Symmetric Spaces for Graph Embeddings

A. Symmetric Spaces: a Short Overview

Riemannian symmetric spaces have been extensively stud-
ied by mathematicians, and there are many ways to char-
acterize them. They can be described as simply connected
Riemannian manifolds, for which the curvature is covari-
antly constant, or Riemannian manifolds, for which the
geodesic reflection in each point defines a global isometry
of the space. A key consequence is that symmetric spaces
are homogeneous manifolds, which means in particular that
the neighbourhood of any point in the space looks the same,
and moreover that they can be efficiently described by the
theory of semisimple Lie groups.

To be more precise a symmetric space is a Riemannian man-
ifold (M, g) such that for any point p € M, the geodesic
reflection at p is induced by a global isometry of M. A di-
rect consequence is that the group of isometries Isom(M, g)
acts transitively on M, i.e. given p,q € M there exists
g € Isom(M,g) such that g(p) = ¢. Thus symmetric
spaces are homogeneous manifolds, which means in particu-
lar that the neighbourhood of any point in the space looks the
same. This leads to an efficient description by the theory of
semisimple Lie groups: M = G/K where G = Isomg(M)
and K, a compact Lie group, is the stabilizer of a point
pe M.

A.1. Classification

Every symmetric space (M, g) can be decomposed into an
(almost) product M = Mj X - - - X My, of symmetric spaces.
A symmetric space is irreducible, if it cannot be further
decomposed into a Riemannian product M = M; x M.
We restrict our discussion to these fundamental building
blocks, the irreducible symmetric spaces.

Irreducible symmetric spaces can be distinguished in two
classes, the symmetric spaces of compact type, and the
symmetric spaces of non-compact type, with an interesting
duality between them. Apart from twelve exceptional exam-
ples, there are eleven infinite families of pairs of symmetric
spaces X of compact and non-compact type, which we sum-
marize in Table 6. We refer the reader to Helgason (1978)
for more details and a list of the exceptional examples.

Remark. Observe that, due to isomorphisms in low di-
mensions, the first cases of each of the above series is a
hyperbolic space (of the suitable dimension). Using this
one can construct many natural hyperbolic spaces as totally
geodesic submanifolds of the symmetric spaces above. We
listed them in Table 7 for the reader’s convenience.

Rank: An important invariant of a symmetric space M is its
rank, which is the maximal dimension of an (isometrically
embedded) Euclidean submanifold. In a rank r non-compact
symmetric space, such submanifolds are isometric to R",
and called maximal flats. In a compact symmetric space,

they are compact Euclidean manifolds such as tori.

Some of the rich symmetry of symmetric spaces is visible in
the distribution of flats. As homogeneous spaces, each point
of a symmetric space M must lie in some maximal flat, but
in fact for every pair p, q of points in M, one may find some
maximal flat containing them. The ability to move any pair
of points into a fixed maximal flat by symmetries renders
many quantities (such as the metric distances described
below) computationally feasible.

A.2. Duality

Compactness provides a useful dichotomy for irreducible
symmetric spaces. Symmetric spaces of compact type are
compact and of non-negative sectional curvature. The ba-
sic example being the sphere S™. Symmetric spaces of
non-compact type are non-compact, in fact they are homeo-
morphic to R™ and of non-positive sectional curvature. The
basic example being the hyperbolic spaces H"™.

There is a duality between the symmetric spaces of non-
compact type and those of compact type, pairing every non-
compact symmetric space with its compact *partner’ or dual.

Figure 6. The duality between the hyperbolic plane and sphere is
the basic example of the duality between symmetric spaces of
compact and noncompact type.

Duality for symmetric spaces generalizes the relationship
between spheres and hyperbolic spaces, as well as between
classical and hyperbolic trigonometric functions. In the
reference Table 6, we provide for each family of symmet-
ric spaces an explicit realization of both the noncompact
symmetric space and its compact dual as coset spaces G/K.

A.3. Vector-Valued Distance

The familiar geometric invariant of pairs of points is sim-
ply the distance between them. For rank n symmetric
spaces, this one dimensional invariant is superseded by an
n-dimensional invariant: the vector valued distance.

Abstractly, one computes this invariant as follows: for a
symmetric space M with Isomo(M) = G, choose a dis-
tinguished basepoint m € M, and let K < G be the
subgroup of symmetries fixing m. Additionally choose
a distinguished maximal flat ' C M containing m, and an
identification of this flat with R™. Given any pair of points
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Type | Non-compact Compact rkr dim
Al | SL(n,R)/SO(n,R) SU(n)/SO(n) n—1 (nDini2)
A SL(n,C)/SU(2) (SU(n) x SU(n))/SU(n) n—1 (n+1)(n—-1)
BDI | SO(p,q)/SO(p) x SO(q) | SO(p+ q)/SO(p) x SO(q) min{p,q} | pq
Alll | SU(p,q)/SU(p) x SU(q) SU(p + ¢)/SU(p) x SU(q) min{p, ¢} | 2pq
CI Sp(2n,R)/U(n) Sp(2n)/U(n) n 2n(n +1)
DII | SO*(2n)/U(n) SO(2n)/U(n) |5 n(n —1)
CIl_| Sp(p,q)/Sp(p) % Sp(q) Sp(p + ¢)/Sp(p) x Sp(q) min{p, ¢} | 4pq
AIl | SL(n,H)/Sp(n) SU(2n)/Sp(n) n—1 (n—1)(2n+1)
D SO(2n,C)/SO(2n) (SO(2n) x SO(2n))/SO(2n) n n(2n — 1)
B SO(2n+1,C)/SO(2n+1) | (SO(2n+1) x SO(2n+1))/SO(2n+1) | n n(2n +1)
C Sp(n, C)/Sp(n) (Sp(n) x Sp(n))/Sp(n) n
Table 6. The classical symmetric spaces. Row CI represents the Siegel spaces and their compact duals.
Type | Parameters Symmetric space F', and abstractly, the vector valued distance vDist(p, q)
2 from p to q is this difference vector up to the action of the
Al n=2 SL(2,R)/SO(2,R) H Weyl group. This vector valued distance vDist(p, q) is the
A n—=2 SL(2,C)/SU(2) 3 complete ir}vgriant for‘ pairs of points. in M - it ‘conta‘lins
all geometric information about the pair which is invariant
BDI | p=1 SO(1,4)/S0(q) I under all symmetries. In particular, given the vector valued
Al | p=1,q=1 | SU(1,1)/SU(1) x SU(1) | H? .distz.m.ce vDist(p, q), .th.e (Riemannian) distance fromp to q
is trivial to compute - it is given by the length of vDist(p, q)
CI n=1 Sp(2,R)/U(1) H? in R™.
DII | n= SO*(4)/U(1) H? The identification of F’ with R™ makes this more explicit.
Here the Weyl group acts as a group of linear transforma-
o 4 yl group group
Cl |p=a= Sp(1,1)/8p(1) x Sp(1) H tions, which divide R™ into a collection of conical funda-
All | n=1 SL(2,H)/Sp(1) H> mental domains for the action, known as Weyl chambers.
. Choosing a fixed Weyl chamber C', we may use these sym-
n=1 80(2,€)/80(2) R metries to move our originally found difference vector v—m
n=1 SO(3,C)/S0O(3) H3 into C. The vector valued distance is this resulting vector
Dist(p,q) € C.
ne1 $p(1,)/Sp(1) o | VPR

Table 7. Hyperbolic spaces for low parameters

p,q € M, one may find an isometry g € G moving p to m,
and ¢ to some other point g(¢) = v € F in the distinguished
flat. Under the identification of F' with R"™, the difference
vector v — m is a vector-valued invariant of the original
two points, and determines the vector valued distance. (In
practice we may arrange so that m is identified with 0, so
this difference is simply v).

