Symmetric Spaces for Graph Embeddings: A Finsler-Riemannian Approach

Federico Lopez' Beatrice Pozzetti> Steve Trettel> Michael Strube! Anna Wienhard >

Abstract

Learning faithful graph representations as sets of
vertex embeddings has become a fundamental in-
termediary step in a wide range of machine learn-
ing applications. We propose the systematic use
of symmetric spaces in representation learning, a
class encompassing many of the previously used
embedding targets. This enables us to introduce a
new method, the use of Finsler metrics integrated
in a Riemannian optimization scheme, that better
adapts to dissimilar structures in the graph. We de-
velop a tool to analyze the embeddings and infer
structural properties of the data sets. For imple-
mentation, we choose Siegel spaces, a versatile
family of symmetric spaces. Our approach out-
performs competitive baselines for graph recon-
struction tasks on various synthetic and real-world
datasets. We further demonstrate its applicability
on two downstream tasks, recommender systems
and node classification.

1. Introduction

The goal of representation learning is to embed real-world
data, frequently modeled on a graph, into an ambient space.
This embedding space can then be used to analyze and per-
form tasks on the discrete graph. The predominant approach
has been to embed discrete structures in an Euclidean space.
Nonetheless, data in many domains exhibit non-Euclidean
features (Krioukov et al., 2010; Bronstein et al., 2017), mak-
ing embeddings into Riemannian manifolds with a richer
structure necessary. For this reason, embeddings into hy-
perbolic (Krioukov et al., 2009; Nickel & Kiela, 2017; Sala
et al., 2018; Lopez & Strube, 2020) and spherical spaces
(Wilson et al., 2014; Liu et al., 2017; Xu & Durrett, 2018)
have been developed. Recent work proposes to combine
different curvatures through several layers (Chami et al.,

"Heidelberg Institute for Theoretical Studies, Heidelberg,
Germany “Mathematical Institute, Heidelberg University, Hei-
delberg, Germany *Department of Mathematics, Stanford Uni-
versity, California, USA. Correspondence to: Federico Lépez
<federico.lopez@h-its.org>.

Proceedings of the 38" International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

Figure 1. Symmetric spaces have a rich structure of totally
geodesic subspaces, including flat subspaces (orange) and hyper-
bolic planes (blue). This compound, yet computationally tractable
geometry allows isometric embeddings of many graphs, includ-
ing those with subgraphs of dissimilar geometry. For example
the graph embedded in the picture has both trees and grids as
subgraphs.

2019; Bachmann et al., 2020; Grattarola et al., 2020), to
enrich the geometry by considering Cartesian products of
spaces (Gu et al., 2019; Tifrea et al., 2019; Skopek et al.,
2020), or to use Grassmannian manifolds or the space of
symmetric positive definite matrices (SPD) as a trade-off
between the representation capability and the computational
tractability of the space (Huang & Gool, 2017; Huang et al.,
2018; Cruceru et al., 2020). A unified framework in which
to encompass these various examples is still missing.

In this work, we propose the systematic use of symmetric
spaces in representation learning: this is a class compris-
ing all the aforementioned spaces. Symmetric spaces are
Riemannian manifolds with rich symmetry groups which
makes them algorithmically tractable. They have a com-
pound geometry that simultaneously contains Euclidean as
well as hyperbolic or spherical subspaces, allowing them
to automatically adapt to dissimilar features in the graph.
We develop a general framework to choose a Riemannian
symmetric space and implement the mathematical tools re-
quired to learn graph embeddings (§2). Our systematic view
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enables us to introduce the use of Finsler metrics integrated
with a Riemannian optimization scheme as a new method to
achieve graph representations. Moreover, we use a vector-
valued distance function on symmetric spaces to develop a
new tool for the analysis of the structural properties of the
embedded graphs.

To demonstrate a concrete implementation of our general
framework, we choose Siegel spaces (Siegel, 1943); a family
of symmetric spaces that has not been explored in geometric
deep learning, despite them being among the most versatile
symmetric spaces of non-positive curvature. Key features of
Siegel spaces are that they are matrix versions of the hyper-
bolic plane, they contain many products of hyperbolic planes
as well as copies of SPD as submanifolds, and they support
Finsler metrics that induce the ¢! or the /> metric on the
Euclidean subspaces. As we verify in experiments, these
metrics are well suited to embed graphs of mixed geometric
features. This makes Siegel spaces with Finsler metrics an
excellent device for embedding complex networks without
a priori knowledge of their internal structure.

Siegel spaces are realized as spaces of symmetric matrices
with coefficients in the complex numbers C. By combin-
ing their explicit models and the general structure theory
of symmetric spaces with the Takagi factorization (Tak-
agi, 1924) and the Cayley transform (Cayley, 1846), we
achieve a tractable and automatic-differentiable algorithm
to compute distances in Siegel spaces (§4). This allows
us to learn embeddings through Riemannian optimization
(Bonnabel, 2011), which is easily parallelizable and scales
to large datasets. Moreover, we highlight the properties of
the Finsler metrics on these spaces (§3) and integrate them
with the Riemannian optimization tools.

We evaluate the representation capacities of the Siegel
spaces for the task of graph reconstruction on real and syn-
thetic datasets. We find that Siegel spaces endowed with
Finsler metrics outperform Euclidean, hyperbolic, Cartesian
products of these spaces and SPD in all analyzed datasets.
These results manifest the effectiveness and versatility of
the proposed approach, particularly for graphs with varying
and intricate structures.

