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A. Additional Theoretical Results and Examples

A.1. Different Cases for argmax�2[0,1] OPT(P, �)

Take the case of T = 1, Z = {[0, 1]}, W = {w1, w2} with equal probability of occurring, b = 1, and ↵ = 0.5. Call
⇧(· 2 A) to the function that takes the value of 0 if condition A holds and �1 otherwise. We show examples in which
argmax�2[0,1] OPT(P, �) match the different cases mentioned in the paper. In most of the examples below the upper
bound cost constraint hold trivially, reason why we do not “enforce” it using ⇧(·  1), with the only exception on the � =

1
2

example.

Infinite solutions. f(z; ✓
⇤
, w1) = z, c(z; ✓⇤, w1) = z, f(z; ✓⇤, w2) = z, c(z; ✓⇤, w2) = z. In this case E[f(z; ✓⇤, w)] = z

and E[c(z; ✓⇤, w)] = z. Then, for any � 2 [0, 1] we have

OPT(P, �) =
1

2

✓
max
z2[0,1]

�
z +⇧(

1
2  z)

 
+ max

z2[0,1]

�
z +⇧(

1
2  z)

 ◆

The equality comes directly from the definition of OPT(P, �). Is direct to see that z = 1 maximizes both optimization
problems and that OPT(P) = OPT(P, �) for all � 2 [0, 1].

No solution. f(z; ✓
⇤
, w1) = z, c(z; ✓⇤, w1) = 0, f(z; ✓⇤, w2) = 0, c(z; ✓⇤, w2) = 0. Since the cost terms are always zero,

the cost lower bound 0.5 is never achieved and no feasible solution exist.

� =
1
2 as unique solution. f(z; ✓

⇤
, w1) = z, c(z; ✓⇤, w1) = 0, f(z; ✓⇤, w2) = �z, c(z; ✓⇤, w2) = 2z. In this case

E[f(z; ✓⇤, w)] = 0 and E[c(z; ✓⇤, w)] = z. Then, for any � 2 [0, 1] we have

OPT(P, �) =
1

2

✓
max
z2[0,1]

�
(1� �)z +⇧(

1
2  �z)

 
+ max

z2[0,1]

�
�(1� �)z +⇧(

1
2  (2� �)z) +⇧((2� �)z  1)

 ◆

=
1

2

✓
(1� �) +⇧(

1
2  �) + max

z2[0,1]

�
�(1� �)z +⇧(

1
2  (2� �)z) +⇧((2� �)z  1)

 ◆

The second equality uses that the first optimization problem has z = 1 as its unique optimal solution whenever � 6= 1 and
that 0 = OPT(P, 1) < OPT(P, 0.5) =

1
6 . Is direct from the result above that OPT(P, �) = �1 for any � < 0.5. Then,

we have:

OPT(P) =
1

2

✓
max

z2[0,1],�2[0.5,1)
(1� �)� (1� �)z +⇧(

1
2  (2� �)z) +⇧((2� �)z  1)

◆

=
1

2

✓
max

�2[0.5,1)
(1� �)� 1��

2(2��)

◆

The first equality uses the definition of OPT(P) and that we have restricted � to be in [0.5, 1). The second equality uses that
for any � 2 [0.5, 1) the unique optimal is z(�) = 1

2(2��) as it maximizes the term �(1� �)z by taking the smallest feasible
z value that satisfies the cost lower bound. Finally, the function ⇠(�) := (1� �)� 1��

2(2��) is differentiable on � 2 [0.5, 1]

and has strictly negative derivative on � 2 [0.5, 1], which implies ⇠(0.5) > ⇠(�) for any � 2 [0.5, 1], proving that � = 0.5

is the unique optimal solution.

� = 0 as unique solution. f(z; ✓
⇤
, w1) = z

2, c(z; ✓⇤, w1) = z, f(z; ✓⇤, w2) = �z, c(z; ✓⇤, w2) = 1 � z. In this case
E[f(z; ✓⇤, w)] = 0.5(z

2 � z) and E[c(z; ✓⇤, w)] = 0.5. Then, for any � 2 [0, 1] we have

OPT(P, �) =
1

2

✓
max
z2[0,1]

�
z
2
(1� �

2 )� z
�
2 +⇧(

1
2  (1� �)z +

�
2 )
 

+ max
z2[0,1]

��
2 z

2 � z(1� �
2 ) +⇧(

1
2  (1� �)(1� z) +

�
2 )
 ◆

To understand why � = 0 is the unique solution let us analyze both maximization problems separately. The expression
�
2 z

2 � z(1� �
2 ) in the second maximization problem is non-positive in (z, �) 2 [0, 1]

2 as we can write it as (�2 z
2 � 1

2z)�
z(

1
2 �

�
2 ) where each term is non-positive. Then, an optimal solution for it is (z, �) = (0, 0) which also satisfies the lower

cost constraints. Similarly, the expression z
2
(1 � �

2 ) � z
�
2 in (z, �) 2 [0, 1]

2 of the first maximization problem has a
maximum in (z, �) = (1, 0), optimal pair which also satisfies the lower cost constraints.
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� = 1 as unique solution. f(z; ✓
⇤
, w1) = z, c(z; ✓⇤, w1) = 0, f(z; ✓⇤, w2) = z, c(z; ✓⇤, w2) = z. In this case

E[f(z; ✓⇤, w)] = z and E[c(z; ✓⇤, w)] = 0.5z. Then, for any � 2 [0, 1] we have

OPT(P, �) =
1

2

✓
max
z2[0,1]

�
z +⇧(

1
2 

�
2 z)
 
+ max

z2[0,1]

�
z +⇧(

1
2  (1� �

2 )z)
 ◆

The result is direct as (z, �) = (1, 1) is the only pair in [0, 1]
2 which makes the first optimization problem feasible.

A.2. Bound on �Learn

Before stating this subsection result, we define an stricter version of Assumption 3.1

Assumption A.1 ((Stricter) Bounded Dual Iterates). There is an absolute constant C
0

h > 0 such that k�tk1  C
0

h for all

t 2 [T ] almost surely.