In rank 1, the flat F' identifies with R!, and this difference
vector v — m with a number. This number encodes all
geometric information about the pair (p, ¢) invariant under
the symmetries of M. Indeed, the distance from p to q is
simply its absolute value!

In rank n, “taking the absolute value” has an n-dimensional
generalization, via a finite a finite group of symmetries of
called the Weyl group. This group W < K acts on the flat

o

Figure 7. A choice of Weyl chamber the Siegel spaces of rank n is
givenby C = {(v;) € R" |v1 > v2 > -+ > v, > 0}. Inrank
1, this is the nonnegative reals. Illustrated here are ranks n = 2, 3.

For example, in rank n Siegel space, the Weyl group acts
on R? by the reflection symmetries of a cube, and a choice
of Weyl chamber amounts to a choice of linear ordering of
the vector components with respect to zero. One choice is
shown in Figure 7. In rank 2, this chamber is used to display
the vector valued distances associated to edges and nodes
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of an embedded graph in Figures 13-20. Note that once a
Weyl chamber is picked it may be possible to find the vector
valued distance corresponding to a vector in R™ without
explicit use of the Weyl group: for the Siegel spaces this is
by sorting the vector components in nondecreasing order.

Computing Distance: The process for computing the vec-
tor valued distance is summarized below. It is explicitly
carried out for the Siegel spaces and their compact duals in
Appendix B.

Let M, G, K, F, m be as in the previous section. Choose an
identification ¢: F' — R™ which sends the basepoint m to
0, and a Weyl chamber C' C R" for the Weyl group W. For
any pair of points p, g € M;

1. Move p to the basepoint:
Compute g € G such that g(p) = m.

2. Move q into the flat:
Compute k& € K such that k(g(q)) € F. Now both
g(p) = m and k(g(q)) lie in the distinguished flat F.

3. Identify the flat with R":
Compute u = ¢(k(g(g))) € R™. The points 0 and u
represent p, g after being moved into the flat, respec-
tively.

4. Return the Vector Valued Distance:
Compute v € C such that v = Au for some element
A € W. This is the vector valued distance vDist(p, q)

The Riemannian distance is computed directly from the
vector valued distance as its Euclidean norm, dist(p, ¢) =

[[vDist(p, g)|-

A.4. Finsler Metrics

A Riemannian metric on a manifold M is defined by a
smooth choice of inner product on the tangent bundle.
Finsler metrics generalize this by requiring only a smoothly
varying choice of norm || - || . The length of a curve = is
defined via integration of this norm along the path

Lengthy (1) = / I I,
I

and the distance between points by the infimum of this over
all rectifiable curves joining them

dr(p,q) = inf{Lengthp(7) [ v(0) = p, v(1) = ¢}

The geometry of symmetric spaces allows the computation
of Finsler distances, like much else, to take place in a chosen
maximal flat. On such flat spaces, the ability to identify all
tangent spaces allow particularly simple Finsler metrics to

be defined by choosing a single norm on R™. We quickly
review this theory below.

Finsler Metrics on R": Any norm on R™ defines a Finsler
metric. As norms on a vector space are uniquely determined
by their unit spheres, the data of a Finsler metric is given by
a convex polytope S containing 0. An important example in
this work is the £* Finsler metric on R", given by the norm
[|(zi)|ler = >, || Its unit sphere is the boundary of the
dual to the n-dimensional cube (in R, this is again a square,
but oriented at 45° with respect to the coordinate axes).

Given such an P, the Finsler norm ||v|| ¢ of a vector v € R
is the unique positive ¢ such that %v € OP. Figure 8 below
shows the spheres of radius 1 and 2 with respect to the /!
metric on the plane.

Figure 8. Left: Vectors of length 1 and 2 with respect to the £
norm on R2. Right: three geodesics of length 4 in the ¢! metric
(to same scale as left image).

While affine lines are geodesics in Finsler geometry, they
need not be the unique geodesics between a pair of points.
Consider again Figure 8: the vector sum of the two unit
vectors in is exactly the diagonal vector, which lies on the
¢ sphere of radius 2. That is, in ¢! geometry traveling
along the diagonal, or along the union of a vertical and
horizontal side of a square both are distance minimizing
paths of length 2. The ¢! metric is often called the ‘taxicab’
metric for this reason: much as in a city with a grid layout of
streets, there are many shortest paths between a generic pair
of points, as you may break your path into different choices
of horizontal and vertical segments without changing its
length. See Figure 2 in the main text for another example of
this.

Finsler Metrics on Symmetric Spaces: To define a Finsler
metric on a symmetric space M, it suffices to define it on
a chosen maximal flat, and evaluate on arbitrary pairs of
points with the help of the vector valued distance. To induce
a well defined Finsler metric M, a norm on this designated
flat need only be invariant under the Weyl group W. Said
geometrically, the unit sphere of the norm || - || 7 needs to
contain it as a subgroup of its symmetries. Given such a
norm, the Finsler distance between two points is simply the
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Finsler norm of their vector valued distance

dr(p,q) = [[vDist(p, q)|| -

Consequentially once the vector valued distance is known,
any selection of Riemannian or Finsler distances may be
computed at marginal additional cost.

Figure 9. The unit spheres of several Finsler metrics on R? in-
variant under the Weyl group of the rank 3 Siegel space. The
octahedron induces the £ metric.

A.5. Local Geometry for Riemannian Optimization

Different Riemannian optimization methods require various
input from the local geometry - here we describe a compu-
tation of the Riemannian gradient, parallel transport and the
exponential map for general irreducible symmetric spaces.

Riemannian Gradient Given a function f: M — R, the
differential of f is a 1-form which measures how infinites-
imal changes in the input affects (infinitesimally) the out-
put. More precisely at each point p € M, df is a linear
functional on T, M sending a vector v to the directional
derivative df,(v) of f in direction v.

In Euclidean space, this data is conveniently expressed as
a vector: the gradient V f defined such that (V f(p)) - v =
dfp(v). This extends directly to any Riemannian manifold,
where the dot product is replaced with the Riemannian
metric. That is, the Riemannian gradient of a function
f+ M — R is the vector field gradg(f) on M such that

gp(gradg(f),v) = dfp(v)

for every p € M, v € T,M. Given a particular model
(and thus, a particular coordinate system and metric tensor)
one may use this implicit definition to give a formula for
grad . See Appendix B.6 for an explicit example, deriving
the Riemannian gradient for Siegel space from its metric
tensor.