To showcase potential applications of our approach in differ-
ent graph embedding pipelines, we also test its capabilities
for recommender systems and node classification. We find
that our models surpass competitive baselines (constant-
curvature, products thereof and SPD) for several real-world
datasets.

Related Work: Riemannian manifold learning has regained
attention due to appealing geometric properties that allow
methods to represent non-Euclidean data arising in several
domains (Rubin-Delanchy, 2020). Our systematic approach
to symmetric spaces comprises embeddings in hyperbolic

spaces (Chamberlain et al., 2017; Ganea et al., 2018; Nickel
& Kiela, 2018; Lépez et al., 2019), spherical spaces (Meng
et al., 2019; Defferrard et al., 2020), combinations thereof
(Bachmann et al., 2020; Grattarola et al., 2020; Law & Stam,
2020), Cartesian products of spaces (Gu et al., 2019; Tifrea
et al., 2019), Grassmannian manifolds (Huang et al., 2018)
and the space of symmetric positive definite matrices (SPD)
(Huang & Gool, 2017; Cruceru et al., 2020), among others.
We implement our method on Siegel spaces. To the best
of our knowledge, we are the first work to apply them in
Geometric Deep Learning.

Our general view allows us to to endow Riemannian sym-
metric spaces with Finsler metrics, which have been applied
in compressed sensing (Donoho & Tsaig, 2008), for cluster-
ing categorical distributions (Nielsen & Sun, 2019), and in
robotics (Ratliff et al., 2020). We provide strong experimen-
tal evidence that supports the intuition on how they offer
a less distorted representation than Euclidean metrics for
graphs with different structure. With regard to optimization,
we derive the explicit formulations to employ a generaliza-
tion of stochastic gradient descent (Bonnabel, 2011) as a
Riemannian adaptive optimization method (Bécigneul &
Ganea, 2019).

2. Symmetric Spaces for Embedding
Problems

Riemannian symmetric spaces (RSS) are Riemannian mani-
folds with large symmetry groups, which makes them
amenable to analytical tools as well as to explicit compu-
tations. A key feature of (non-compact) RSS is that they
offer a rich combination of geometric features, including
many subspaces isometric to Euclidean, hyperbolic spaces
and products thereof. This makes them an excellent target
tool for learning embeddings of complex networks without
a priori knowledge of their internal structure.

OO
=

Figure 2. Above, from left to right: the unit spheres for the £, ¢*
(Euclidean), and £°° metrics on the plane. Below: Distance mini-
mizing geodesics are not necessarily unique in Finsler geometry.
The two paths shown have the same (minimal) ¢* length.




Symmetric Spaces for Graph Embeddings

First, we introduce two aspects of the general theory of
RSS to representation learning: Finsler distances and vector-
valued distances. These give us, respectively, a concrete
method to obtain better graph representations, and a new
tool to analyze graph embeddings. Then, we describe our
general implementation framework for RSS.

Finsler Distances: Riemannian metrics are not well
adapted to represent graphs. For example, though a two
dimensional grid intuitively looks like a plane, any embed-
ding of it in the Euclidean plane R? necessarily distorts
some distances by a factor of at least \/2. This is due to
the fact that while in the Euclidean plane length minimizing
paths (geodesics) are unique, in graphs there are generally
several shortest paths (see Figure 2). Instead, it is possible to
find an abstract isometric embedding of the grid in R? if the
latter is endowed with the ¢! (or taxicab) metric. This is a
first example of a Finsler distance. Another Finsler distance
on R” that plays a role in our work is the ¢°° metric. See
Appendix A.4 for a brief introduction.

RSS do not only support a Riemannian metric, but a whole
family of Finsler distances with the same symmetry group
(group of isometries). For the reasons explained above,
these Finsler metrics are more suitable to embed complex
networks. We verify these assumptions through concrete ex-
periments in Section 5. Since Finsler metrics are in general
not convex, they are less suitable for optimization prob-
lems. Due to this, we propose to combine the Riemannian
and Finsler structure, by using a Riemannian optimization
scheme, with loss functions based on the Finsler metric.

Vector-valued Distance: In Euclidean space, in the sphere
or in hyperbolic space, the only invariant of two points is
their distance. A pair of points can be mapped to any other
pair of points iff their distance is the same. Instead, in a
general RSS the invariant between two points is a distance
vector in R™, where n is the rank of the RSS. This is, two
pairs of points can be separated by the same distance, but
have different distance vectors. This vector-valued distance
gives us a new tool to analyze graph embeddings, as we
illustrate in Section 6.

The dimension of the space in which the vector-valued dis-
tance takes values in defines the rank of the RSS. Geo-
metrically, this represents the largest Euclidean subspace
which can be isometrically embedded (hence, hyperbolic
and spherical spaces are of rank —1). The symmetries of an
RSS fixing such a maximal flat form a finite group — the
Weyl group of the RSS. In the example of Siegel spaces
discussed below, the Weyl group acts by permutations and
reflections of the coordinates, allowing us to canonically
represent each vector-valued distance as an n-tuple of non-
increasing positive numbers. Such a uniform choice of
standard representative for all vector-valued distances is a
fundamental domain for this group action, known as a Weyl

Toolkit 1 Computing Distances

1: Input from Model: Choice of basepoint m, maximal flat I,
identification ¢: F' — R", choice of Weyl Chamber C' C R",

and Finsler norm || - || on R™.