Proposition A.1. Run Algorithm 2 with a constant “step-size” rule ⌘t  ⌘ for all t � 1 where ⌘ > 0. Suppose that

Assumption A.1 holds and that c(·; ·, ·) is Lipschitz on its ✓ argument, in particular, that it exists Lc > 0, such that

kc(z; ✓, w) � c(z; ✓
0
, w)k1  Lck✓ � ✓

0k✓ for any (z, w, ✓, ✓
0
) 2 Z ⇥W ⇥ ⇥ ⇥ ⇥. Then, for any distribution P over

w 2W , it holds that

�Learn  Lc (1 + C
0

h)E
"

⌧AX

t=1

k✓⇤ � ✓
tk✓

#
.

Proof. The proof is obtained directly by bounding each term of �Learn separately. First,

E
"

⌧AX

t=1

c(z
t
; ✓

⇤
, w

t
)� c(z

t
; ✓

t
, w

t
)

#
E

"
⌧AX

t=1

kc(zt; ✓⇤, wt
)� c(z

t
; ✓

t
, w

t
))k1

#

LcE
"

⌧AX

t=1

k✓⇤ � ✓
tk✓

#
,

where we have used above that c(·; ·, ·) its Lipschitz on its ✓ argument. Now, for any pair x, y of real vectors of same
dimension it holds |xT

y|  kxk1kyk1. Using the latter fact and again that c(·; ·, ·) is Lipschitz on its ✓ argument, we have

E
"

⌧AX

t=1

(c(z
t
; ✓

⇤
, w

t
)� c(z

t
; ✓

t
, w

t
))

T
�
t

#
E

"
⌧AX

t=1

|(c(zt; ✓⇤, wt
)� c(z

t
; ✓

t
, w

t
))

T
�
t|
#

E
"

⌧AX

t=1

kc(zt; ✓⇤, wt
)� c(z

t
; ✓

t
, w

t
))k1k�tk1

#

LcE
"

⌧AX

t=1

k�tk1k✓⇤ � ✓
tk✓

#

LcC
0

hE
"

⌧AX

t=1

k✓⇤ � ✓
tk✓

#
.

A.3. Proof That OPT(P) = OPT(P, 0) in the Linear Contextual Bandits Experiment and Solving it Efficiently.

This appendix subsection shows the following three results. 1. That for any ⇢ � 0.5 we have OPT(P, �) > �1 for
all � 2 [0, 1]. 2. That OPT(P, �)  OPT(P, 0) for all � 2 (0, 1]. 3. How to efficiently solve OPT(P, 0). Take
Z = {z 2 RK

+ :
PK

i=1 zi  1} and � 2 [0, 1] arbitrary. As notation, here we use superscripts to denote time (but also use
·T to denote dot operation between vectors when need), use subscripts to denote row indexes, and use W , W 0, W t, W 0t

to represent matrices of size d ⇥ n. Also, to shorten notation, we write W to define a sequence {W 1
, . . . ,W

T } of W t

matrices (analogous for W
0). The traditional multiplication between a matrix A of size d⇥ n and a vector x of size n is
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written as Ax = ((A1)
T
x, . . . , (Ad)

T
x). The term inside the outer expectation of OPT(P, �) corresponds to (for � = 1

the outer expectation can be removed)

O(W, �) := max
zt2Z:t2[T ]

(1� �)

TX

t=1

(W
t
✓
⇤
)
T
z
t
+ �EW 0⇠P [(W

0
✓
⇤
)
T
z
t
]

s.t. 0.5 ⇤ T  ⇢

TX

t=1

dX

i=1

z
t
i  T.

Notice that a solution z = {z1, . . . , zT } is either feasible or infeasible independently of the context vector arrivals
W = {W 1

, . . . ,W
T } and �. For any ⇢ � 0.5 and � 2 [0, 1], it holds OPT(P, �) > �1 as we can choose z satisfyingPd

i=1 z
t
i = 0.5/⇢ for all t 2 [T ] (our problem setup uses ⇢ = 4). A direct application of Jensen inequality shows

OPT(P, 1)  OPT(P, 0), so let us take � 2 (0, 1) arbitrary. For any sequence W, let z�(W) be an optimal solution of
O(W, �), we have

OPT(P, �) = EW⇠PT

"
(1� �)

TX

t=1

(W
t
✓
⇤
)
T
z
t
�(W) + �EW 0⇠P

⇥
(W

0
✓
⇤
)
T
z
t
�(W)

⇤
#

= EW⇠PT

"
(1� �)

TX

t=1

(W
t
✓
⇤
)
T
z
t
�(W)

#
+ EW⇠PT

"
�

TX

t=1

EW 0⇠P [(W
0
✓
⇤
)
T
z
t
�(W)]

#

= EW⇠PT

"
(1� �)

TX

t=1

(W
t
✓
⇤
)
T
z
t
�(W)

#
+ EW⇠PT

"
EW0⇠PT

"
�

TX

t=1

(W
0t
✓
⇤
)
T
z
t
�(W)

##

= EW⇠PT

"
(1� �)

TX

t=1

(W
t
✓
⇤
)
T
z
t
�(W)

#
+ EW⇠PT ,W0⇠PT

"
�

TX

t=1

((W
t
)
T
✓
⇤
)
T
z
t
�(W

0
)

#

= EW⇠PT

"
TX

t=1

(W
t
✓
⇤
)
T
�
(1� �)z

t
�(W) + �EW0⇠PT [z

t
�(W

0
)]
�
#

 EW⇠PT

"
TX

t=1

(W
t
✓
⇤
)
T
z
t
0(W)

#
= OPT(P, 0).

The second equality uses the linearity of the expectation operator, the third uses that each W
0t is sampled i.i.d. from P , the

fourth that W and W0 are i.i.d. and can be exchanged, the fifth uses the linearity of the expectation operator again, and the
final inequality uses the definition of z0(W). In particular, the last inequality uses that (1��)z�(W)+�EW0⇠PT [z�(W0

)]

is a feasible solution of O(W, 0). Finally, notice that for any given W solving O(W, 0) is equivalent to solving the following
knapsack problem

O(W, 0) = max
yt2[0,1]:t2T

TX

t=1

✓
max
i2[d]

(W
t
i )

T
✓
⇤

◆
y
t

s.t. 0.5 ⇤ T  ⇢

TX

t=1

y
t  T.