Parallel Transport

While the lack of curvature in Euclidean space allows all
tangent spaces to be identified, in general symmetric spaces
the result of transporting a vector from one tangent space
to another is a nontrivial, path dependent operation. This
parallel transport assigns to a path v in M from p to ¢ an
isomorphism P, : T,M — T;M interpreted as taking a

vector v € T,M at p to P,(v) € T, M by “moving without
turning” along ~y.

The computation of parallel transport along geodesics in
a symmetric space is possible directly from the isometry
group. To fix notation, for each m € M let o, € G be
the geodesic reflection fixing m. Let y be a geodesic in M
through p att = 0. As ¢ varies, the isometries 74 = 0. (;/2) ©
op, called transvections, form the 1-parameter subgroup of
translations along ~. If p, ¢ € M are two points at distance
L apart along the the geodesic v, the transvection 7y, takes
p to ¢, and its derivative (drr), = Py: T,M — T,M
performs the parallel transport for .

The Exponential Map & Lie Algebra The exponential
map for a Riemannian manifold M is the map exp: TM —
M such thatif v € T},(X), exp(v) is the point in M reached
by traveling distance ||v|| along the geodesic on M through
p with initial direction parallel to v.

When M is a symmetric space with symmetry group G,
this may be computed using the Lie group exponential
exp: g — G (the matrix exponential, when G is a ma-
trix Lie group). Choose a point p € M and let o, be the
geodesic reflection in p. Then o, defines an involution
G — G by g — 0,0 g o o, (Where composition is as
isometries of M), and the eigenspaces of the differential
of this involtuion give a decomposition g = € & p into the
+1 eigenspace £ and the —1 eigenspace p. Here € is the
Lie algebra of the stabilizer K = stab(p) < G, and so p
identifies with T), M under the differential of the quotient
G—G/K=M.

Let ¢: T, M — p be the inverse of this identification. Then
for a vector v € T}, M, we may find the point ¢ = exp,(v) €
M as follows:

1. Compute ¢(v) = A € p. This is the tangent vector v,
viewed as a matrix in the Lie algebra to G.

2. Compute g = exp(A), where exp is the matrix expo-
nential.

3. Use the action of G on M by isometries to compute
q=g(p).
B. Explicit Formulas for Siegel Spaces

This section gives the calculations mathematics required
to implement two models of Siegel space (the bounded
domain model and upper half space) as well as a model of
its compact dual.

B.1. Linear Algebra Conventions

A few clarifications from linear algebra can be useful:
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1. The inverse of a matrix X ~!, the product of two matri-
ces XY, the square X2 of a square matrix are under-
stood with respect to the matrix operations. Unless all
matrices are diagonal these are different than doing the
same operation to each entry of the matrix.

2. If Z = X +14Y is a complex matrix,

 Z' denotes the transpose matrix, i.e. (Z');; =
L,
e Z = X — 1Y denotes the complex conjugate

e X* denotes its transpose conjugate, i.e. X* =
Xt

3. A complex square matrix Z is Hermitian if Z* = Z.
In this case its eigenvalues are real and positive. It is
unitary if Z* = Z 1. In this case its eigenvalues are
complex numbers of absolute value 1 (i.e. points in the
unit circle).

4. If X is areal symmetric, or complex Hermitian matrix,
X >> 0 means that X is positive definite, equivalently
all its eigenvalues are bigger than zero.

B.2. Takagi Factorization

Given a complex symmetric matrix A, the Takagi factoriza-
tion is an algorithm that computes a real diagonal matrix D
and a complex unitary matrix K such that

A= KDK*.

This will be useful to work with the bounded domain model.
It is done in a few steps

1. Find Z; unitary, D real diagonal such that
A*A=7Z;D*7,
2. Find Z5 orthogonal, B complex diagonal such that
Z\AZY = Z,BZE

This is possible since the real and imaginary parts of
Z1AZ; are symmetric and commute, and are therefore
diagonalizable in the same orthogonal basis.

3. Set Z3 be the diagonal matrix with entries

bi
(Z3)ii = ( |bz|>

where bi = (B)ii

-1

4. Set K = Z{Z2Z3, D as in Step 1. It then holds

A=KDK".

B.3. Siegel Space and its Models

We consider two models for the symmetric space, the
bounded domain

B, :={Z € Sym(n,C)|Id — Z*Z >> 0}
and the upper half space
Sp :={X +1iY € Sym(n,C)| Y > 0}.

An explicit isomorphism between the two domains is given
by the Cayley transform

C: Bn — Sn
Z = i(Z+1d)(Z —1d)"?

whose inverse ¢~! = t is given by

t: S, — B,
X = (X —dld)(X +4ld)~!

When needed, a choice of basepoint for these models is
ild € S, for upper half space and the zero matrix 0 € B,
for the bounded domain. A convenient choice of maximal
flats containing these basepoints are the subspaces {iD |
D = diag(d;), d; > 0} C S, and {D = diag(d;) | d; €
(-1,1)} C B,.

The group of symmetries of the Siegel space S, is
Sp(2n,R), the subgroup of SL(2n,R) preserving a sym-
plectic form: a non-degenerate antisymmetric bilinear form
on R?", In this text we will choose the symplectic form
represented, with respect to the standard basis, by the ma-
trix ( 7IOdn I%” ) so that the symplectic group is given by the
matrices that have the block expression

A'D_C'B=1d
(é g) AC = Ot A
B'D = D'B

where A, B, C, D are real n X n matrices.

The symplectic group Sp(2n,R) acts on S,, by non-
commutative fractional linear transformations

(é g>¢kzmz+3xcz+prﬁ

The action of Sp(2n, R) on B,, can be obtained through the
Cayley transform.

B.4. Computing the Vector-Valued Distance

The Riemannian metric, as well as any desired Finsler dis-
tance, are computable directly from the vector-valued dis-
tance as explained in Appendix A.3. Following those steps,
we give an explicit implementation for the upper half space
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model below, and subsequently use the Cayley transform to
extend this to the bounded domain model.

Given as input two points Z;,Zy € S,, we perform the
following computations:

1) Move Z; to the basepoint: Compute the image of Z;
under the transformation taking Z; to ¢I, defining

-1 —1
VARSRVAN VA (Z2 — %Zl)\/ RV €S,

2) Move Z5 into the chosen flat: Define
W =1t(Z3) € B,
and use the Takagi factorization to write
W = KDK*

for some real diagonal matrix D with eigenvalues between
0 and 1, and some unitary matrix K. Note: to make com-
putations easier, we are leveraging the geometry of both
models here, so in fact i(I + D)(I — D)~ is the matrix
lying in the standard flat containing il.