2: Givenp,q € M:

3: Compute g € G such that g(p) = m and g(q) € F.

4: Compute v' = ¢(g(q)) € R™, and h € G the Weyl group
element such that h(v') = v € C.

5: The Vector-valued Distance (VVD) is vDist(p, ¢) = v.

6: The Riemannian Distance (RD) is d™(p, q) = / ;U2

7: The Finsler Distance (FD) is d” (p, q) = ||v|| .

8: For a product [ [ M;, the VVD is the vector (vDist(p;, ¢:))
of VVDs for each M;. The RD, FD satisfy the pythagorean
theorem: d* (p, q)*> = >, d™i (pi, q;)?, for X € {R, F}.

chamber for the RSS.

Implementation Schema: The general theory of RSS not
only unifies many spaces previously applied in representa-
tion learning, but also systematises their implementation.
Using standard tools of this theory, we provide a general
framework to implement the mathematical methods required
to learn graph embeddings in a given RSS.

Step 1, choosing an RSS: We may utilize the classical the-
ory of symmetric spaces to inform our choice of RSS. Every
symmetric space M can be decomposed into an (almost)
product M = M; x --- x M, of irreducible symmetric
spaces. Apart from twelve exceptional examples, there are
eleven infinite families irreducible symmetric spaces — see
Helgason (1978) for more details, or Appendix A, Table 6.
Each family of irreducible symmetric space has a distinct
family of symmetry groups, which in turn determines many
mathematical properties of interest (for instance, the sym-
metry group determines the shape of the Weyl chambers,
which determines the admissible Finsler metrics). Given a
geometric property of interest, the theory of RSS allows one
to determine which (if any) symmetric spaces enjoy it. For
example, we choose Siegel spaces also because they admit
Finsler metrics induced by the ¢! metric on flats, which
agrees with the intrinsic metric on grid-like graphs.

Step 2, choosing a model of the RSS: Having selected an
RSS, we must also select a model: a space M representing
its points equipped with an action of its symmetry group
G. Such a choice is of practical, rather than theoretical
concern: the points of M should be easy to work with, and
the symmetries of G straightforward to compute and apply.
Each RSS may have many already-understood models in the
literature to select from. In our example of Siegel spaces, we
implement two distinct models, selected because both their
points and symmetries may be encoded by n X n matrices.
See Section 3.

Implementing a product of symmetric spaces requires im-
plementing each factor simultaneously. Given models
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Toolkit 2 Computing Local Geometry

1: Input From Model: Geodesic reflections o, € G, the metric
tensor (-, -), basepoint m € M, orthogonal decomposition
stab(m) @ p = g, and identification ¢: T, M — p.

2: Given f: M — R, a geodesic ~, or v € T,,, M respectively:

3: The Riemannian Gradient of f is computed from the metric
tensor by solving (grad z(f), —) = df (—)

4: Parallel Transport along + is achieved by the differentials
(dT¢)~(to) Of transvections 7y = 0.(1/2)T(t,) along .

5: The Riemannian Exponential exp” (v) = g(m) is the ma-
trix exponential g = exp(¢(v)) € G applied to m.

6: For a product [ M; the Riemannian gradient, Parallel Trans-
port, and Exponential map are computed component-wise.

My, ..., M with symmetry groups G, . . . G, the product
M = My x -+ X My, has as its points m = (my, ..., myg)
the k—tuples with m; € M;, with the group G = G1 %
--- x Gy, acting componentwise. This general implemen-
tation of products directly generalizes products of constant
curvature spaces.

Step 3, computing distances: Given a choice of RSS, the
fundamental quantity to compute is a distance function on
M , typically used in the loss function. In contrast to general
Riemannian manifolds, the rich symmetry of RSS allows
this computation to be factored into a sequence of geometric
steps. See Toolkit 1 for a schematic implementation using
data from the standard theory of RSS (choice of maximal
flat, Weyl chamber, and Finsler norm) and Algorithm 1 for
a concrete implementation in the Siegel spaces.

Step 4, computing gradients: To perform gradient-based
optimization, the Riemannian gradient of these distance
functions is required. Depending on the Riemannian opti-
mization methods used, additional local geometry including
parallel transport and the exponential map may be useful
(Bonnabel, 2011; Bécigneul & Ganea, 2019). See Toolkit 2
for the relationships of these components to elements of the
classical theory of RSS.

See Appendix A and B for a review of the general theory
relevant to this schema, and for an explicit implementation
in the Siegel spaces.

3. Siegel Space

We implement the general aspects of the theory of RSS
outlined above in the Siegel spaces HypSPD,, (Siegel, 1943),
a versatile family of non-compact RSS, which has not yet
been explored in geometric deep learning. The simplicity
and the versatility of the Siegel space make it particularly
suited for representation learning. We highlight some of its
main features.

Models: HypSPD,, admits concrete and tractable matrix
models generalizing the Poincaré disk and the upper half

plane model of the hyperbolic space. Both are open subsets
of the space Sym(n, C) of symmetric n x n-matrices over
C. HypSPD,, has n(n + 1) dimensions.

The bounded symmetric domain model for HypSPD,, gen-
eralizes the Poincaré disk. It is given by:!

