
Optimal Complexity in Decentralized Training
(Supplementary Materials)

A. Experimental Details
A.1. Hyperparameter Tuning

In the experiment of training LeNet on CIFAR10, we tune the step size using grid search inside the following range: {5e-3,
1e-3, 5e-4, 2.5e-4, 1e-4, 5e-5}. Note that this range is in general smaller than the one chosen in (Zhang & You, 2019c), since
here we are working with unshuffled data, and we found original range in baselines causes algorithms to diverge easily.
Following (Tang et al., 2018b), we let each run warm up for 10 epochs with step size 1e-5. For DeTAG, we further tune the
accelerated gossip parameter η within {0, 0.1, 0.2, 0.4} and phase length R within {1, 2, 3}. We fix the momentum term to
be 0.9 and weight decay to be 1e-4.

In the experiment of training Resnet20 on CIFAR100, we tune the step size using grid search inside the following range:
{0.5, 0.1, 0.05, 0.01, 0.005}. For DeTAG, we further tune the accelerated gossip parameter η within {0, 0.1, 0.2, 0.4} and
phase length R within {1, 2, 3}. We fix the momentum term to be 0.9 and weight decay to be 5e-4.

The hyperparameters adopted for each runs are shown in Table 3 and Table 4.

A.2. Techniques of Running DeTAG

We can see in the main loop of DeTAG, several gradient queries are made at the same point. This essentially is equivalent to
a large mini-batch size. In practice, however, we can modify this to use local-steps and get better empirical results (Lin et al.,
2018). Another technique is to use warm-up epochs when data is decentralized. We observe it ensures a smooth convergence
in practice. Last but not least, since at first the noise in the algorithms is generally large, we can use a dynamic phase length
to obtain better results. That is, we start from phase length 1 for the first few epochs, and let DeTAG follow the special
case of DSGT. Then we can gradually increase the phase length following given policies. The intuition is that as algorithm
converges, we would need less noise from communication, and thus a longer phase length can benefit.

Table 3. (Initial) Step size α used for each experiments.

Experiment Setting Algorithm

D-PSGD D2 DSGT DeTAG

LeNet/CIFAR10

100% Shuffled 5e-3 5e-3 5e-3 5e-3
50% Shuffled 5e-5 2.5e-4 2.5e-4 5e-4
25% Shuffled 5e-5 1e-4 2.5e-4 5e-4
0% Shuffled 5e-5 1e-4 2.5e-4 5e-4

Resnet20/CIFAR100

κ = 1 0.5 0.5 0.5 0.5
κ = 0.1 0.5 0.5 0.5 0.5
κ = 0.05 0.5 0.5 0.5 0.5
κ = 0.01 0.5 0.5 0.5 0.5
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Table 4. DeTAG-specific hyperparameters used for each experiments.
Experiment Setting Accelerate Factor η Phase Length R

LeNet/CIFAR10

100% Shuffled 0 1
50% Shuffled 0.2 2
25% Shuffled 0.2 2
0% Shuffled 0.2 2

Resnet20/CIFAR100

κ = 1 0 1
κ = 0.1 0.2 2
κ = 0.05 0.2 2
κ = 0.01 0.4 2

B. Technical Proof
B.1. Proof to Theorem 1

Proof. To prove this theorem, it suffices for us to provide two examples, each has a (set of) loss function f ∈ FΔ,L,
a set of underlying oracles O ∈ Oσ2 , a graph G ∈ Gn,D, such that infA∈AB

T�(A, f,O,G) is lower bounded by

Ω
�

ΔLσ2

nB�4

�
and Ω

�
ΔLD
�2

�
iterations on these two examples, respectively. Then we will obtain the final bound as

max
�
Ω
�

ΔLσ2

nB�4

�
,Ω

�
ΔLD
�2

��
, i.e., Ω

�
ΔLσ2

nB�4 + ΔLD
�2

�
as desired. For simplicity, we denote z(i) as the i-th coordinate of

vector z ∈ Rd.

For each setting, our constructions contain three main steps.

(1) The first step is to follow the construction of a zero chain function model (Carmon et al., 2017; 2019). Following
(Arjevani et al., 2019) and define

prog(z) = max{i ≥ 0|z(i) �= 0}, ∀z ∈ Rd. (18)

A zero chain function f has the following property:

prog(∇f(x)) ≤ prog(x) + 1, (19)

that means, for a model start from x = 0, a single gradient evaluation can only make at most one more coordinate to be
non-zero. The name of "chain" comes from the fact that the adjacent coordinates are linked like a chain and only if the
previous coordinate becomes non-zero that the current coordinate can become non-zero via a gradient update. Consider a
model with d dimension, if we show that �∇f(x)� ≥ � for any x ∈ Rd with x(d) = 0, we will obtain d as a lower bound
on the gradient calls to obtain the �-stationary point. We refer such sequential lower bound as T0.