3) Identify the flat with R":
R™ with

Define the vector v = (v;) €
1+d;
—d;’

for d; the i*" diagonal entry of the matrix D from the last
step.

log

4) Return the Vector Valued Distance: Sort the absolute
values of the entries of v to be in nonincreasing order, and
set vDist(Z1, Z3) equal to the resulting list.

vDist =

)

(‘Uh'a |Ui2|’ SRR |vin

Vi | > |vi, | > -
Bounded domain: In this case, given W1, Wy € B we
consider the pair 71, Z5 € §,, obtained applying the Cayley

transform Z; = ¢(W;). Then we can apply the previous
algorithm, indeed

VDiSt(Wl, WQ) = VDiSt(Zl, ZQ)

B.5. Riemannian & Finsler Distances

The Riemannian distance between two points X, Y in the
Siegel space (either the upper half space or bounded domain
model) is induced by the Euclidean metric on its maximal

flats. This is calculable directly from the vector valued
distance vDist(X,Y) = (v1,v2,...,v,) as
dUXY) = | > 2

The Weyl group for the rank n Siegel space is the symmetry
group of the n cube. Thus, any Finsler metric on R™ whose
unit sphere has these symmetries has these symmetries in-
duces a Finsler metric on Siegel space. The class of such
finsler metrics includes many well-known examples such as
the ¢P metrics

1
P
H(Ulw"vvn)”ﬂ’ = <Z|Ul|p> ;
7

which is one of the reasons the Siegel space is an attractive
avenue for experimentation.

Of particular interest are the ¢! and /> Finsler metrics. The
distance functions induced on the Siegel space by them are
given below

d(X,Y) dF=(X,Y) = v;.

o

Where X, Y are points in Siegel space (again, either in the
upper half space or bounded domain models), and the v; are
the component of the vector valued distance vDist(X,Y") =

(v1,v2,...,05).

There are explicit bounds between the distances, for exam-
ple

X Y) < dMXY) SAR(XY) @

Furthermore, we have

d*(X,Y) = logdet(y/R(X,Y) + Id)—
logdet(Id — v/ R(X,Y))

which, in turn, allows to estimate the Riemannian distance

using (4).

B.6. Riemannian Gradient

We consider on Sym(n, C) the Euclidean metric given by
IV][% = tr(VV),

here tr denotes the trace, and, as above, V'V denotes the
matrix product of the matrix V" and its conjugate.

Siegel upperhalf space: The Riemannian metric at a point
Z € Sy, where Z = X +4Y is given by (Siegel, 1943)

V% = tr(Y VY V).
As a result we deduce that
grad(f(Z)) =Y -gradg(f(2)) Y
Bounded domain: In this case we have
grad(f(Z)) = A-gradg(f(Z))- A
where A=1d—ZZ
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B.7. Embedding Initialization

Different embeddings methods initialize the points close
to a fixed basepoint. In this manner, no a priori bias is
introduced in the model, since all the embeddings start with
similar values.

We use the basepoints specified previously: iId for Siegel
upper half space and O for the bounded domain model.

In order to produce a random point we generate a random
symmetric matrix with small entries and add it to our base-
point. As soon as all entries of the perturbation are smaller
than 1/n the resulting matrix necessarily belongs to the
model. In our experiments, we generate random symmet-
ric matrices with entries taken from a uniform distribution
U(—0.001,0.001).

B.8. Projecting Back to the Models

The goal of this section is to explain two algorithms that,
given e and a point Z € Sym(n, C), return a point Z° (resp.
ZB), a point close to the original point lying in the e-interior
of the model. This is the equivalent of the projection applied
in Nickel & Kiela (2017) to constrain the embeddings to re-
main within the Poincaré ball, but adapted to the structure of
the model. Observe that the projections are not conjugated
through the Cayley transform.

Siegel upperhalf space: In the case of the Siegel upperhalf
space S,, given a point Z = X 4+ ¢Y € Sym(n,C)

1. Find a real n-dimensional diagonal matrix D and an
orthogonal matrix K such that

Y = K'DK

2. Compute the diagonal matrix D, with the property that

D“ if Dii > €
(De)ii = { .
€ otherwise

3. The projection is given by
7Z8 .= X +iK'D.K

Bounded Domain: In the case of the bounded domain B
given a point Z = X + 1Y € Sym(n, C)

1. Use the Takagi factorization to find a real n-
dimensional diagonal matrix D and an unitary matrix
K such that

Y = KDK*

2. Compute the diagonal matrix DZ with the property

that
(D), = {Di,; if Dy <1—e¢

1 — ¢ otherwise

3. The projection is given by

ZB .= KDPK*

B.9. Crossratio and Distance

Given two points X, Y in Siegel space, there is an alterna-
tive means of calculating the vector valued distance (and
thus any Riemannian or Finsler distance one wishes) via an
invariant known as the cross ratio.

Siegel upperhalf space: Given two points X, Y € S, their
crossratio is given by the complex n X n-matrix

Rs(X,V)=(X-V)X-V)'X-V)(X-Y) .

It was established by Siegel (Siegel, 1943) thatif r1,...,7,
denote the eigenvalues of R (which are necessarily real
greater than or equal to 1) and we denote by v; the numbers

then the v; are the components of the vector-valued dis-
tandce vDist(X,Y). Thus, the Riemannian distance is

The Finsler distances d'* and d"> are likewise given by
the same formulas as previously.

In general it is computationally difficult to compute the
eigenvalues, or the squareroot, of a general complex matrix.
However, we can use the determinant detg of the matrix
R(X,Y) to give a lower bound on the distance:

log LT VAt x vy,
1 —+/detg

Bounded domain: The same study applies to pairs of
points XY € B, but their crossratio should be replaced by
the expression

R(X,Y)=(X -Y)(X —Y-1)!

@ -rmET-r

B.10. The Compact Dual of the Siegel Space

The compact dual to the (non-positively) curved Siegel
space is a compact non-negatively curved symmetric space;
in rank 1 this is just the 2-sphere. Many computations in the
compact dual are analogous to those for the Siegel spaces,
and are presented below.
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MODEL

Abstractly, the compact dual is the space of complex struc-
tures on quaternionic n-dimensional space compatible with
a fixed inner product. It is convenient to work with a coor-
dinate chart, or affine path covering all but a measure zero
subset of this space. We denote this patch by D,,, which
consists of all n X n complex symmetric matrices:

D,, = Sym(n;C)

With this choice of model, tangent vectors to D,, are also
represented by complex symmetric matrices. More pre-
cisely, for each W € D,, we may identify the tangent space
TwD,, with Sym(n, C).

Basepoint: The basepoint of D,, is the zero matrix O.

Maximal Flat: A useful choice of maximal flat is the sub-
space of real diagonal matrices.

Projection: The model D,, is a linear subspace of the space
of n X n complex matrices. Orthogonal projection onto this
subspace is given by symmetrization,

W s %(W + W),

Isometries: The symmetries of the compact dual are given
by the compact symplectic group Sp(n). With respect to
the model D,,, we may realize this as the intersection of the
complex symplectic group Sp(2n, C) and the unitary group
U(2n,C)

A'D - C'B=1d
AlC =C'A

B'D = D'B
A*A+C*C=1d
B*B+D*D =1d
A*B+C*D =0

(@ 5)

where A, B, C, D are complex n x n matrices. The first four
conditions are analogs of those defining Sp(2n; R), and the
final three come from the defining property that a unitary
matrix M satisfies M* M = Id.