B, :={Z € Sym(n,C)|1d — Z*Z > 0}; (1)

The Siegel upper half space model for HypSPD,, generalizes
the upper half plane model of the hyperbolic plane by:

Spi={Z=X+1iY € Sym(n,C)| Y > 0}. (2)

An explicit isomorphism from B,, to S,, is given by the
Cayley transform, a matrix analogue of the familiar map
from the Poincare disk to upper half space model of the
hyperbolic plane:

Z v i(Z +1d)(Z —1d) .

Hyperbolic Plane over SPD: The Siegel space HypSPD,,
contains SPD,, as a totally geodesic submanifold, and in fact,
it can be considered as a hyperbolic plane over SPD. The
role that real lines play in the hyperbolic plane, in HypSPD,,
is played by SPD,,. This is illustrated in Figure 3b.

Totally Geodesic Subspaces: The Siegel space HypSPD,,
contains n-dimensional Euclidean subspaces, products of
n-copies of hyperbolic planes, SPD,, as well as products
of Euclidean and hyperbolic spaces as totally geodesic sub-
spaces (see Figure 3). It thus has a richer pattern of sub-
manifolds than, for example, SPD. In particular, HypSPD,,
contains more products of hyperbolic planes than SPD,,: in
HypSPD,, we need 6 real dimension to contain H? x H?
and 12 real dimension to contain (H?)3, whereas in SPD,,
we would need 9 (resp. 20) dimensions for this.

Finsler Metrics: The Siegel space supports a Finsler metric
F that induces the ¢! metric on the Euclidean subspaces. As
already remarked, the /! metric is particularly suitable for
representing product graphs, or graphs that contain product
subgraphs. Among all possible Finsler metrics supported by
HypSPD,,, we focus on F} and F, (the latter induces the
£°° metric on the flat).

Scalability: Like all RSS, HypSPD,, has a dual — an RSS
with similar mathematical properties but reversed curva-
ture — generalizing the duality of H? and S?. We focus on
HypSPD,, over its dual for scalability reasons. The dual is a
nonnegatively curved RSS of finite diameter, and thus does
not admit isometric embeddings of arbitrarily large graphs.
HypSPD,,, being nonpositively curved and infinite diameter,
does not suffer from this restriction. See Appendix B.10 for
details on its implementation and experiments with the dual.

'For a real symmetric matrix Y € Sym(n, R) we write Y >>
0 to indicate that Y is positive definite.
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(a) Bounded Domain Model B,,

(b) Siegel Upper Half Space S,

Figure 3. a) Every point of the disk is a complex symmetric n-dimensional matrix. b) A hyperbolic plane over SPD. S5 is a 6 dimensional
manifold, the green lines represent totally geodesic submanifolds isometric to SPD that intersect in exactly one point. In dimension 2,

SPD is isometric to the product of a hyperbolic plane and the line

4. Implementation

A complex number z € C can be written as z = z + iy
where z, € R and i> = —1. Analogously a complex
symmetric matrix Z € Sym(n,C) can be written as Z =
X +1iY, where X = R(Z),Y = $(Z) € Sym(n,R)
are symmetric matrices with real entries. We denote by
Z* = X —iY the complex conjugate matrix.

Distance Functions: To compute distances we apply ei-
ther Riemannian or Finsler distance functions to the vector-
valued distance. These computations are described in Al-
gorithm 1, which is a concrete implementation of Toolkit 1.
Specifically, step 2 moves one point to the basepoint, step
4 moves the other into our chosen flat, step 5 identifies
this with R™ and step 6 returns the vector-valued distance,
from which all distances are computed. We employ the
Takagi factorization to obtain eigenvalues and eigenvectors
of complex symmetric matrices in a tractable manner with
automatic differentiation tools (see Appendix B.2).

Complexity of Distance Algorithm: Calculating distance
between two points Z1, Z in either S,, or B,, spaces implies
computing multiplications, inversions and diagonalizations

Algorithm 1 Computing Distances

1: Given two points Z1, Z2 € Sy:

2: Define Zs = /S(Z1)  (Z2 — R(Z1)/S(Z1) " € S

3: Define W = (Z3 —ild)(Z3 +i1d) ™" € B,

4: Use the Takagi factorization to write W = KDK* for D

real diagonal, and K unitary.

Define v; = log ifcdl? for d; the diagonal entries of D.

6: Order the v; so that 11)1 > vy > - -+ > 0. The Vector-valued
Distance is vDist(Z1, Z2) = (v1,v2,...,0n).

b

of n x n matrices. We find that the cost of the distance
computation with respect to the matrix dimensions is O(n?3).
We prove this in Appendix D.

Riemannian Optimization with Finsler Distances: With
the proposed matrix models of the Siegel space, we opti-
mize objectives based on the Riemannian or Finsler distance
functions in the embeddings space. To overcome the lack of
convexity of Finsler metrics, we combine the Riemannian
and the Finsler structure, by using a Riemannian optimiza-
tion scheme (Bonnabel, 2011) with a loss function based
on the Finsler metric. In Algorithm 2 we provide a way
to compute the Riemannian gradient from the Euclidean
gradient obtained via automatic differentiation. This is a
direct implementation of Toolkit 2 Item 3.

