upper bounds of the corresponding V-value and Q-value functions.

Lemma 38. With probability 1− p, for any (s,a, h, i) and k ∈ [K]:

Q
k

h,i (s,a) ≥ Q†,π
k
−i

h,i (s,a) , Qk
h,i

(s,a) ≤ Qπ
k

h,i (s,a) , (39)

V
k

h,i (s) ≥ V †,π
k
−i

h,i (s) , V kh,i (s) ≤ V π
k

h,i (s) . (40)

Proof. For each fixed k, we prove this by induction from h = H + 1 to h = 1. For the base case, we know at the (H + 1)-th

step,V
k

H+1,i (s) = V
†,πk
−i

H+1,i (s) = 0. Now, assume the inequality (40) holds for the (h+ 1)-th step, for the h-th step, by the
definition of Q-functions,

Q
k

h,i (s,a)−Q†,π
k
−i

h,i (s,a) =
[
P̂khV

k

h+1,i

]
(s,a)−

[
PhV

†,πk
−i

h+1,i

]
(s,a) + βt

=P̂kh
(
V
k

h+1,i − V
†,πk
−i

h+1,i

)
(s,a)︸ ︷︷ ︸

(A)

+
(
P̂kh − Ph

)
V
†,πk
−i

h+1,i (s,a)︸ ︷︷ ︸
(B)

+ βt.
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By induction hypothesis, for any s′,
(
V
k

h+1,i − V
†,πk
−i

h+1,i

)
(s′) ≥ 0, and thus (A) ≥ 0. By uniform concentration (e.g.,

Lemma 12 in Bai & Jin, 2020), (B) ≤ C
√
SH2ι/Nk

h (s,a) = βt. Putting everything together we have Q
k

h,i (s,a) −

Q
†,πk
−i

h,i (s,a) ≥ 0. The second inequality can be proved similarly.

Now assume inequality (39) holds for the h-th step, by the definition of V -functions and Nash equilibrium,

V
k

h,i (s) = DπkQ
k

h,i (s) = max
µ

Dµ×πk
−i
Q
k

h,i (s) .

By Bellman equation,

V
†,πk
−i

h,i (s) = max
µ

Dµ×πk
−i
Q
†,πk
−i

h,i (s) .

Since by induction hypothesis, for any (s,a), Q
k

h,i (s,a) ≥ Q†,π
k
−i

h,i (s,a). As a result, we also have V
k

h,i (s) ≥ V †,π
k
−i

h,i (s),
which is exactly inequality (40) for the h-th step. The second inequality can be proved similarly.

Proof of Theorem 15. Let us focus on the i-th player and ignore the subscript when there is no confusion. To bound

max
i

(
V
†,πk
−i

1,i − V π
k

1,i

)(
skh
)
≤ max

i

(
V
k

1,i − V
k
1,i

) (
skh
)
,

we notice the following propogation:(Q
k

h,i −Q
k

h,i
)(s,a) ≤ P̂kh(V

k

h+1,i − V
k
h+1,i)(s,a) + 2βkh(s,a),

(V h,i − V h,i)(s) = [Dπh
(Q

k

h,i −Q
k

h,i
)](s).

(41)

We can define Q̃kh and Ṽ kh recursively by Ṽ kH+1 = 0 and{
Q̃kh(s,a) = P̂khṼ kh+1(s,a) + 2βkh(s,a),

Ṽ kh (s) = [Dπh
Q̃kh](s).

(42)

Then we can prove inductively that for any k, h, s and a we havemax
i

(Q
k

h,i −Q
k

h,i
)(s,a) ≤ Q̃kh(s,a),

max
i

(V h,i − V h,i)(s) ≤ Ṽ kh (s).
(43)

Thus we only need to bound
∑K
k=1 Ṽ

k
1 (s). Define the shorthand notation

βkh := βkh(skh,a
k
h),

∆k
h := Ṽ kh (skh),

ζkh := [DπkQ̃kh]
(
skh
)
− Q̃kh(skh,a

k
h),

ξkh := [PhṼ kh+1](skh,a
k
h)−∆k

h+1.