This group acts on D,, by non-commutative fractional linear
transformations

(é g) W = (AW + B)(CW + D).

Riemannian Metric & Gradient: The Riemannian metric
at a point W € D,, is given by
U,V = 1d+WW) luId+ Ww)~ 'V,

where U, V are tangent vectors at W.

The gradient of a function on the compact dual can be writ-
ten in terms of its Euclidean gradient, via a formula very
similar to that for the Bounded Domain model of the Siegel
space. In this case we have

grad(f(W)) = A - grade(f(W)) - A

where (the only difference from the bounded domain version
being that the — sign in the definition of A has been replaced
with a +).

VECTOR VALUED DISTANCE

We again give an explicit implementation of the abstract
procedure described in Appendix A.3, to calculate the vector
valued distance associated to an arbitrary pair Wy, Ws € D,
as follows:

Move W1 to the basepoint:

1. Use the Takagi factorization to write
Wy =UPU*
for a unitary matrix U and real diagonal matrix P.

2. From P, we build the diagonal matrix A = (Id +
PQ)*I/z. That is, the diagonal entries of A are a; =
1 . . .
T for p; the diagonal entries of P.
3. From A, U we build the following elements M, R €
Sp(n) of the compact symplectic group:

A AP ut o
M= <AP A ) h= <0 U*>
We now use the transformation M - R to move the pair

(W1, W3) to a pair (0, Z). Because W7 ends at the base-
point by construction, we focus on W.

4. Compute X = R.Wj, thatis X = U'W,U.

5. Compute Z = M. X, thatis Z = (AX—AP)(APX—
A)~L. Alternatively, this simplifies to the conjugation
Z = AY A=l by A of the matrix Y = (X — P)(PX —
Id)~!

Move Z into the chosen flat: Use the Takagi factorization

to write
7 = KDK*

for a unitary matrix K and real diagonal matrix D.
Identify the Flat with R": Produce from D the n-vector

v = (arctan(dy), .. .arctan(d,,))

Where (dy, . .. d,) are the diagonal entries of D.
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Return the Vector Valued Distance: Order the the entries
of v in nondecreasing order. This is the vector valued dis-
tance.

.,Uin)

Viy 2 Viy 20 20, 20

vDist = (viy, Uiy, - -

RIEMANNIAN AND FINSLER DISTANCES:

The Riemannian distance between two points X, Y in the
compact dual is calculable directly from the vector valued
distance vDist(X,Y) = (v1,v2,...,0p) as

d?(X,Y) =

The Weyl group for the compact dual is the same as for
Seigel space, the symmetries of the n-cube. Thus the same
collection of Finsler metrics induce distance functions on
the compact dual, and their formulas in terms of the vector
valued distance are unchanged.

dNXY)=> v d™(X)Y) =
i=1

B.11. Interpolation between Siegel Space and its
Compact Dual

The Siegel space and its compact dual are part of a 1-
parameter family of spaces indexed by a real parameter
k € R. When n = 1 the symmetric spaces are two-
dimensional, and this k is interpreted as their (constant)
curvature. That is, this family represents an interpolation
between the hyperbolic plane (k¢ = —1) and the sphere
(k = 1) through Euclidean space (k = 0) as schematically
represented in Figure 10. Below we describe the generaliza-
tion of this to all n, by giving the model, symmetries, and
distance functions in terms of the parameter k € R.

Model: Our models are most similar to the Bounded domain
model of Siegel space, and so we use notation to match.
For each k € R we define the subset BY of Sym(n, C) as
follows:

Bl =

n

{WId+W*W >>0} k<0
Sym(n, C) k>0

The basepoint for BF is the zero matrix O for all k. Projec-
tion back to the model is analogous to what is done for the
bounded domain when k£ < 0, and is just symmetrization
for k£ > 0.

Isometries: Denote by G* the isometry group of BE. A
uniform description of G* can be given in close analogy
to the description of the symmetries of the compact dual.

I

DN

Figure 10. A 1-parameter family of spaces interpolating between
the Siegel space and its compact dual, here illustrated in rank 1
(H? transitioning S? through the Euclidean plane with k& = 0).

For each k € R, G = Sp(2n,C) N U* where U* is a
generalization of the usual unitary group

Ut = M| () M= (R )}

Riemannian Geometry: The Riemannian metric at a point
W € BF is given by the formula

U V) =tr (A'UATY)

Where A = Id + kW W. As before, this allows us to com-
pute the Riemannian Gradient in terms of the Euclidean
gradient on B%:

grad(f(W)) = A - gradg(f(W)) - A

From the Riemannian metric we may explicitly compute the
distance function from the basepoint O to a real diagonal
matrix D € BE:

aurctalrlh(di\/m)2
dist (0, D) = /Zi d22 k=0
2
Zi arctan\(/cg,\/ﬁ) k >0

Distance: The seven step procedure for calculating distance
in the compact dual can be modified to give a procedure
for the distance in B%. To calculate the Riemannian dis-
tance, Step 7 must be replaced with the distance formula
above. The only other changes involve the construction of
the matrix called M

* In step 2, the computation of P is unchanged but A is
replaced with A = (Id + kP?)~1/2,

* In step 3, the matrix M is replaced with

M= <sgn(£)AP ﬂf)
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2D GRID TREE
(IVI,|E|) (36, 60) (40, 39)
Dgyyg mAP Dgyyg mAP
S 1229 100.00 427  95.00
St 0.21 100.00  2.01 100.00
Sh 0.02 100.00 2.10 100.00
B 1226 100.00  4.14  94.17
BE= 0.29 100.00 2.04 100.00
B 0.01 100.00 206 99.17
DL 4759 5435 69.65  29.05
DI 63.85 1894 7533  15.18
DI 28.68 8296 38.84 55.28
Sk 1227 100.00 420  98.33
Sy 0.49 100.00 1.72  100.00
S 0.01 100.00 1.58 100.00
BE 12.24 100.00  4.10 100.00
Bi= 0.17 100.00 1.18 100.00
B 0.01 100.00 1.48 100.00
D 41.82 7820 6595 31.76
Dl 5331 7934 7419  19.16
D 13.38  100.00 23.64 71.94

Table 8. Comparison of the compact dual model to the upper half
space and bounded domain model on two synthetic datasets.

Where sgn(k) = 0 if & = 0. Note the computation of
M.X in Step 5 also changes, as M has changed. Now
M.X = (AX — AP)(sgn(k)APX — A)~ L.

B.12. Experiments on the Compact Dual

We perform experiments on small synthetic datasets to com-
pare the performance of the dual model to the upper half
Siegel space and the Bounded domain model. Results are
reported in Table 8. We can observe the reduced representa-
tion capabilities of the compact dual model, even on small
datasets.

C. Experimental Setup
C.1. Implementation of Complex Operations

All models and experiments were implemented in PyTorch
(Paszke et al., 2019) with distributed data parallelism, for
high performance on clusters of CPUs/GPUs.