To constrain the embeddings to remain within the Siegel
space, we utilize a projection from the ambient space to our
model. More precisely, given € and a point Z € Sym(n, C),
we compute a point Z (resp. Z5) close to the original point
lying in the e-interior of the model. For S,,, starting from
7 = X + 1Y we orthogonally diagonalize Y = K'DK,
and then modify D = diag(d;) by setting each diagonal
entry to max{d;, €}. An analogous projection is defined on
the bounded domain B,,, see Appendix B.8.

Algorithm 2 Computing Riemannian Gradient

1: Given f: S, > Rand Z = X +iY € Sy:

2: Compute the Euclidean gradient grad ;; (f) at Z of f obtained
via automatic differentiation (see Appendix B.6).

3: The Riemannian gradient is gradg (f) = Y -grade(f) Y.

7: The Riemannian distance is " (Z1, Z2) := />, v2.

8: The Finsler distance inducing the ¢'-metric is
dFl(Zl, ZQ) = Z?:l Vi.

9: The Finsler distance inducing the /¢°°-metric is
d"°°(Z1, Zs) = max{v;} = v1.
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4D GRID TREE TREE x GRID TREE X TREE TREE ¢ GRIDS GRID ¢ TREES

(v, 1E]) (625, 2000) (364, 363) (496, 1224) (225, 420) (775,1270) (775,790)
Doy mAP Dy, mAP Doy mAP Doy mAP Doy mAP Davg mAP
E2° 11244000 100.00 3.9240.04 4230  9.81+0.00 8332  9.78+£0.00 9603  3.86+0.02 3421  4.28+0.04 27.50
H2 2523+£005 6374 0.54+0.02 100.00 17214021  83.16 20.59+0.11 7567 14.56+027 44.14 14.6240.13 30.28
E x H'® 11244000 100.00 1.19+0.04 100.00  9.20+0.01 100.00  9.30+0.04 98.03  2.15£0.05 5823  2.0320.01 97.88
H' x H 18.74+£0.01 7847 0.65+£0.02 100.00 13024091  88.01  8.61+0.03  97.63  1.0840.06 7720  2.80+0.65 84.88
SPDs 11244000 100.00 1.7940.02 5592  923+£001 9973  8.83+£0.01 9849  156+0.02 6231  1.83+0.00 72.17
SE 11274001 10000 1354002  78.53  9.13£001  99.92  8.68+£0.02 9803  145+0.09 7249 1544008 76.66
SF 5924006  99.61 1.23+028 9956  4.81£055 9928  331+0.06 99.95 10.88+0.19 6352 1048+021 7253
sh 0.01+0.00 100.00 076002 9157  0.81+£0.08 100.00  1.08:£0.16 100.00  1.03:0.00 7871  0.84:0.06 80.52
BE 11284001  100.00 1274005 7477  924+0.13 9922  8.74+£0.09 9812  2388+032 7255 2.76+0.11 9629
B> 7324016  97.92 1.51+0.13 9973 8704087 9640 4264026 9970  655+1.77 7380  7.15+£0.85 90.5I
B 0394002 100.00 0774002 9464  090+£0.08 100.00 128+0.16 100.00  1.09+0.03 7655 0994001 81.82

Table 1. Results for synthetic datasets. Lower Dg. 4 is better. Higher mAP is better. Metrics are given as percentage.

5. Graph Reconstruction

We evaluate the representation capabilities of the proposed
approach for the task of graph reconstruction.?

Setup: We embed graph nodes in a transductive setting. As
input and evaluation data we take the shortest distance in
the graph between every pair of connected nodes. Unlike
previous work (Gu et al., 2019; Cruceru et al., 2020) we do
not apply any scaling, neither in the input graph distances
nor in the distances calculated on the space. We experiment
with the loss proposed in Gu et al. (2019), which minimizes
the relation between the distance in the space, compared to
the distance in the graph, and captures the average distortion.
We initialize the matrix embeddings in the Siegel upper half
space by adding small symmetric perturbations to the matrix
basepoint :Id. For the Bounded model, we additionally map
the points with the Cayley transform (see Appendix B.7).
In all cases we optimize with RSGD (Bonnabel, 2011) and
report the average of 5 runs.

Baselines: We compare our approach to constant-curvature
baselines, such as Euclidean (IE) and hyperbolic (H) spaces
(we compare to the Poincaré model (Nickel & Kiela, 2017)
since the Bounded Domain model is a generalization of
it), Cartesian products thereof (E x H and H x H) (Gu
etal., 2019), and symmetric positive definite matrices (SPD)
(Cruceru et al., 2020) in low and high dimensions. Prelimi-
nary experiments on the dual of HypSPD,, and on spherical
spaces showed poor performance thus we do not compare to
them (see Appendix B.12). To establish a fair comparison,
each model has the same number of free parameters. This
is, the spaces S,, and B,, have n(n + 1) parameters, thus
we compare to baselines of the same dimensionality.® All
implementations are taken from Geoopt (Kochurov et al.,
2020).

Metrics: Following previous work (Sala et al., 2018; Gu

2Code available at
fedelopez77/sympa.

3We also consider comparable dimensionalities for SPD,,,
which has n(n+1)/2 parameters.

https://github.com/

et al., 2019), we measure the quality of the learned embed-
dings by reporting average distortion D4, a global metric
that considers the explicit value of all distances, and mean
average precision mAP, a ranking-based measure for local
neighborhoods (local metric) as fidelity measures.