Let {m1, . . . ,mT } represent the sequence {maxi2[d] (W
t
i )

T
✓
⇤}Tt=1 ordered from biggest to smallest value. Then, is not

hard to see that

O(W, 0) = max

imax2

hl
T
2⇢

m
,
j
T
⇢

ki

imaxX

i=1

mi,

where d·e and b·c are the traditional ceiling and floor integer functions respectively.
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B. Proofs

B.1. Proof of Proposition 2.1

Proof. Let PT be the distribution from which the (w
1
, . . . , w

T
) vectors are sampled, with each w

t being sampled i.i.d.

from P . For any � 2 [0, 1]

OPT(P, �)

= EPT

"
max

zt2Z:t2[T ]

PT
t=1(1� �)f(z

t
; ✓

⇤
, w

t
) + �EP [f(z

t
; ✓

⇤
, w)]

s.t. T↵kbk 
PT

t=1(1� �)ck(z
t
; ✓

⇤
, w

t
) + �EP [ck(z

t
; ✓

⇤
, w)]  Tbk for all k 2 [K]

#

 EPT

"
max

zt2Z:t2[T ]

(
TX

t=1

(1� �)
�
f(z

t
; ✓

⇤
, w

t
)� �

T
c(z

t
; ✓

⇤
, w

t
)
�
+ �EP [f(z

t
; ✓

⇤
, w)� �

T
c(z

t
; ✓

⇤
, w)]

)
+ Tp(�)

#

= EPT

"
TX

t=1

max
zt2Z:t2T

(1� �)
�
f(z

t
; ✓

⇤
, w

t
)� �

T
c(z

t
; ✓

⇤
, w

t
)
�
+ �EP [f(z

t
; ✓

⇤
, w)� �

T
c(z

t
; ✓

⇤
, w)]

#
+ Tp(�)

 (1� �)EPT

"
TX

t=1

max
zt2Z:t2T

f(z
t
; ✓

⇤
, w

t
)� �

T
c(z

t
; ✓

⇤
, w

t
)

#

+ �EPT

"
TX

t=1

max
zt2Z:t2T

EP [f(z
t
; ✓

⇤
, w)� �

T
c(z

t
; ✓

⇤
, w)]

#
+ Tp(�)

 (1� �)TEP


max
z2Z

f(z; ✓
⇤
, w)� �

T
c(z; ✓

⇤
, w)

�
+ �T max

z2Z

EP

⇥
f(z; ✓

⇤
, w)� �

T
c(z; ✓

⇤
, w)
⇤
+ Tp(�)

 (1� �)TEP ['(�; ✓
⇤
, w)] + �TEP


max
z2Z

f(z; ✓
⇤
, w)� �

T
c(z; ✓

⇤
, w)

�
+ Tp(�)

= TEP ['(�; ✓
⇤
, w)] + Tp(�)

= TD(�; ✓
⇤
)

The first equality is the definition of OPT(P, �), the first inequality uses Lagrangian duality for both the lower and upper
bounds constraints, the second equality uses that p(�) can be moved outside the expectation and that the sum can be
changed with the maximization operator as there is no constraint linking the z

t variables. The second inequality uses that
for any a(·) and b(·) real valued functions we have maxz2Z {a(z) + b(z)}  maxz2Z a(z) + maxz2Z b(z), the third
inequality uses that all wt are i.i.d sampled, that all maximization problems are the same in the first term, and that the
outer expectation can be removed from the second term. The fourth inequality uses the definition of '(·; ·, ·) and that
maxz2Z EP [·]  EP [maxz2Z ·]. Finally, we use the definition of '(·; ·, ·) again and the fact that � + (1� �) = 1.

B.2. Proof of Proposition 2.2

Proof. First note that the p(·) function used inside D(·; ·) is convex since b � 0 and ↵ 2 [�1, 1)K . We need to prove that
D(�; ✓) + EP [g̃(�; ✓, w)]

T
(�

0 � �)  D(�
0
; ✓) for any � 2 ⇤ and �

0 2 ⇤. Let p0 be any member of @p(�), we have

D(�; ✓) + EP [g̃(�; ✓, w)]
T
(�

0 � �) =EP ['(�; ✓, w) + p(�) + g̃(�; ✓, w)
T
(�

0 � �)]

=EP [f(z(�; ✓, w); ✓, w)� (�
0
)
T
c(z(�; ✓, w); ✓, w) + p(�) + p

0T
(�

0 � �)]

EP [f(z(�; ✓, w); ✓, w)� (�
0
)
T
c(z(�; ✓, w); ✓, w) + p(�

0
)]

D(�
0
; ✓).

The first equality uses the definition of D(�; ✓), the second equality uses the definition of g̃(�; ✓, w), the first inequality uses
the subgradient inequlity for p(·), and the second inequality uses the definition of D(�

0
; ✓).

B.3. Intermediate Results

The following propositions were not mentioned in the paper. Proposition B.1 shows an inequality that holds for Step 7. of
Algorithm 2 under the conditions given for ⇤ and h(·) on the paper. Propositions B.2 and B.3 are intermediate steps to prove
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Theorem 3.1. Proposition B.2 bounds T � ⌧A in expectation. Proposition B.3 shows an upper bound for the regret that
Algorithm 2 up to period ⌧A. Proposition B.4 is the key result needed to prove Proposition 3.1.
Proposition B.1. Let ⇤ ✓ RK

be a set which can be defined separately for each dimension k 2 [K], either being

⇤k = R or ⇤k = R+. Let h(·) : ⇤ ! R be a function that satisfies h(�) =
PK

k=1 hk(�k), with hk(·) being a

strongly convex univariate differentiable function for all k 2 [K]. Given arbitrary �
0 2 ⇤, g̃ 2 RK

, and ⌘ > 0 define

�
+
= argmin�2⇤ �

T
g̃
t
+

1
⌘Vh(�,�

0
). Then, for all k 2 [K] it holds

1. If ⇤k = R, then ḣk(�
+
k ) = ḣk(�

0

k)� ⌘g̃k.

2. If ⇤k = R+, then ḣk(�
+
k ) = ḣk(�

0

k)� ⌘g̃k if �
+
k > 0 or ḣk(�

+
k ) � ḣk(�

0

k)� ⌘g̃k if �
+
k = 0.

Therefore, proving that rh(�+
) � rh(�0

)� ⌘g̃.

Proof. Notice that min�2⇤ �
T
g̃
t
+

1
⌘Vh(�,�

0
) =

P
k2[K] min�k2⇤k �k(�k;�

0

k, g̃k) with �k(�k;�
0

k, g̃k) := g̃k�k +

1
⌘ (hk(�k) � hk(�

0

k) � ḣk(�
0

k)(�k � �
0

k)) for all k 2 [K]. Then, independently per coordinate we minimize a strongly
convex function under a non-empty closed convex set, which shows that �+

k exists for each k 2 [K]. Also, �+
k can be found

using first order necessary optimality conditions for each k 2 [K]. Taking k 2 [K] arbitrary, we split the proof in two cases.

⇤k = R. By first order optimality conditions we immediately obtain ḣk(�
+
k ) = ḣ(�

0

k)� ⌘g̃k.