Given a complex matrix Z € C"*", we model real and
imaginary components Z = X + Y with X, Y € R**"
separate matrices with real entries. We followed standard
complex math to implement basic arithmetic matrix oper-
ations. For complex matrix inversion we implemented the
procedure detailed in Falkenberg (2007).

Hardware: All experiments were run on Intel Cascade
Lake CPUs, with microprocessors Intel Xeon Gold 6230
(20 Cores, 40 Threads, 2.1 GHz, 28MB Cache, 125W TDP).
Although the code supports GPUs, we did not utilize them
due to higher availability of CPU’s.

C.2. Optimization

As stated before, the models under consideration are Rie-
mannian manifolds, therefore they can be optimized via
stochastic Riemannian optimization methods such as RSGD
(Bonnabel, 2011) (we adapt the Geoopt implementation
(Kochurov et al., 2020)). Given a function f(6) defined
over the set of embeddings (parameters) 6 and let Vi de-
note the Riemannian gradient of f(#), the parameter update
according to RSGD is of the form:

011 = Ret(—TltVRf(gt))

where Ry, denotes the retraction onto space at § and 7,
denotes the learning rate at time ¢. Hence, to apply this
type of optimization we require the Riemannian gradient
(described in Appendix B.6) and a suitable retraction.

Retraction: Following Nickel & Kiela (2017) we experi-
ment with a simple retraction:

Ro,(v) =0+ v

C.3. Graph Reconstruction

Loss Function: To compute the embeddings, we optimize
the distance-based loss function proposed in Gu et al. (2019).
Given graph distances {dg(X;, X;)};; between all pairs of
connected nodes, the loss is defined as:

o= ¥ ()

1<i<j<n
where dp(2;, ;) is the distance between the corresponding
node representations in the embeddings space. This formu-
lation of the loss function captures the average distortion.
We regard as future work experimenting with different loss
functions, similar to the ones proposed on Cruceru et al.
(2020).

Evaluation Metrics: To measure the quality of the
learned embeddings we follow the same fidelity metrics
applied in Gu et al. (2019), which are distortion and preci-
sion. The distortion of a pair of connected nodes a, b in the
graph G, where f(a), f(b) are their respective embeddings
in the space P is given by:

distortion(a, b) = |dp(f(a)7dg?i)g; de(a,b)|
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Figure 11. a) Cartesian product of tree and 2D grid. b) Cartesian product of tree and tree. ¢) Rooted product of tree and 2D grids. d)

Rooted product of 2D grid and trees.

Grid Tree Tree

Graph Nodes Edges Triples

Layout Valency Height
4D GRID 625 2000 195,000 (5)4
TREE 364 363 66,066 3 5
TREE X GRID 496 1,224 122,760 4 x4 2 3
TREE x TREE 225 420 25,200 2 3
TREE ¢ GRIDS 775 1,270 299,925 5x5 2 4
GRID ¢ TREES 775 790 299,925 5x5 2 4

Table 9. Synthetic graph stats

The average distortion D, is the average over all pairs
of points. Distortion is a global metric that considers the
explicit value of all distances.

The other metric that we consider is the mean average
precision (mAP). It is a ranking-based measure for local
neighborhoods that does not track explicit distances. Let
G = (V, E) be a graph and node a € V have neighborhood
Na = {b1, ..., bacg(a) }» Where deg(a) is the degree of a. In
the embedding f, define R, p, to be the smallest ball around
f(a) that contains b; (that is, R, p, is the smallest set of
nearest points required to retrieve the ¢-th neighbor of a in
). Then:

|Nal

1 1 INa N R,
AP(f) = — b
AP = 197 2 Gegfa) 2

|Ra1bi|

Data: We employ NetworkX (Hagberg et al., 2008) to gen-
erate the synthetic datasets, and their Cartesian and rooted
products. The statistics of the synthetic datasets reported
in this work are presented in Table 9, and a diagram of the
graphs can be seen in Figure 11.

The real-world datasets were downloaded from the Network
Repository (Rossi & Ahmed, 2015). Stats are presented in
Table 10.

By triples we mean the 3-tuple (u,v,d(u,v)), where u, v
represent connected nodes in the graph, and d(u,v) is the
shortest distance between them.

Setup Details: For all models and datasets we run the
same grid search and optimize the distortion loss, apply-

Graph Nodes Edges Triples

USCA312 312 48,516 48,516
bio-diseasome 516 1,188 132,870
csphd 1,025 1,043 524,800
road-euroroad 1,039 1,305 539,241
facebook 4,039 88,234 8,154,741

Table 10. Real-world graph stats

ing RSGD. We report the average of 5 runs in all cases.
The implementation of all baselines are taken from Geoopt
(Kochurov et al., 2020). We train for 3000 epochs, reducing
the learning rate by a factor of 5 if the model does not im-
prove the performance after 50 epochs, and early stopping
based on the average distortion if the model does not im-
prove after 150 epochs. We use the burn-in strategy (Nickel
& Kiela, 2017; Cruceru et al., 2020) training with a 10 times
smaller learning rate for the first 10 epochs. We experiment
with learning rates from {0.05,0.01, 0.005, 0.001}, batch
sizes from {512, 1024, 2048} and max gradient norm from
{10, 50, 250}.

Experimental Observations: We noticed that for some
combinations of hyper-parameters and datasets, the learning
process for the Bounded domain model becomes unstable.
Points eventually fall outside of the space, and need to be
projected in every epoch. We did not observe this behavior
on the Siegel model. We consider that these findings are
in line with the ones reported on Nickel & Kiela (2018),
where they observe that the Lorentz model, since it is un-
bounded, is more stable for gradient-based optimization
than the Poincaré one.

C.4. Recommender Systems

Setup Details: For all models and datasets we run the
same grid search and optimize the Hinge loss from Equa-
tion 3, applying RSGD. We report the average of 5 runs
in all cases. We train for 500 epochs, reducing the learn-
ing rate by a factor of 5 if the model does not improve
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Dataset Users Items Interactions Density (%)
ml-1m 6,040 3,706 1,000,209 4.47
ml-100k 943 1,682 100,000 6.30
last.fm 1,892 17,632 92,834 0.28
meetup-nyc 46,895 16,612 277,863 0.04

Table 11. Recommender system dataset stats

the performance after 50 epochs, and early stopping based
on the dev set if the model does not improve after 150
epochs. We use the burn-in strategy (Nickel & Kiela, 2017;
Cruceru et al., 2020) training with a 10 times smaller learn-
ing rate for the first 10 epochs. We experiment with learning
rates from {0.1, 0.05, 0.01, 0.005,0.001}, batch sizes from
{1024, 2048} and max gradient norm from {10, 50, 250}.

Data: We provide a brief description of the datasets used
in the recommender systems experiments.

¢ ml-1m and ml-100k: refers to the MovieLens datasets
(Harper & Konstan, 2015).*

* last.fm: Dataset of artist listening records from 1892
users (Cantador et al., 2011).%

* meetup: dataset crawled from Meetup.com, where the
goal is to recommend events to users (Pham et al.,
2015). The dataset consists of the data from two re-
gions, New York City (NYC) and state of California
(CA), we only report results for NYC.