Synthetic Graphs: As a first step, we investigate the rep-
resentation capabilities of different geometric spaces on
synthetic graphs. Previous work has focused on graphs with
pure geometric features, such as grids, trees, or their Carte-
sian products (Gu et al., 2019; Cruceru et al., 2020), which
mix the grid- and tree-like features globally. We expand
our analysis to rooted products of trees and grids. These
graphs mix features at different levels and scales. Thus, they
reflect to a greater extent the complexity of intertwining and
varying structure in different regions, making them a bet-
ter approximation of real-world datasets. We consider the
rooted product TREE ¢ GRIDS of a tree and 2D grids, and
GRID ¢ TREES, of a 2D grid and trees. More experimental
details, hyperparameters, formulas and statistics about the
data are present in Appendix C.3.

We report the results for synthetic graphs in Table 1. We
find that the Siegel space with Finsler metrics significantly
outperform constant curvature baselines in all graphs, ex-
cept for the tree, where they have competitive results with
the hyperbolic models. We observe that Siegel spaces with
the Riemannian metric perform on par with the matching
geometric spaces or with the best-fitting product of spaces
across graphs of pure geometry (grids and Cartesian prod-
ucts of graphs). However, the F} metric outperforms the
Riemannian and F,, metrics in all graphs, for both models.
This is particularly noticeable for the 4D GRID, where the
distortion achieved by F; models is almost null, matching
the intuition of less distorted grid representations through
the taxicab metric.

Even when the structure of the data conforms to the ge-
ometry of baselines, the Siegel spaces with the Finsler-
Riemannian approach are able to outperform them by auto-
matically adapting to very dissimilar patterns without any
a priori estimates of the curvature or other features of the
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USCA312 BIO-DISEASOME CSPHD EUROROAD FACEBOOK

(IVI,|E])  (312,48516) (516,1188) (1025, 1043) (1039, 1305) (4039, 88234)
avg Davg mAP Davg mAP Davg mAP avg mAP
E2° 0.18+£0.01 3.83+0.01 7631  4.044+0.01 4737  4.50+0.00 87.70 3.16+£0.01 3221
H2° 2394002 6.83+£0.08 91.26 22424023 6024 43.56+£044 5425 3.72+0.00 44.85
E0 x | 0.1840.00 2.5240.02 91.99  3.06+£0.02 73.25  4.2440.02 89.93 2.804+0.01 34.26
HO x H' 0.4740.18  2.5740.05 95.00  7.024+1.07 79.22 23.30+1.62 75.07 2.51+0.00 36.39
SPDs 0.2140.02 2.5440.00 82.66  2.92+0.11 57.88 19.544+0.99 9238 2.9240.05 33.73
SF 0.28+0.03 2.4040.02 87.01  4.30+0.18 59.95 29214091 8492 3.07+0.04 30.98
Sk 0.5740.08 2.784+0.49 93.95 27.27+1.00 5945 46.82+1.02 7203 1.90+0.11 45.58
sh 0.18+0.02 1.55+0.04 90.42  1.50+£0.03 64.11  3.794+0.07 94.63 2.374+0.07 3523
BE 0.2440.07 2.694+0.10 89.11 28.65+£3.39 62.66 53.454+2.65 4875 3.584+0.10 30.35
Bl 0.2140.04 4.584+0.63 90.36 26.32+6.16 54.94 52.694+2.28 4875 2.184+0.18 39.15
B 0.1840.07 1.5440.02 90.41  2.96+091 67.58 21.984+0.62 91.63 5.05+0.03 39.87

Table 2. Results for real-world datasets. Lower D, is better. Higher mAP is better. Metrics are given as percentage.

graph. This showcases the flexibility of our models, due to
its enhanced geometry and higher expressivity.

For graphs with mixed geometric features (rooted prod-
ucts), Cartesian products of spaces cannot arrange these
compound geometries into separate Euclidean and hyper-
bolic subspaces. RSS, on the other hand, offer a less dis-
torted representation of these tangled patterns by exploiting
their richer geometry which mixes hyperbolic and Euclidean
features. Moreover, they reach a competitive performance
on the local neighborhood reconstruction, as the mean pre-
cision shows. Results for more dimensionalities are given
in Appendix F.

Real-world Datasets: We compare the models on two road
networks, namely USCA312 of distances between North
American cities and EUROROAD between European cities,
BIO-DISEASOME, a network of human disorders and dis-
eases with reference to their genetic origins (Goh et al.,
2007), a graph of computer science Ph.D. advisor-advisee
relationships (Nooy et al., 2011), and a dense social net-
work from Facebook (McAuley & Leskovec, 2012). These
graphs have been analyzed in previous work as well (Gu
et al., 2019; Cruceru et al., 2020).

We report the results in Table 2. On the USCA312 dataset,
which is the only weighted graph under consideration, the

TREE X GRID  GRID © TREES  BIO-DISEASOME

Davg mAP Davg mAP Davg mAP
St 9.13  99.92 154 7666 240  87.01
8 481 9928 1048 7253 278  93.95
Sy 081 100.00 084 8052 155 9042
E30 980 8514 281 67.69 352 8845
H? 1731 8297 1592 2714 704 9146
§20° 7378 3536 81.67 5826 7091 84.61
E'S 5 H'™ 914 10000 152 9785 236  95.65
§'%% x §% 6071 693 70.00 564 5551 19.51
St 9.19 9989 131 7545 213  93.14
Siee 482 9745 1145 9409 150 9827
S 0.03 10000 027 9923 073  99.09

Table 3. Results for different datasets in high-dimensional spaces.
Best result is bold, second best underlined.