⇤k = R+. Define ⇧+(·) : R! {0} [ {1} as the convex function that takes the value of 0 if its input is non-negative and
1 otherwise. Then, the minimization problem for dimension k can be re-written as min�k2⇤k �k(�k;�

0

k, g̃k) +⇧+(�k).
First order necessary optimality conditions imply 0 2 @(�k(�

+
k ;�

0

k, g̃k) +⇧+(�
+
k )). Then, there exists y 2 @(⇧+(�

+
k )),

such that ḣk(�
+
k ) = ḣ(�

0

k)� ⌘g̃k � ⌘y. The result is obtained directly using that @(⇧+(�k)) is equal to {0} when �k > 0

and equal to R� when �k = 0.

Proposition B.2. Run Algorithm 2 with a constant “step-size” rule ⌘t  ⌘ for all t � 1 where ⌘ > 0. Suppose that

Assumption A.1 holds and take ⌧A as in Definition 3.1. Then,

E [T � ⌧A] 
C̄

b
+

Ch + krh(�1
)k1

⌘b
+
kE[
P⌧A

t=1 c(z
t
; ✓

⇤
, w

t
)� c(z

t
; ✓

t
, w

t
)]k1

b
.

Proof. Let k0 2 [K] be the index of the first violated upper cost bound, i.e. the index which activates the stop time ⌧A.
Here we assume that some upper cost bound constraint is violated, i.e. that ⌧A < T , if not the result is trivial. Step
6. of Algorithm 2 defines g̃tk0 = �ck0(z

t
; ✓

t
, w

t
) + bk0 (1(�k0 � 0) + ↵k01(�k0 < 0)), which can be upper bounded by

g̃
t
k0  �ck0(z

t
; ✓

t
, w

t
) + bk0 . Using the definition of ⌧A and g̃

t
k0 we have

⌧AX

t=1

g̃
t
k0 bk0⌧A �

⌧AX

t=1

ck0(z
t
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⇤
, w

t
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⌧AX

t=1

(ck0(z
t
; ✓

⇤
, w

t
)� ck0(z

t
; ✓

t
, w

t
))

!

bk0⌧A � bk0T + C̄ +

 
⌧AX

t=1

(ck0(z
t
; ✓

⇤
, w

t
)� ck0(z

t
; ✓

t
, w

t
))

!

) T � ⌧A 
1

bk0

 
C̄ �

⌧AX

t=1

g̃
t
k0

!
+

1

bk0

 
⌧AX

t=1

(ck0(z
t
; ✓

⇤
, w

t
)� ck0(z

t
; ✓

t
, w

t
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!
.
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t+1
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Proposition B.3. Run Algorithm 2 with a constant “step-size” rule ⌘t  ⌘ for all t � 1 where ⌘ > 0. Denote

�̄
⌧A =

P⌧A
t=1 �t

⌧A
(⌧A as in Definition 3.1). It holds
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Proof. For clarity, we sometimes use Ew[·], Ewt [·], or EHt�1 [·] to indicate the random variable over which the expectation
is taken. Using E[·] indicates that the expectation is taken over the “whole” randomness of Algorithm 2. Call g̃t the vector
obtained in Step 6. and define E[g̃t] = g

t. The proof is composed of three steps. 1. Bounding g̃
t. 2. Upper bounding

E
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right hand side of the terms in Proposition B.3.
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where the first inequality is due to the three point property (Lemma 4.1 of (Beck & Teboulle, 2003)), the second uses
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� �0.5ka2k21, and the final inequality is just

understanding which terms are constant under the conditional expectation. Taking EHt�1 [·] over both sides of equation (4)
and using the law of total expectation we get
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since the pair (�t
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t
) is completely determined by Ht�1 [ {wt} and that wt is independent of Ht�1. Then, regardless of

the value of ⌧A, using the telescopic property and that Vh(·, ·) is non-negative we obtain
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Step 3. Lower bounds for E
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For any w 2W we have f(z(�
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Taking expectation over (6) and using the results from Step 2. we get
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where we have used the definition of D(·, ·) to reduce the second line of (7) to use only the cost functions. Equation (7)
almost matches the conclusion of Theorem 3.1 except that (7) uses a E[
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t=1 Ew[·]] term, while the theorem uses E[
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concluding the proof.

Proposition B.4. Run Algorithm 2 with a constant “step-size” rule ⌘t  ⌘ for all t � 1 where ⌘ > 0. Using �✓ as in

Definition 3.2, for each t 2 [T � 1] it holds (here we use 0 to refer to the zero-vector (0, . . . , 0) of dimension K):
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For any � 2 ⇤ we have
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where we have used linearity of the expectation, the three point property, that Vh(·, ·) is �1 strongly convex on with respect
to the k·k1 norm, Cauchy-Schwartz, and the bound for E[kg̃tk2

1
] obtained before (same steps as in Step 1. and 2. of Proof
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B.4. Proof of Theorem 3.1

Proof. For any distribution P over W and for any t
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where we have used Proposition 2.1 and that a loose upper bound for OPT (P) is T f̄ . Therefore,
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where in the first inequality we have used the definition of R(A|P) and the fact that Algorithm 2 runs for ⌧A periods. The
second inequality is obtained directly from Propositions B.2 and B.3.

B.5. Proof of Proposition 3.1

Proof. A direct application of Proposition B.4 shows that whenever k�tk1 � C
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B.6. Proof of Proposition 3.2
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)� ḣk(�
1
) = �⌘

P⌧A
t=1 g̃

t
k regardless of the ⌧A value. Then, using the definition of g̃t we get

⌧AX

t=1

�
bk(1(�k � 0) + ↵k1(�k < 0))� ck(z

t
; ✓

t
, w

t
)
�
=
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Finally, we conclude the proof by using Proposition B.2 and the definition of Ch.
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C. Extra Experimental Details and Results

C.1. Bidding Experiment

This experiment is based on data from Criteo (Diemert et al., 2017). Criteo is a Demand-Side Platform (DSP), which are
entities which bid on behalf of hundreds or thousands of advertisers which set campaigns with them. The dataset from
(Diemert et al., 2017) contains millions of bidding logs during one month of Criteo’s operation. These bidding logs are all
logs in which Criteo successfully acquired ad-space for its advertising clients through real-time second-price auctions (each
log represents a different auction and ad-space). Each of these auctions occur when a user arrives to a website, app, etc., and
each user is shown one ad few millisecond after its “arrival”. Each bidding log contains. 1. Nine anonymized categorical
columns containing characteristics of the ad-space and (possibly) about the user who has just “arrived”. 2. The price Criteo
paid for the ad-space, which corresponds to the second highest bid submitted to each auction. 3. The day of the auction and
the advertiser whose ad was shown in the ad-space (the day is not included directly in the dataset, but appears in a Jupyter
Notebook inside the compressed file that contains the dataset). 4. If a conversion occur after the ad was shown, i.e., if the
corresponding user performed an action of interest for the advertiser after watching the advertiser’s ad. The dataset can be
downloaded from https://ailab.criteo.com/criteo-attribution-modeling-bidding-dataset.