(44)

We can check ζkh and ξkh are martingale difference sequences. As a result,

∆k
h =DπkQ̃kh

(
skh
)

=ζkh + Q̃kh
(
skh,a

k
h

)
=ζkh + 2βkh + [P̂khṼ kh+1]

(
skh,a

k
h

)
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≤ζkh + 3βkh + [PhṼ kh+1]
(
skh,a

k
h

)
=ζkh + 3βkh + ξkh + ∆k

h+1.

Recursing this argument for h ∈ [H] and taking the sum,

K∑
k=1

∆k
1 ≤

K∑
k=1

(
ζkh + 3βkh + ξkh

)
≤ O

S
√√√√H3Tι

M∏
i=1

Ai

 .

F.1.2. CCE VERSION

The proof is very similar to the NE version. Specifically, the only part that uses the properties of NE there is Lemma 38. We
prove a counterpart here.

Lemma 39. With probability 1− p, for any (s,a, h, i) and k ∈ [K]:

Q
k

h,i (s,a) ≥ Q†,π
k
−i

h,i (s,a) , Qk
h,i

(s,a) ≤ Qπ
k

h,i (s,a) , (45)

V
k

h,i (s) ≥ V †,π
k
−i

h,i (s) , V kh,i (s) ≤ V π
k

h,i (s) . (46)

Proof. For each fixed k, we prove this by induction from h = H + 1 to h = 1. For the base case, we know at the (H + 1)-th

step, V
k

H+1,i (s) = V
†,πk
−i

H+1,i (s) = 0. Now, assume the inequality (40) holds for the (h+ 1)-th step, for the h-th step, by the
definition of Q-functions,

Q
k

h,i (s,a)−Q†,π
k
−i

h,i (s,a) =
[
P̂khV

k

h+1,i

]
(s,a)−

[
PhV

†,πk
−i

h+1,i

]
(s,a) + βt

=P̂kh
(
V
k

h+1,i − V
†,πk
−i

h+1,i

)
(s,a)︸ ︷︷ ︸

(A)

+
(
P̂kh − Ph

)
V
†,πk
−i

h+1,i (s,a)︸ ︷︷ ︸
(B)

+ βt.

By induction hypothesis, for any s′,
(
V
k

h+1,i − V
†,πk
−i

h+1,i

)
(s′) ≥ 0, and thus (A) ≥ 0. By uniform concentration, (B) ≤

C
√
SH2ι/Nk

h (s,a) = βt. Putting everything together we have Q
k

h,i (s,a) − Q†,π
k
−i

h,i (s,a) ≥ 0. The second inequality
can be proved similarly.

Now assume inequality (45) holds for the h-th step, by the definition of V -functions and CCE,

V
k

h,i (s) = DπkQ
k

h,i (s) ≥ max
µ

Dµ×πk
−i
Q
k

h,i (s) .

By Bellman equation,

V
†,πk
−i

h,i (s) = max
µ

Dµ×πk
−i
Q
†,πk
−i

h,i (s) .

Since by induction hypothesis, for any (s,a), Q
k

h,i (s,a) ≥ Q†,π
k
−i

h,i (s,a). As a result, we also have V
k

h,i (s) ≥ V †,π
k
−i

h,i (s),
which is exactly inequality (40) for the h-th step. The second inequality can be proved similarly.

F.1.3. CE VERSION

The proof is very similar to the NE version. Specifically, the only part that uses the properties of NE there is Lemma 38. We
prove a counterpart here.
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Lemma 40. With probability 1− p, for any (s,a, h, i) and k ∈ [K]:

Q
k

h,i (s,a) ≥ max
φ∈Φi

Qφ�π
k

h,i (s,a) , Qk
h,i

(s,a) ≤ Qπ
k

h,i (s,a) , (47)

V
k

h,i (s) ≥ max
φ∈Φi

V φ�π
k

h,i (s) , V kh,i (s) ≤ V π
k

h,i (s) . (48)

Proof. For each fixed k, we prove this by induction from h = H + 1 to h = 1. For the base case, we know at the (H + 1)-th
step, V

k

H+1,i (s) = max
φ
V φ�π

k

H+1,i (s) = 0. Now, assume the inequality (40) holds for the (h+ 1)-th step, for the h-th step, by

definition of Q-functions,

Q
k

h,i (s,a)−max
φ
Qφ�π

k

h,i (s,a)

=
[
P̂khV

k

h+1,i

]
(s,a)−

[
Phmax

φ
V φ�π

k

h+1,i

]
(s,a) + βt

=P̂kh
(
V
k

h+1,i −max
φ
V φ�π

k

h+1,i

)
(s,a)︸ ︷︷ ︸

(A)

+
(
P̂kh − Ph

)
max
φ
V φ�π

k

h+1,i (s,a)︸ ︷︷ ︸
(B)

+ βt.