Siegel spaces perform on par with the compared target man-
ifolds. For all other datasets, the model with Finsler met-
rics outperforms all baselines. In line with the results for
synthetic datasets, the F; metric exhibits an outstanding
performance across several datasets.

Overall, these results show the strong reconstruction capa-
bilities of RSS for real-world data as well. It also indicates
that vertices in these real-world dataset form networks with
a more intricate geometry, which the Siegel space is able to
unfold to a better extent.

High-dimensional Spaces: In Table 3 we compare the ap-
proach in high-dimensional spaces (rank 17 which is equal
to 306 free parameters), also including spherical spaces S.
The results show that our models operate well with larger
matrices, where we see further improvement in our distor-
tion and mean average precision over the low dimensional
spaces of rank 4. We observe that even though we notably
increase the dimensions of the baselines to 306, the Siegel
models of rank 4 (equivalent to 20 dimensions) significantly
outperform them. These results match the expectation that
the richer variable curvature geometry of RSS better adapts
to graphs with intricate geometric structures.

6. Analysis of the Embedding Space

One reason to embed graphs into Riemannian manifolds
is to use geometric properties of the manifold to analyze

Figure 4. Edge coloring of S5* for a tree (left), and a rooted prod-
uct of TREE ¢ GRIDS (center), and of GRID ¢ TREES.
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Figure 5. Edge coloring of St for BIO-DISEASOME (left) and CSPHD (center) and FACEBOOK (right). Edge colors indicate the angle of
the vector-valued distance for each edge, on a linear scale from 0 (yellow) to 7 /4 (blue).

the structure of the graph. Embeddings into hyperbolic
spaces, for example, have been used to infer and visualize
hierarchical structure in data sets (Nickel & Kiela, 2018).
Visualizations in RSS are difficult due to their high dimen-
sionality. As a solution we use the vector-valued distance
function in the RSS to develop a new tool to visualize and
to analyze structural properties of the graphs.

We focus on HypSPDs, the Siegel space of rank & = 2,
where the vector-valued distance is just a vector in a cone
in R2. We take edges (Z;, Z;) and assign the angle of the
vector vDist(Z;, Z;) = (v1, v2) (see Algorithm 1, step 6)
to each edge in the graph. This angle assignment provides
a continuous edge coloring that can be leveraged to find
structure in graphs.

We see in Figure 4 that the edge coloring makes the large-
scale structure of the tree (blue/green edges) and the leaves
(yellow edges) visible. This is even more striking for the
rooted products. In TREE ¢ GRIDS the edge coloring distin-
guishes the hyperbolic parts of the graph (blue edges) and
the Euclidean parts (yellow edges). For the GRID ¢ TREES,
the Euclidean parts are labelled by blue/green edges and the
hyperbolic parts by yellow edges. Thus, even though we
trained the embedding only on the metric, it automatically
adapts to other features of the graph.

In the edge visualizations for real-world datasets (Figure 5),
the edges in the denser connected parts of the graph have
a higher angle, as it can be seen for the BIO-DISEASOME
and FACEBOOK data sets. For CSPHD, the tree structure is
emphasized by the low angles.

This suggests that the continuous values that we assign to
edges are a powerful tool to automatically discover dissimi-
lar patterns in graphs. This can be further used in efficient
clustering of the graph. In Appendix E we give similar vi-
sualizations for the Riemannian metric and the F,, Finsler
metric, showing that also with respect to exhibiting struc-
tural properties, the F; metric performs best.

7. Downstream Tasks

We also evaluate the representation capabilities of Siegel
spaces on two downstream tasks: recommender systems and
node classification.

7.1. Recommender Systems

Our method can be applied in downstream tasks that involve
embedding graphs, such as recommender systems. These
systems mine user-item interactions and recommend items
to users according to the distance/similarity between their
respective embeddings (Hsieh et al., 2017).

Setup: Given a set of observed user-item interactions 7 =
{(u,v)}, we follow a metric learning approach (Vinh Tran
et al., 2020) and learn embeddings by optimizing the fol-
lowing hinge loss function:

L= Z Z [m+dK(u’v)27dK(uaw)2]+ 3)

(u,0)ET (u,w)gT

where K is the target space, w is an item the user has not
interacted with, u,v,w € K, m > 0 is the hinge margin
and [z]+ = maz(0, z). To generate recommendations, for
each user u we rank the items v; according to their distance
to u. Since it is very costly to rank all the available items,
we randomly select 100 samples which the user has not
interacted with, and rank the ground truth amongst these
samples (He et al., 2017). We adopt normalized discounted
cumulative gain (nDG) and hit ratio (HR), both at 10, as
ranking evaluation metrics for recommendations. More
experimental details and data stats in Appendix C.4.

Data: We evaluate the different models over two Movie-
Lens datasets (ML-1M and ML-100K) (Harper & Konstan,
2015), LAST.FM, a dataset of artist listening records (Canta-
dor et al., 2011), and MEETUP, crawled from Meetup.com
(Pham et al., 2015). To generate evaluation splits, the penul-
timate and last item the user has interacted with are withheld
as dev and test set respectively.