The experiment was performed as follows. We used the first 21 days of data as training, the next two days as validation, and
the remaining seven days as test. The training data was used only to train a neural network to predict the probability of a
conversion occurring. The model architecture was taken from (Pan et al., 2018) and uses as features the nine anonymized
categorical columns, the day of the week, and an advertiser id to make a prediction if a conversion would occur or not.
Parameters to be tuned for the neural network were the step-size for the Adam solver, embedding sizes, and other two
specific network attributes (in total we tried 120 configurations). Once found the trained model with highest validation AUC
(Area Under the Curve), we took this model predictions as if they were the real probabilities of a conversion occurring
for unseen data. By having the advertiser id as an input on the model, we can get conversion probability estimates for all
advertisers even when Criteo bid on behalf of only one advertiser per bidding log. The advertisers pay the DSP, in our
context the bidder, each time the DSP bids on behalf of them. The payment corresponds to the probability of conversion
times a known fixed value. The general simulator scheme for this experiment is shown in Algorithm 4.

Algorithm 4 Simulator Scheme
Input: Trained conversion prediction model �, the set of all test bidding logs Xtest, T the number of test bidding logs,
q 2 RK

+ the vector of payment per conversion values for the advertisers, {mp
t}Tt=1 the price Criteo paid for each ad spot

in the test set in order.
for t = 1, . . . , T do

1. Read the t bidding test log and mp
t.

2. Use model � to obtain estimated conversion probabilities conv_prob. Take r
t
k = conv_probk · qk for all k 2 K.

3. Using vector rt and previous history, obtain (z
t
, k

t
) a pair of submitted bid and advertiser to bid on behalf of.

4. If zt � mp
t then the auction is won, advertiser kt pays rtkt to the bidder (the DSP), the bidder pays mp

t for the ad
spot and obtains rtkt �mp

t as profit.
end for

Algorithm 2 can be naturally incorporated in the simulator scheme by using the online optimization component of it to
obtain (z

t
, k

t
) of Step 3. of the simulator. We only need the online optimization component of Algorithm 2, as we do not

need to learn the distribution of the highest competing (mp) to solve Step 3. of Algorithm 2 (shown in Algorithm 3). We
compare the performance of Algorithm 2 to using the Greedy Heuristic 5. When � = 1, Algorithm 5 bids ‘truthfully’ on
behalf of the advertiser with the highest valuation. This would be the optimal strategy if the advertisers had ‘infinite’ budgets
and no lower bound requirements. Then, we can think of � as a way to increase/decrease the bids in order to take the budgets
into account. (For this example, we can think of Algorithm 2 as an online algorithm for obtaining � variables per advertiser.)

Algorithm 5 Greedy Heuristic(�)
Input: Vector r 2 RK

+ and � > 0.
Let K0 be the set of advertisers with non depleted budgets. If K0

= ; do not bid, otherwise bid on behalf of k⇤ 2
argmaxk2K0 rk the amount �rk⇤ .

Our test set contains 21073 iterations and 130 advertisers. (The original dataset had 700 advertisers but we removed all

https://ailab.criteo.com/criteo-attribution-modeling-bidding-dataset
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Figure 2. The x-axis in the figure shows the proportion of an advertiser budget w.r.t. the highest budget between all advertisers (shown on
a logarithmic scale).

advertisers who appeared in less than 10,000 logs in either the training or validation plus test data.) Each iteration of the
simulator scheme uses a batch of 128 test logs. The total budget of an advertiser is the total amount Criteo spent bidding on
behalf of that advertiser in the test logs multiplied by 100. We run Algorithm 2 using traditional subgradient descent trying
the fixed step sizes {1 ⇤ 10�i}3i=0 [ {0.5 ⇤ 10�i}3i=0 and {0.25 + 0.05 ⇤ i}25i=0 as � parameters for the Greedy Heuristic
5. We run 100 simulations for each parameter and method pair. Each simulation is defined by the price advertisers would
pay per conversion, which is the q vector in Algorithm 4. We sample qk i.i.d. from Uniform(0.5, 1.5) for all k 2 [K].
We relaxed the ending condition of Algorithm 2 by allowing advertisers to overspend at most on one iteration. After that
iteration, we consider an advertiser’s budget as depleted and do not bid on behalf of it until the simulation’s end. The final
parameters chosen for Algorithms 2 and 5 were those that achieved the highest average profit.

An advertiser’s budget depletion time correlates with its relative total maximum budget, fact that is shown in Figure 2.
The x-axis is in logarithmic scale and shows the proportion of an advertiser budget w.r.t. the highest budget between all
advertisers. Observe that as the relative budget increases, the average depletion time gets closer to the simulation end
(T = 21073).

Finally, we run this experiment using a SLURM managed Linux cluster. We tried 120 parameters combinations for the
conversion prediction architecture, running each parameter configuration for 25 epochs. Each parameter configuration took
approximately 40 min to run using a Nvidia K80 GPU plus two Intel Xeon 4-core 3.0 Ghz (we used eight GPUs in parallel
having a total run time of approximately 12 hours). For the experiment itself, we tried nine different step-sizes to run the
subgradient descent step using Algorithm 2 and 26 � values for 5, each configuration running 100 simulations. We used
several cluster nodes each having 64GB of RAM and two Xeon 12-core Haswell with 2.3 Ghz per core. If we had used just
one node it would have taken approximately 160 hours to run all required configurations.

C.2. Linear Contextual Bandits Experiment

We now describe in detail the methods used to implement Step 1. of Algorithm 2. First, let yt be the variable that takes the
value of one if an action is taken at period t and zero otherwise. Also, remember that i(t) 2 [d] is the action taken at period
t (if any), and r

t the revenue observed at period t. We implemented Step 1. of Algorithm 2 in the following ways.