By induction hypothesis, for any s′,
(
V
k

h+1,i −max
φ
V φ�π

k

h+1,i

)
(s′) ≥ 0, and thus (A) ≥ 0. By uniform concentration,

(B) ≤ C
√
SH2ι/Nk

h (s,a) = βt. Putting everything together we have Q
k

h,i (s,a)−max
φ
Qφ�π

k

h,i (s,a) ≥ 0. The second

inequality can be proved similarly.

Now assume inequality (47) holds for the h-th step, by the definition of V -functions and CE,

V
k

h,i (s) = DπkQ
k

h,i (s) = max
φ

Dφ�πkQ
k

h,i (s) .

By Bellman equation,
max
φ
V φ�π

k

h,i (s) = max
φ

Dφ�πkmax
φ′

Qφ
′�πk

h,i (s) .

Since by induction hypothesis, for any (s,a), Q
k

h,i (s,a) ≥ max
φ
Qφ�π

k

h,i (s,a). As a result, we also have V
k

h,i (s) ≥

max
φ
V φ�π

k

h,i (s), which is exactly inequality (40) for the h-th step. The second inequality can be proved similarly.

F.2. Proof of Theorem 16

In this section, we prove each theorem for the single reward function case, i.e., N = 1. The proof for the case of multiple
reward functions (N > 1) simply follows from taking a union bound, that is, replacing the failure probability p by Np.

F.2.1. NE VERSION

Let (µk, νk) be an arbitrary Nash-equilibrium policy of M̂k := (P̂k, r̂k), where P̂k and r̂k are our empirical estimate of the
transition and the reward at the beginning of the k’th episode in Algorithm 4. Given an arbitrary Nash equilibrium πk of
M̂k, we use Q̂kh,i and V̂ kh,i to denote its value functions of the i’th player at the h’th step in M̂k.

We prove the following two lemmas, which together imply the conclusion about Nash equilibriums in Theorem 16 as in the
proof of Theorem 5.

Lemma 41. With probability 1− p, for any (h, s,a, i) and k ∈ [K], we have{
|Q̂kh,i(s,a)−Qπ

k

h,i(s,a)| ≤ Q̃kh(s,a),

|V̂ kh,i(s)− V π
k

h,i (s)| ≤ Ṽ kh (s).
(49)
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Proof. For each fixed k, we prove this by induction from h = H + 1 to h = 1. For base case, we know at the (H + 1)-th
step,V̂ kH+1,i = V π

k

H+1,i = Q̂kH+1,i = Qπ
k

H+1,i = 0. Now, assume the conclusion holds for the (h+ 1)’th step, for the h’th
step, by definition of Q- functions,∣∣∣Q̂kh,i (s,a)−Qπ

k

h,i (s,a)
∣∣∣

≤
∣∣∣[P̂khV̂ kh+1,i

]
(s,a)−

[
PhV π

k

h+1,i

]
(s,a)

∣∣∣+
∣∣rh(s, a)− r̂kh(s, a)

∣∣
≤
∣∣∣P̂kh (V̂ kh+1,i − V π

k

h+1,i

)
(s,a)

∣∣∣︸ ︷︷ ︸
(A)

+
∣∣∣(P̂kh − Ph

)
V π

k

h+1,i (s,a)
∣∣∣+
∣∣rh(s, a)− r̂kh(s, a)

∣∣︸ ︷︷ ︸
(B)

By the induction hypothesis,

(A) ≤ P̂kh
∣∣∣V̂ kh+1,i − V π

k

h+1,i

∣∣∣ (s,a) ≤ (P̂khṼ kh+1)(s,a).