Results: We report the performance for all analyzed models
in Table 4. While in the Movies datasets, the Riemannian
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ML-1M ML-100K LASTFM MEETUP

HR@I0 nDG HR@I0 nDG HR@I0 nDG HR@I0 nDG

E* 46.940.6 227 54.6+10 287 554403 246 69.8+04 464
H2° 46.0+£0.5 230 534+1.0 282 548+05 249 718405 485
EY x H'Y 520407 274 53.1+13 279 455409 189 70.7402 475
H x H'*  467+0.6 230 548409 29.1 550409 246 71.7+0.1 48.8
SPDs 458+1.0 221 533414 280 554402 253 70.1+0.6 46.5
SF 53.8+0.3 277 557409 286 53.1+05 248 658+12 434
Sie 459409 227 525403 275 53.8+17 325 69.0+0.5 464
Sh 529406 272 55.6+1.3 294 61.1+12 380 74.9+0.1 528

Table 4. Results for recommender system datasets.

model marginally outperforms the baselines, in the other
two cases the F; model achieves the highest performance by
a larger difference. These systems learn to model users’ pref-
erences, and embeds users and items in the space, in a way
that is exploited for the task of generating recommendations.
In this manner we demonstrate how downstream tasks can
profit from the enhanced graph representation capacity of
our models, and we highlight the flexibility of the method, in
this case applied in combination with a collaborative metric
learning approach (Hsieh et al., 2017).

7.2. Node Classification

Our proposed graph embeddings can be used in conjunc-
tion with standard machine learning pipelines, such as
downstream classification. To demonstrate this, and fol-
lowing the procedure of Chami et al. (2020), we embed
three hierarchical clustering datasets based on the cosine
distance between their points, and then use the learned
embeddings as input features for a Euclidean logistic re-
gression model. Since the node embeddings lie in dif-
ferent metric spaces, we apply the corresponding loga-
rithmic map to obtain a flat” representation before clas-
sifying. For the Siegel models of dimension n, we first
map each complex matrix embedding Z = X + iY to
(Y + XY 71X, XY~ 1), (Y71X,Y~1)] € SPD,,, this is
the natural realisation of HypSPD,, as a totally geodesic
submanifold of SPD»,,, and then we apply the LogEig map
(Huang & Gool, 2017), which yields a representation in a
flat space. More experimental details in Appendix C.5.

Results are presented in Table 5. In all cases we see that the
embeddings learned by our models capture the structural
properties of the dataset, so that a simple classifier can sep-
arate the nodes into different clusters. They offer the best

Dataset IRIS 700 GLASS
E2° 83.3+1.1 88.7+1.8 67.242.5
H° 84.0+0.6 87.3+1.5 62.842.0

EY x H® 85.6+1.1 88.0+14 64.8+4.3

H'O x H'® 87.8+1.4 873415 63.443.4

SPDg 88.0+1.6 887422 66.9+2.0
SK 88.0+0.5 88.742.2 66.6+2.4
SFee 89.140.5 88.7+£25 652+43.0
sh 89.3+1.1 90.7+1.5 67.5+3.9
B 86.0+1.9 88.7+1.4 65.5+3.1
Bi>= 84.440.0 87.34+19 65.6+1.7
BN 85.64+1.4 893428 642417

Table 5. Accuracy for node classification based on its embedding.

performance in the three datasets. This suggests that em-
beddings in Siegel spaces learn meaningful representations
that can be exploited into downstream tasks. Moreover, we
showcase how to map these embeddings to flat” vectors;
in this way they can be integrated with classical Euclidean
network layers.

8. Conclusions & Future Work

Riemannian manifold learning has regained attention due to
appealing geometric properties that allow methods to rep-
resent non-Euclidean data arising in several domains. We
propose the systematic use of symmetric spaces to encom-
pass previous work in representation learning, and develop a
toolkit that allows practitioners to choose a Riemannian sym-
metric space and implement the mathematical tools required
to learn graph embeddings. We introduce the use of Finsler
metrics integrated with a Riemannian optimization scheme,
which provide a significantly less distorted representation
over several data sets. As a new tool to discover structure in
the graph, we leverage the vector-valued distance function
on a RSS. We implement these ideas on Siegel spaces, a
rich class of RSS that had not been explored in geometric
deep learning, and we develop tractable and mathemati-
cally sound algorithms to learn embeddings in these spaces
through gradient-descent methods. We showcase the ef-
fectiveness of the proposed approach on conventional as
well as new datasets for the graph reconstruction task, and
in two downstream tasks. Our method ties or outperforms
constant-curvature baselines without requiring any previ-
ous assumption on geometric features of the graphs. This
shows the flexibility and enhanced representation capacity
of Siegel spaces, as well as the versatility of our approach.

As future directions, we consider applying the vector-valued
distance in clustering and structural analysis of graphs,
and the development of deep neural network architectures
adapted to the geometry of RSS, specifically Siegel spaces.
A further interesting research direction is to use geometric
transition between symmetric spaces to extend the approach
demonstrated by curvature learning a la Gu et al. (2019).
We plan to leverage the structure of the Siegel space of a
hyperbolic plane over SPD to analyze medical imaging data,
which is often given as symmetric positive definite matrices,
see Pennec (2020).
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