Stats for the datasets are presented in Table 11.

To generate evaluation splits, the penultimate and last item
the user has interacted with are withheld as dev and test set
respectively.

C.5. Node Classification

Setup Details: In these experiments, for all datasets we
use the cosine distance on the datapoints’ features to com-
pute a complete input distance graph. We employ the avail-
able features and normalize them so that each attribute has
mean zero and standard deviation one. Once we have a
graph, we embed it in the exact same way than in the graph
reconstruction task. Finally, we use the learned node em-
beddings as features to feed a logistic regression classifier

Matrix Mapping: Since the node embeddings lie in dif-
ferent metric spaces, we apply the corresponding logarith-
mic map to obtain a "flat” representation before classifying.

*nttps://grouplens.org/datasets/
movielens/

Shttps://grouplens.org/datasets/
hetrec-2011/

Dataset Nodes Classes Triples
IRIS 150 3 11,175
700 101 7 5,050
GLASS 214 6 22,790

Table 12. Machine learning datasets used for node classification.

For the Siegel upper half-space model of dimension n, we
apply the following mapping. From each complex matrix
embedding Z = X +:Y we stack the result of the following
operations in matrix form as:

o (YAHXY X Xy
“\ vy lx y-1

where M € R?"%2"_This mapping is the natural realisation
of HypSPD,, as a totally geodesic submanifold of SPD,,.
Since M € SPDay,, finally we apply the LogEig map as
proposed by Huang & Gool (2017), which yields a represen-
tation in a flat space. This operations results in new matrix
of the form:

LogEig(M) — (g _VU>

where U,V € Sym(n). The final step is to take the upper
triangular from U and V, and concatenate them as a vector
of n(n + 1) dimensions.

This procedure is implemented for the Upper half-space. In
the case of the Bounded domain model, we first map the
points to the upper half-space with the Cayley transform.

Datasets: All datasets were downloaded from the UCI
Machine Learning Repository (Dua & Graff, 2017). © Statis-
tics about the datasets used are presented in Table 12.

C.6. Learning the Weights for Finsler Distances

Both Finsler metrics F} and F,, exhibit outstanding re-
sults in our experiments. However, there are significant
differences in their relative performances depending on the
target dataset. Fj and F,, are two metrics among many
variants in the family of Finsler metrics. Thus, we pro-
pose an alternative of our Finslerian models, by learning
weights for the summation of Algo 1, step 5, according to:
df'W(Z1,Z5) : Y1 [ log(1+di/1-d,)] where o; € R are
model parameters. The intuition behind this variant is to
impose an inductive bias through the family of Finsler met-
rics, while allowing the model to learn from the data which
particular metric is more suitable in each case. The model
has flexibility to represent £} or F,, and also explore differ-
ent variations, such as Finsler metrics of minimum entropy

*https://archive.ics.uci.edu/ml/datasets.
php
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4D GRID TREE x TREE  TREE ¢ GRIDS
Davg mAP Doy mAP Doy mAP

Siee 592 99.61 3.31 99.95 10.88  63.52
S 0.01 100.00 1.08 100.00 1.3 78.71
S f w 0.00  100.00 1.09 100.00 091 93.37

Table 13. Comparison with learning weights for Finsler metrics.

(Boland & Newberger, 2001). We report results in Table 13.
We observe that the model recovers the F; metric in the
cases where it is the most convenient, whereas for TREE ¢
GRIDS, it finds a more optimal solution.

D. Distance Algorithm Complexity
D.1. Theoretical Complexity

In this section we discuss the computational theoretical
complexity of the different operations involved in the devel-
opment of this work. We employ Big O notation’. Since
in all cases operations are not nested, but are applied se-
quentially, the costs can be added resulting in a polynomial
expression. Thus, by applying the properties of the notation,
we disregard lower-order terms of the polynomial.

Real Matrix Operations: For n x n matrices with real
entries, the associated complexity of each operation is as
follows:®

* Addition and subtraction: O(n?)
* Multiplication: O(n?*)
e Inversion: O(n?4)

* Diagonalization: O(n?)

Complex Matrix Operations: A complex symmetric ma-
trix Z € Sym(n, C) can be written as Z = X + Y, where
X =R(2),Y = 3(2) € Sym(n,R) are symmetric ma-
trices with real entries. We implement the elemental op-
erations for these matrices with the following associated
costs:

* Multiplication: O(n?*). It involves 4 real matrix mul-
tiplications, plus additions and subtractions.

* Square root: O(n?). It involves a diagonalization and
2 matrix multiplications.’

"https://en.wikipedia.org/wiki/Big_O_
notation

$https://en.wikipedia.org/wiki/
Computational_ complexity_of_ mathematical__
operations

‘https://en.wikipedia.org/wiki/Square_
root_of_a matrix

e Inverse: O(n%%). It involves real matrix inversions
and multiplications (Falkenberg, 2007).

Takagi Factorization: This factorization involves com-
plex and real multiplications (O(n?*)), and diagonaliza-
tions (O(n?)). It also involves the diagonalization of a
2nax2n matrix, which implies:

O((2n)*) = O(8n*) ~ O(n?) (7)
Therefore, the final boundary for its cost is O(n?).

Cayley Transform: This operation along with its inverse
are composed of matrix inversions and multiplications, thus
the cost is O(n?4).

Distance Algorithm: The full computation of the dis-
tance algorithm in the upperhalf space involves matrix
square root, multiplications, inverses, and the application
of the Cayley transform and the Takagi factorization. Since
they are applied sequentially, without affecting the dimen-
sionality of the matrices, we can take the highest value as
the asymptotic cost of the algorithm, which is O(n?).

For the bounded domain, the matrices are mapped into the
upperhalf space by an additional application of the inverse
Cayley transform, and then the same distance algorithm
is applied. Therefore, in this space the complexity also
converges to O(n?).

D.2. Empirical Complexity

To empirically measure the time involved in the distance
calculation we generate a batch of 1024 pairs of points (nxn
matrices). We perform the time evaluation for different
values of n. Results can be observed in Figure 12.

We observe that as we increase the dimensionality, the rela-
tion tends to be polynomial, in line with the theoretical cost
stated in §4.

E. Vector-valued Distance: a Tool for the
Analysis of Embeddings

The vector-valued distance can also be used to develop other
tools to analyze the embedding. More specifically we use it
not only to create a continuous edge coloring as in Section
6, but also a vector distance plot, and a continuous node
coloring with respect to a root.

For the vectorial distance plot we sample pairs of con-
nected vertices of the graph {z;, z;} and plot the result of
vDist(Z;, Z;) = (v1,v2) (see Algorithm 1, step 6). In Fig-
ure 13-20 we show the plots of (v, v2) for the embeddings
of different dataset embedded into the Upper Half models
with respect to Riemannian, F; and F,, metrics. In the F
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Figure 12. Time of distance calculation for a batch of 1024 pairs
of points for different matrix dimensions.

Figure 13. Plot of (v1,v2) of SE (left), SI™* (center), and 82F o
(right) for vertex pairs sampled from USCA312. Color indicates
ground-truth distance.