1. Gaussian Thompson Sampling as in Agrawal & Goyal (2013). Define B(1) = Id with Id the identity matrix
of size d, and ✓̂

1
= (1/

p
d, . . . , 1/

p
d). The Thompson Sampling procedure is composed of two steps which

are updating a prior and sampling from a Gaussian posterior. We update the prior as follows. If yt = 1, make
B(t+1) = Id+

P
s2[t]:ys=1 W

s
i(s)(W

s
i(s))

T and ✓̂
t+1

= B(t+1)
�1

(
P

s2[t]:ys=1 W
s
i(s)r

t
), otherwise B(t+1) = B(t)

and ✓̂
t+1

= ✓̂
t. After the prior update, we sample ✓

t from N (✓̂
t
, ⌫

2
B(t)

�1
) where N (·, ·) represents a normal

distribution defined by its mean and covariance matrix, and ⌫ > 0 a constant chosen as follows. When no randomness
was added to the observed revenue term, we used ⌫ = 0.1 (remember that we could add randomness to both the
matrices W t and the observed revenue separately). When randomness was added to the observed revenue, we used
⌫ =

rev_err
10 ⇤

p
log T ⇤ n with rev_err = 0.1 or 0.5 depending if a Uniform(�0.1, 0.1) or Uniform(�0.5, 0.5) is



Joint Online Learning and Decision-making Via Dual Mirror Descent

added to the observed revenue term respectively. (The latter form of choosing ⌫ was inspired on Agrawal & Goyal
(2013) which uses ⌫ = R

p
9n log T to prove a regret bound for Thompson Sampling for linear contextual bandits

without constraints.)

2. Least squares. Same as Thompson Sampling as described above, but Step 1. of Algorithm 2 uses ✓t = ✓̂
t. (This update

is a core element of many learning approaches for linear contextual bandits (Agrawal & Goyal, 2013; Agrawal &
Devanur, 2016) and can be understood as a Least Squares step).

3. Ridge regression. We use the Least Squares procedure as defined above for the first
p
T/2 actions, and then solve a ridge

regression problem. We solve a ridge regression problem at Step 1. of iteration t using the set {W s
i(s), r

s}s2[t�1]:ys=1

with an `2 penalization parameter of ↵ = 0.001.

4. Ridge regression plus error. Same method as above but adds noise to the ✓t obtained from the ridge regression problem.

We add an i.i.d. Uniform(�0.3, 0.3)/
qPt

s=1 y
s term to each coordinate of ✓t.

5. Known ✓
⇤. Algorithm 2 using ✓

t
= ✓

⇤ for all t 2 [T ].

Figures 3 and 4 show how the different methods perform for (d ⇥ n) being (5, 10) and (50, 50) when T = 10, 000,
respectively. Each element of the x-axis represents a moving window composed of 250 iterations. The x-axis is composed
of 9751 ticks . The y-axis shows the average relative revenue obtained in a window with respect to the proportional best
revenue that could have been obtained (OPT(P) · 250

10000 ). Importantly, the number of actions a method takes can vary
between windows, which explains the following two facts. First, an initial revenue spike as many actions are taken when a
simulation starts. The latter occurs as we took �

1
= 0 which makes the cost component in Step 3. of Algorithm 2 zero.

Second, a method may obtain a higher average revenue on a window than OPT(P) · 250
10000 if more than ’average’ actions

are taken on that window.

Tables 2, 3, 4 show the average total relative revenue obtained for the different combinations of d⇥ n and uncertainty used
with respect to OPT(P). In general, as long as the budget is spent properly, the revenue obtained by the ‘Known ✓

⇤’ method
when W

t
= W for all t 2 [T ] should match OPT(P). The latter as the best action to take is always the same. In the case

when we still have W
t
= W for all t 2 [T ], but the observed revenue has randomness, the ‘Known ✓

⇤’ method may obtain
a higher total revenue than OPT(P).

Finally, we run this experiment using a SLURM managed Linux cluster. We used four nodes each having 64 GB of RAM
and 20 cores of 2.5Ghz. We parallelized the code to run each combination of experiment setting and simulation number as a
different run (the run-time was mostly spent on sampling from a Gaussian distribution for Thompson Sampling and solving
Ridge Regression problems with thousands of points). The total running time was 12 hours. Processing the results was done
in a local computer (Mac Book Pro 2015 version), spending around 30 minutes to aggregate the results obtained from the
cluster.
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Figure 3. Moving average revenue for windows of 250 iterations against the proportional best average revenue possible using d = 5,
n = 10.
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Figure 4. Moving average revenue for windows of 250 iterations against the proportional best average revenue possible using d = 50,
n = 50.
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T = 1, 000 d⇥ n (0.0, 0.0) (0.1, 0.0) (0.5, 0.0) (0.0, 0.1) (0.1, 0.1) (0.5, 0.1)