By uniform concentration (e.g., Lemma 12 in Bai & Jin, 2020), (B) ≤
√
SH2ι/Nk

h (s,a) = βt. Putting everything
together we have ∣∣∣Qπk

h,i (s,a)− Q̂kh,i (s,a)
∣∣∣ ≤ min

{
(P̂khṼ kh+1)(s,a) + βt, H

}
= Q̃kh(s,a),

which proves the first inequality in (49). The inequality for V functions follows directly by noting that the value functions
are computed using the same policy πk.

Lemma 42. With probability 1− p, for any (h, s,a, i, k), we have|Q̂
k
h,i(s,a)−Qπ

k
−i,†
h,i (s,a)| ≤ Q̃kh(s,a),

|V̂ kh,i(s)− V
πk
−i,†

h,i (s)| ≤ Ṽ kh (s).
(50)

Proof. For each fixed k, we prove this by induction from h = H + 1 to h = 1. For the base case, we know at the (H + 1)-th

step,V̂ kH+1,i = V
πk
−i,†

H+1,i = Q̂kH+1,i = Q
πk
−i,†
H+1,i = 0. Now, assume the conclusion holds for the (h+ 1)’th step, for the h’th

step, by definition of the Q functions,∣∣∣∣Q̂kh,i (s,a)−Qπ
k
−i,†
h,i (s,a)

∣∣∣∣
=

∣∣∣∣[P̂khV̂ kh+1,i

]
(s,a)−

[
PhV

πk
−i,†

h+1,i

]
(s,a)

∣∣∣∣+
∣∣rh(s, a)− r̂kh(s, a)

∣∣
≤
∣∣∣∣P̂kh(V̂ kh+1,i − V

πk
−i,†

h+1,i

)
(s,a)

∣∣∣∣︸ ︷︷ ︸
(A)

+

∣∣∣∣(P̂kh − Ph
)
V
πk
−i,†

h+1,i (s,a)

∣∣∣∣+
∣∣rh(s, a)− r̂kh(s, a)

∣∣︸ ︷︷ ︸
(B)

By the induction hypothesis,

(A) ≤ P̂kh

∣∣∣∣V̂ kh+1,i − V
πk
−i,†

h+1,i

∣∣∣∣ (s,a) ≤ (P̂khṼ kh+1)(s,a).

By uniform concentration, (B) ≤
√
SH2ι/Nk

h (s,a) = βt. Putting everything together we have∣∣∣∣Qπk
−i,†
h,i (s,a)− Q̂kh,i (s,a)

∣∣∣∣ ≤ min
{

(P̂khṼ kh+1)(s,a) + βt, H
}

= Q̃kh(s,a),

which proves the first inequality in (50). It remains to show the inequality for V -functions also hold in the h’th step.
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Since πk is a Nash-equilibrium policy, we have

V̂ kh,i (s) = max
µ

Dµ×πk
−i
Q̂kh,i (s) .

By Bellman equation,

V
πk
−i,†

h,i (s) = max
µ

Dµ×πk
−i
Q
πk
−i,†
h,i (s) .

Combining the two equations above, and utilizing the bound we just proved for Q functions, we obtain∣∣∣∣V̂ kh,i (s)− V π
k
−i,†

h,i (s)

∣∣∣∣ ≤ ∣∣∣∣max
µ

Dµ×πk
−i
Q̂kh,i (s)−max

µ
Dµ×πk

−i
Q
πk
−i,†
h,i (s)

∣∣∣∣ ≤ max
a

Q̃kh(s,a) = Ṽ kh (s),

which completes the whole proof.

F.2.2. CCE VERSION

The proof is almost the same as that for Nash equilibriums. We will reuse Lemma 41 and prove an analogue of Lemma 42.
The conclusion for CCEs will follow directly by combining the two lemmas as in the proof of Theorem 5.
Lemma 43. With probability 1− p, for any (h, s,a, i) and k ∈ [K], we haveQ

πk
−i,†
h,i (s,a)− Q̂kh,i(s,a) ≤ Q̃kh(s,a),

V
πk
−i,†

h,i (s)− V̂ kh,i(s) ≤ Ṽ kh (s).
(51)

Proof. For each fixed k, we prove this by induction from h = H + 1 to h = 1. For base case, we know at the (H + 1)-th

step,V̂ kH+1,i = V
πk
−i,†

H+1,i = Q̂kH+1,i = Q
πk
−i,†
H+1,i = 0. Now, assume the conclusion holds for the (h+ 1)’th step, for the h’th

step, by definition of Q -functions,

Q
πk
−i,†
h,i (s,a)− Q̂kh,i (s,a)