Figure 14. Plot of (v1,vs) of S5 (left), S (center), and Sf >
(right) for vertex pairs sampled from BIO-DISEASOME. Color
indicates ground-truth distance.

Figure 15. Plot of (v1,v2) of SE (left), SI™* (center), and 82F°°
(right) for vertex pairs sampled from CSPHD. Color indicates
ground-truth distance.

case, the addition of both d-values sums up to the distance,
whereas for the F, the largest v (v;) corresponds to the dis-
tance. The plots match the ¢! and £>° metrics from Figure 2,
verifying the intuition about the distances.

The vectorial distance plots give a first qualitative visual-
ization of the embedding. For dissimilar data sets, the edge
plots look quite different. They can accumulate near the

Figure 16. Plot of (v1,v2) of S (left), S5 (center), and Sf o
(right) for vertex pairs sampled from EUROROAD. Color indicates
ground-truth distance.

Figure 17. Plot of (v1,v2) of SE (left), SI™* (center), and 82F o
(right) for vertex pairs sampled from GRID4D. Color indicates
ground-truth distance.

Figure 18. Plot of (v1,v2) of St (left), S (center), and Sfc"’
(right) for vertex pairs sampled from TREE x GRID. Color indi-
cates ground-truth distance.
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Figure 19. Plot of (v1,v2) of S3* (left), S5 (center), and Sf o
(right) for vertex pairs sampled from TREE x TREE. Color indi-
cates ground-truth distance.

Figure 20. Plot of (v1,v2) of SE (left), SI™* (center), and 82F o
(right) for vertex pairs sampled from TREE. Color indicates ground-
truth distance.

boundary of the cone (the diagonal or the horizontal), or be
evenly distributed. The can also be refined by sampling only
specific edges of the graph.
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To construct a continuous node coloring we choose one
vertex of our graph as the root r. For every other node z
we take the vector-valued distance from r to z, and assign
the ratio v2/v, as a value for this node. We again represent
the corresponding real number by a color shading, as in
Figures 21. It can be thought as the accumulated angle over
a path from the root 7 to the node z.

Evaluating the Quality of Embeddings: In the case of
synthetic graphs, where we have full knowledge of the in-
ternal structure, we can use the edge and the node angles
to compare the embeddings with respect to the Riemannian
distance and the Finsler metrics F; and F,. [llustrating
this with the two dimensional grid, we observe in Figure
21 that while in the Finsler metric all edges have the same
angle, the embedding optimizing the Riemannian distance is
more distorted and less geodesics. In the case of the Finsler
distances one can also see more clearly that the symmetries
of the graph are respected in the embedding. This shows
that the Finsler embeddings are much better in represent-
ing structural features of the graphs than the Riemannian
embeddings.

Figure 21. Analysis of S3* (left), 82F ° (center), and SI'! (right)
for a 5 x 5 grid. Node colors indicate the angle of the vector-valued
distance by taking the path from the central node. Edge colors
indicate the angle for each edge.

More Edge Coloring: We plot the edge coloring for the
three analyzed metric spaces, namely S&¥, S2, SI™ for the
datasets analyzed in Figure 4, and for CSPHD in Figure 22-
25. We can observe that in the Riemannian metric plots
(left-hand side) there is no clear pattern that separates flat
and hierarchical components in the graphs. The Fi, and F'1
metrics are the best at capturing the structural aspect of the
datasets. They recognize very similar patterns, though they
assign opposite angles to the vector-valued distance vectors,
and this can be noticed from the fact that the colors assigned
are in opposite sides of the spectrum (yellow means angles
close to zero, blue means angles close to 45°).

To plot these visualizations and the ones of Figure 5, we
adapted code released'® by Cruceru et al. (2020).

Ohttps://github.com/dalab/
matrix-manifolds/blob/master/analysis/plot_
ricci_curv.py

> ._.-_.\. :

Figure 22. Edge coloring of SE (left), Sf > (center), and S3'*
(right) for a tree.

Figure 23. Edge coloring of SF (left), S; > (center), and S5
(right) for a TREE ¢ GRIDS.

Figure 24. Edge coloring of S§ (left), Sf > (center), and S5
(right) for a GRID ¢ TREES.
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Figure 25. Edge coloring of S5 (left), Sf > (center), and S5
(right) for CSPHD.

F. More Results

Results for graph reconstruction in lower dimensions are
presented in Table 14


https://github.com/dalab/matrix-manifolds/blob/master/analysis/plot_ricci_curv.py
https://github.com/dalab/matrix-manifolds/blob/master/analysis/plot_ricci_curv.py
https://github.com/dalab/matrix-manifolds/blob/master/analysis/plot_ricci_curv.py

Symmetric Spaces for Graph Embeddings

4D GRID TREE TREE X GRID TREE X TREE TREE ¢ GRIDS GRID ¢ TREES
V1], 1E) (625,2000) (364, 363) (496, 1224) (225, 420) (775, 1270) (775,790)
Davg mAP Davg mAP Davg mAP Davg mAP Davy  mAP Davg  mAP
E'? 11.24£0.00 100.00 5.71+£0.01 3272 9.80£0.00  83.25 9.79+0.00 9597  5.11£0.05 2224  548+0.03 21.84

‘le - 25.2340.06 63.86 2.09+0.28 97.32  17.12£0.00 83.29  20.55%+0.12 7598 14.12+£0.45 4406 14.76£0.23 31.96
ES x H®  11.24+£0.00 100.00 1.61+0.07 100.00 9.204+0.03  100.00 9.34£0.05 98.14 2.53£0.07 58.86 2.384+0.04  97.56
HS x H®  18.7640.02 79.05  0.92+0.04 99.95  12.92+0.86 89.71 9.71£2.47 96.82 1.32+0.08 72.62 3.10+£0.62  86.40

S# 13.26+0.01 99.54  1.69+£0.03 71.64 9.26+0.01 99.57 8.80+0.21 97.47 1.8240.07 64.52 2.27+0.18  79.10
S5 11.82+0.03 98.71  1.35£0.39 99.35 7.98+0.66 99.47 3.97£0.34 99.64 13.01£0.64 55.89 11.26+0.59 68.30
S;rl 6.41£0.00 100.00 1.0740.04 74.98 2.02+£0.02  100.00 1.84+0.02  100.00 1.43£0.01  65.90 1.45+0.05 81.25
B 13.29+40.17 99.54  1.63£0.06 70.70  10.04+£0.03 92.20 9.10£0.10 96.78 4.714+0.15  65.04 5.68+0.37  89.19
BE> 12.45£0.18 97.70  2.59+0.34 98.94  10.33£0.47 93.58 4.7440.00 96.66 11.33£0.10 65.07 10.39£0.15 79.43
Bfl 6.41+0.00  100.00 1.13+0.03 79.21 2.0240.00  100.00 1.9240.07  100.00 1.51£0.06  71.07 1.51£0.00 83.64

Table 14. Results for synthetic datasets. All models have same number of free parameters. Lower Dg. 4 is better. Higher mAP is better.