Least Squares 5 ⇥ 5 76.2% 77.6% 84.2% 78.9% 79.4% 79.3%
Thompson Sampling 5 ⇥ 5 95.2% 74.2% 21.9% 85.4% 65.4% 19.0%
Ridge Regression 5 ⇥ 5 77.6% 79.0% 85.4% 90.4% 89.8% 83.5%
Ridge Reg. + Perturbation 5 ⇥ 5 80.8% 80.9% 86.0% 90.3% 89.6% 83.5%
Known Parameter 5 ⇥ 5 99.9% 100.1% 100.8% 92.4% 92.4% 92.2%
Least Squares 5 ⇥ 10 60.9% 63.2% 73.4% 80.1% 80.5% 82.6%
Thompson Sampling 5 ⇥ 10 94.2% 90.3% 51.2% 89.4% 85.9% 48.3%
Ridge Regression 5 ⇥ 10 64.5% 67.3% 76.5% 93.0% 92.8% 90.0%
Ridge Reg. + Perturbation 5 ⇥ 10 73.9% 73.9% 81.1% 92.8% 92.6% 90.2%
Known Parameter 5 ⇥ 10 100.0% 100.0% 99.9% 95.5% 95.5% 95.4%
Least Squares 10 ⇥ 5 70.9% 74.6% 78.1% 83.7% 84.0% 82.9%
Thompson Sampling 10 ⇥ 5 94.5% 91.0% 50.6% 89.0% 84.6% 47.6%
Ridge Regression 10 ⇥ 5 71.0% 75.2% 78.8% 92.5% 92.5% 89.0%
Ridge Reg. + Perturbation 10 ⇥ 5 82.0% 84.3% 84.7% 92.3% 92.3% 89.7%
Known Parameter 10 ⇥ 5 99.9% 99.9% 99.7% 94.5% 94.4% 94.2%
Least Squares 10 ⇥ 10 58.5% 62.5% 72.0% 75.7% 75.3% 76.7%
Thompson Sampling 10 ⇥ 10 92.2% 66.6% 14.7% 86.1% 62.4% 15.1%
Ridge Regression 10 ⇥ 10 59.0% 63.4% 72.4% 91.2% 90.4% 84.0%
Ridge Reg. + Perturbation 10 ⇥ 10 72.3% 73.6% 77.2% 90.9% 90.2% 84.1%
Known Parameter 10 ⇥ 10 100.0% 99.9% 99.7% 93.9% 93.9% 93.9%
Least Squares 25 ⇥ 25 44.0% 49.7% 54.0% 64.5% 66.0% 58.9%
Thompson Sampling 25 ⇥ 25 89.1% 5.4% 0.3% 74.4% 6.1% 0.7%
Ridge Regression 25 ⇥ 25 44.1% 50.6% 56.0% 86.1% 78.4% 46.8%
Ridge Reg. + Perturbation 25 ⇥ 25 69.5% 66.7% 61.4% 85.4% 78.0% 46.3%
Known Parameter 25 ⇥ 25 100.0% 100.0% 99.7% 90.7% 90.8% 91.3%
Least Squares 25 ⇥ 50 41.4% 48.1% 56.1% 64.7% 65.1% 68.1%
Thompson Sampling 25 ⇥ 50 89.0% 19.6% 3.3% 82.4% 20.5% 3.7%
Ridge Regression 25 ⇥ 50 43.3% 50.3% 62.7% 90.0% 85.8% 69.7%
Ridge Reg. + Perturbation 25 ⇥ 50 62.8% 64.0% 68.8% 89.5% 85.5% 69.1%
Known Parameter 25 ⇥ 50 100.0% 100.1% 100.3% 93.7% 93.8% 94.1%
Least Squares 50 ⇥ 25 49.1% 53.7% 59.1% 67.7% 68.1% 68.3%
Thompson Sampling 50 ⇥ 25 92.2% 18.3% 2.6% 82.7% 19.5% 2.8%
Ridge Regression 50 ⇥ 25 51.9% 55.9% 64.6% 89.4% 85.3% 67.7%
Ridge Reg. + Perturbation 50 ⇥ 25 70.8% 69.7% 71.8% 89.1% 85.2% 67.6%
Known Parameter 50 ⇥ 25 100.0% 100.0% 100.0% 92.9% 92.9% 92.6%
Least Squares 50 ⇥ 50 42.0% 52.2% 55.7% 62.3% 63.7% 58.7%
Thompson Sampling 50 ⇥ 50 87.5% 5.4% 1.5% 76.0% 6.7% 1.5%
Ridge Regression 50 ⇥ 50 43.6% 54.5% 62.1% 86.8% 76.8% 47.7%
Ridge Reg. + Perturbation 50 ⇥ 50 67.2% 68.8% 66.7% 86.0% 76.6% 47.2%
Known Parameter 50 ⇥ 50 100.0% 100.0% 100.0% 92.0% 91.9% 91.6%

Table 2. All percentages shown are the average revenue over 100 simulations divided by the best average revenue achievable (OPT(P)).
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T = 5, 000 d⇥ n (0.0, 0.0) (0.1, 0.0) (0.5, 0.0) (0.0, 0.1) (0.1, 0.1) (0.5, 0.1)

Least Squares 5 ⇥ 5 76.7% 79.4% 87.1% 91.6% 91.5% 90.5%
Thompson Sampling 5 ⇥ 5 98.7% 88.6% 42.6% 93.2% 80.9% 36.7%
Ridge Regression 5 ⇥ 5 78.1% 79.4% 86.5% 95.1% 94.9% 92.4%
Ridge Reg. + Perturbation 5 ⇥ 5 80.0% 79.7% 87.2% 94.9% 94.8% 92.3%
Known Parameter 5 ⇥ 5 100.0% 100.0% 99.9% 95.9% 95.9% 96.0%
Least Squares 5 ⇥ 10 61.2% 63.5% 75.3% 93.1% 93.3% 92.6%
Thompson Sampling 5 ⇥ 10 97.3% 96.0% 71.7% 95.8% 93.0% 68.6%
Ridge Regression 5 ⇥ 10 64.9% 67.9% 79.6% 96.5% 96.5% 95.5%
Ridge Reg. + Perturbation 5 ⇥ 10 71.0% 71.9% 80.4% 96.4% 96.4% 95.3%
Known Parameter 5 ⇥ 10 100.0% 100.0% 100.0% 97.5% 97.5% 97.4%
Least Squares 10 ⇥ 5 71.3% 72.3% 80.9% 93.6% 93.4% 93.4%
Thompson Sampling 10 ⇥ 5 96.0% 96.4% 70.4% 95.2% 92.1% 67.1%
Ridge Regression 10 ⇥ 5 71.5% 73.7% 81.5% 96.3% 96.2% 95.5%
Ridge Reg. + Perturbation 10 ⇥ 5 77.0% 80.1% 83.0% 96.2% 96.1% 95.3%
Known Parameter 10 ⇥ 5 100.0% 100.0% 100.1% 97.0% 97.0% 97.0%
Least Squares 10 ⇥ 10 58.9% 63.3% 70.0% 91.0% 90.9% 91.3%
Thompson Sampling 10 ⇥ 10 96.2% 83.9% 29.5% 94.2% 80.7% 30.8%
Ridge Regression 10 ⇥ 10 59.4% 63.7% 70.4% 95.6% 95.4% 93.3%
Ridge Reg. + Perturbation 10 ⇥ 10 69.2% 69.8% 74.1% 95.5% 95.4% 93.1%
Known Parameter 10 ⇥ 10 100.0% 100.0% 100.1% 96.7% 96.6% 96.5%
Least Squares 25 ⇥ 25 44.6% 54.0% 58.6% 85.6% 85.6% 78.3%
Thompson Sampling 25 ⇥ 25 97.2% 12.6% 1.2% 88.6% 15.0% 1.9%
Ridge Regression 25 ⇥ 25 44.8% 54.7% 60.4% 93.4% 91.1% 76.4%
Ridge Reg. + Perturbation 25 ⇥ 25 64.9% 64.0% 66.2% 93.2% 90.9% 76.5%
Known Parameter 25 ⇥ 25 100.0% 100.1% 100.4% 95.0% 94.9% 94.7%
Least Squares 25 ⇥ 50 41.5% 48.1% 57.5% 87.7% 87.4% 84.4%
Thompson Sampling 25 ⇥ 50 94.6% 36.2% 7.3% 93.0% 39.9% 8.6%
Ridge Regression 25 ⇥ 50 43.5% 49.9% 68.0% 95.0% 94.2% 87.8%
Ridge Reg. + Perturbation 25 ⇥ 50 55.7% 58.0% 74.1% 94.9% 94.1% 87.0%
Known Parameter 25 ⇥ 50 100.0% 99.9% 99.6% 96.5% 96.5% 96.5%
Least Squares 50 ⇥ 25 49.3% 53.0% 57.8% 87.6% 87.9% 85.3%
Thompson Sampling 50 ⇥ 25 97.8% 34.3% 5.5% 92.3% 38.9% 7.1%
Ridge Regression 50 ⇥ 25 52.2% 55.3% 58.4% 94.6% 93.9% 86.8%
Ridge Reg. + Perturbation 50 ⇥ 25 66.0% 65.7% 67.8% 94.4% 93.7% 87.1%
Known Parameter 50 ⇥ 25 100.0% 100.0% 100.1% 96.0% 96.0% 96.0%
Least Squares 50 ⇥ 50 41.9% 52.7% 60.4% 85.8% 86.2% 79.6%
Thompson Sampling 50 ⇥ 50 96.4% 10.0% 1.8% 89.7% 14.3% 2.7%
Ridge Regression 50 ⇥ 50 43.6% 53.2% 68.2% 94.0% 91.5% 77.9%
Ridge Reg. + Perturbation 50 ⇥ 50 59.9% 61.3% 71.8% 93.7% 91.4% 77.8%
Known Parameter 50 ⇥ 50 100.0% 100.0% 100.2% 95.5% 95.5% 95.5%