≤
[
PhV

πk
−i,†

h+1,i

]
(s,a)−

[
P̂khV̂ kh+1,i

]
(s,a) +

∣∣rh(s, a)− r̂kh(s, a)
∣∣

≤P̂kh
(
V
πk
−i,†

h+1,i − V̂
k
h+1,i

)
(s,a)︸ ︷︷ ︸

(A)

+
(
Ph − P̂kh

)
V
πk
−i,†

h+1,i (s,a) +
∣∣rh(s, a)− r̂kh(s, a)

∣∣︸ ︷︷ ︸
(B)

.

By the induction hypothesis, (A) ≤ (P̂khṼ kh+1)(s,a).

By uniform concentration, (B) ≤
√
SH2ι/Nk

h (s,a) = βt. Putting everything together we have

Q
πk
−i,†
h,i (s,a)− Q̂kh,i (s,a) ≤ min

{
(P̂khṼ kh+1)(s,a) + βt, H

}
= Q̃kh(s,a),

which proves the first inequality in (51). It remains to show the inequality for V -functions also hold in the h’th step.

Since πk is a CCE, we have
V̂ kh,i (s) ≥ max

µ
Dµ×πk

−i
Q̂kh,i (s) .

Observe that V
πk
−i,†

h,i obeys the Bellman optimality equation, so we have

V
πk
−i,†

h,i (s) = max
µ

Dµ×πk
−i
Q
πk
−i,†
h,i (s) .

Combining the two equations above, and utilizing the bound we just proved for Q-functions, we obtain

V
πk
−i,†

h,i (s)− V̂ kh,i (s) ≤ max
µ

Dµ×πk
−i
Q
πk
−i,†
h,i (s)−max

µ
Dµ×πk

−i
Q̂kh,i (s) ≤ max

a
Q̃kh(s,a) = Ṽ kh (s),

which completes the whole proof.
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F.2.3. CE VERSION

The proof is almost the same as that for Nash equilibriums. We will reuse Lemma 41 and prove an analogue of Lemma 42.
The conclusion for CEs will follow directly by combining the two lemmas as in the proof of Theorem 5.

Lemma 44. With probability 1− p, for any (h, s,a, i), k ∈ [K] and strategy modification φ for player i, we haveQ
φ�πk

h,i (s,a)− Q̂kh,i(s,a) ≤ Q̃kh(s,a),

V φ�π
k

h,i (s)− V̂ kh,i(s) ≤ Ṽ kh (s).
(52)

Proof. For each fixed k, we prove this by induction from h = H + 1 to h = 1. For the base case, we know at the (H + 1)-th
step, V̂ kH+1,i = V φ�π

k

H+1,i = Q̂kH+1,i = Qφ�π
k

H+1,i = 0. Now, assume the conclusion holds for the (h+ 1)’th step, for the h’th
step, following exactly the same argument as Lemma 43, we can show

Qφ�π
k

h,i (s,a)− Q̂kh,i (s,a) ≤ min
{

(P̂khṼ kh+1)(s,a) + βt, H
}

= Q̃kh(s,a),

which proves the first inequality in (52). It remains to show the inequality for V -functions also hold in the h’th step.

Since πk is a CE, we have
V̂ kh,i (s) = max

φ̃h,s

Dφ̃h,s�πkQ̂
k
h,i (s) ,

where the maximum is take over all possible functions from Ai to itself.

Observe that V φ�π
k

h,i obeys the Bellman optimality equation, so we have

V φ�π
k

h,i (s) = max
φ̃h,s

Dφ̃h,s�πkQ
φ�πk

h,i (s) .

Combining the two equations above, and utilizing the bound we just proved for Q-functions, we obtain

V φ�π
k

h,i (s)− V̂ kh,i (s) = max
φ̃h,s

Dφ̃h,s�πkQ
φ�πk

h,i (s)−max
φ̃h,s

Dφ̃h,s�πkQ̂
k
h,i (s)

≤ max
a

Q̃kh(s,a) = Ṽ kh (s),

which completes the whole proof.