Table 3. All percentages shown are the average revenue over 100 simulations divided by the best average revenue achievable (OPT(P)).
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T = 10, 000 d⇥ n (0.0, 0.0) (0.1, 0.0) (0.5, 0.0) (0.0, 0.1) (0.1, 0.1) (0.5, 0.1)

Least Squares 5 ⇥ 5 76.8% 79.7% 85.4% 94.7% 94.6% 93.7%
Thompson Sampling 5 ⇥ 5 98.8% 92.4% 52.8% 95.4% 85.8% 47.0%
Ridge Regression 5 ⇥ 5 78.2% 79.7% 87.0% 96.5% 96.4% 95.0%
Ridge Reg. + Perturbation 5 ⇥ 5 80.1% 80.0% 88.6% 96.4% 96.4% 95.0%
Known Parameter 5 ⇥ 5 100.0% 100.0% 100.2% 97.0% 97.0% 97.1%
Least Squares 5 ⇥ 10 61.2% 63.5% 75.8% 95.9% 95.9% 95.4%
Thompson Sampling 5 ⇥ 10 96.8% 97.3% 79.0% 97.2% 95.1% 76.1%
Ridge Regression 5 ⇥ 10 65.0% 67.8% 76.8% 97.5% 97.5% 97.0%
Ridge Reg. + Perturbation 5 ⇥ 10 70.4% 71.7% 81.0% 97.5% 97.5% 97.0%
Known Parameter 5 ⇥ 10 100.0% 100.0% 100.1% 98.2% 98.2% 98.2%
Least Squares 10 ⇥ 5 71.4% 73.1% 81.7% 95.9% 95.9% 95.4%
Thompson Sampling 10 ⇥ 5 96.7% 97.7% 77.7% 96.8% 94.3% 74.6%
Ridge Regression 10 ⇥ 5 71.6% 75.0% 82.4% 97.3% 97.3% 96.8%
Ridge Reg. + Perturbation 10 ⇥ 5 76.4% 80.2% 83.3% 97.3% 97.3% 96.6%
Known Parameter 10 ⇥ 5 100.0% 100.0% 100.0% 97.8% 97.8% 97.8%
Least Squares 10 ⇥ 10 59.0% 64.5% 71.0% 94.5% 94.2% 93.5%
Thompson Sampling 10 ⇥ 10 96.4% 89.0% 38.8% 96.0% 86.3% 40.5%
Ridge Regression 10 ⇥ 10 59.4% 65.2% 71.8% 96.8% 96.7% 95.2%
Ridge Reg. + Perturbation 10 ⇥ 10 68.9% 70.4% 73.0% 96.7% 96.6% 95.0%
Known Parameter 10 ⇥ 10 100.0% 100.0% 100.1% 97.5% 97.5% 97.5%
Least Squares 25 ⇥ 25 44.5% 53.7% 67.1% 91.4% 91.2% 84.7%
Thompson Sampling 25 ⇥ 25 98.4% 18.5% 1.8% 92.3% 21.2% 2.7%
Ridge Regression 25 ⇥ 25 44.7% 54.7% 65.8% 95.3% 94.0% 83.4%
Ridge Reg. + Perturbation 25 ⇥ 25 65.8% 63.9% 69.6% 95.1% 94.0% 83.6%
Known Parameter 25 ⇥ 25 100.0% 100.0% 100.0% 96.2% 96.2% 95.9%
Least Squares 25 ⇥ 50 41.6% 48.0% 58.0% 92.7% 92.7% 90.4%
Thompson Sampling 25 ⇥ 50 97.8% 46.3% 10.4% 95.4% 50.8% 11.8%
Ridge Regression 25 ⇥ 50 43.6% 49.5% 67.1% 96.4% 96.0% 91.1%
Ridge Reg. + Perturbation 25 ⇥ 50 57.7% 59.2% 71.3% 96.3% 96.0% 91.2%
Known Parameter 25 ⇥ 50 100.0% 100.0% 100.0% 97.4% 97.4% 97.4%
Least Squares 50 ⇥ 25 49.3% 53.6% 58.8% 92.5% 92.8% 90.5%
Thompson Sampling 50 ⇥ 25 98.6% 44.8% 7.9% 94.8% 50.2% 10.3%
Ridge Regression 50 ⇥ 25 52.3% 55.1% 65.1% 96.1% 95.7% 91.3%
Ridge Reg. + Perturbation 50 ⇥ 25 63.9% 62.6% 69.9% 96.0% 95.7% 91.1%
Known Parameter 50 ⇥ 25 100.0% 100.0% 100.0% 97.0% 97.0% 97.1%
Least Squares 50 ⇥ 50 43.2% 51.2% 59.5% 91.4% 91.5% 85.8%
Thompson Sampling 50 ⇥ 50 98.1% 13.2% 2.3% 93.1% 19.7% 3.5%
Ridge Regression 50 ⇥ 50 44.9% 52.9% 65.0% 95.6% 94.5% 84.9%
Ridge Reg. + Perturbation 50 ⇥ 50 59.3% 63.2% 67.7% 95.5% 94.4% 85.2%
Known Parameter 50 ⇥ 50 100.0% 100.0% 99.9% 96.7% 96.7% 96.8%

Table 4. All percentages shown are the average revenue over 100 simulations divided by the best average revenue achievable (OPT(P)).
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