(2) Step two is to construct a graph G ∈ Gn,D and a set of oracle O ∈ Oσ2 . To do this, our basic idea is to follow (Arjevani
et al., 2019) and introduce randomness on the prog(x), and thus the whole chain only make progress with probability p. As
will be shown later, this requires Ω(T0/p) iterations in total.

(3) The third and last step is to rescale the function and distribution so as to make it belong to the function and oracle classes
we consider. In other words, this step is to guarantee the result is shown in terms of Δ, L, σ, n and D.

We start from a smooth and (potentially) non-convex zero chain function f̂ (Carmon et al., 2019) as defined below:

f̂(x) = −Ψ(1)Φ(x(1)) +

T−1�

i=1

[Ψ(−x(i))Φ(−x(i+1))−Ψ(x(i)Φ(x(i+1))], (20)

where for ∀z ∈ R

Ψ(z) =

�
0 z ≤ 1/2

exp
�
1− 1

(2z−1)2

�
z > 1/2

, Φ(z) =
√
e

� z

−∞
e

1
2 t

2

dt. (21)

This function, as shown in previous works (Carmon et al., 2019; Arjevani et al., 2019), is a zero-chain function and thus
is generally "hard" to optimize: it costs at least T gradient evaluations to find a stationary point. We summarize some
properties of Equation (20) as the following (Proof can be found in Lemma 2 in (Arjevani et al., 2019)):
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1. f̂(x)− infx f̂(x) ≤ Δ0T , ∀x ∈ Rd, where Δ0 = 12.

2. f̂ is l1-smooth, where l1 = 152.

3. ∀x ∈ RT , �∇f̂(x)�∞ ≤ G∞, where G∞ = 23.

4. ∀x ∈ RT , if prog(x) < T , then �f̂(x)�∞ ≥ 1.

(Setting 1) Next we discuss the first setting with lower bound Ω
�

ΔLσ2

nB�4

�
. (Setting 1, Step 1) The loss functions are defined

as
f̂i(x) = f̂(x), (22)

note that 1/n
�n

i=1 f̂i = f̂ . It can be seen from Property 2 that all the f̂i are l1-smooth. (Setting 1, Step 2) For this setting
we consider complete graph. We construct the oracle on worker i as the following:

[ĝi(x)]j = ∇j f̂i(x) ·
�
1 + �{j > prog(x)}

�
z

p
− 1

��
, (23)

where z ∼ Bernoulli(p). It can be seen that
E[ĝi(x)] = ∇f̂i(x), (24)

and from Property 3 we know

E�ĝi(x)−∇f̂i(x)�2 = |∇prog(x)+1f̂(x)|2E
�
z

p
− 1

�2

≤ �∇f̂i(x)�2∞(1− p)

p
≤ �∇f̂(x)�2∞(1− p)

p
≤ G2

∞(1− p)

p
.

(Setting 1, Step 3) Finally we rescale each function as fi = Lλ2/l1f̂i(x/λ) where λ is a parameter subject to change. For
L: note that all fi are L

l1
· l1 = L-smooth. For the Δ,

f − f∗ =
Lλ2

l1
(f̂ − f̂∗) =

Lλ2Δ0T

l1
≤ Δ. (25)

For the oracle, to be consistent with fi, we rescale it as gi(x) = Lλ/l1ĝi(x/λ), and we have

E�gi(x)−∇fi(x)�2 ≤ L2λ2

l21
E
���gi

�x
λ

�
−∇fi

�x
λ

����
2

≤ L2λ2G2
∞(1− p)

l21p
≤ σ2. (26)

We assign λ = 2l1�/L, then Equation (25) and (26) are fulfilled with

T =

�
Δ

Δ0l1(2�)2

�
,

p =min{(2G∞�)2/σ2, 1}.

Take δ = 1/2 in Lemma 2, we have for probability at least 1/2, �∇f(x̂(t))� ≥ � for all t ≤ T+log(δ)
min{nBp,1}(e−1) . Use Property 4,

for any x ∈ RT such that prog(x) < T it holds that �∇f(x)� ≥ 2�, therefore,

E�∇f(x̂T )� > �. (27)

Then with small � it follows that

T�(A, f,O,G) ≥ T − 1

nBp(e− 1)
≥ Ω

�
ΔLσ2

nB�4

�
, (28)

and that completes the proof for setting 1.

(Setting 2) We proceed to the prove second bound Ω
�
ΔLD
�2

�
.
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Figure 4. Illustration graph for setting 2 to in the proof of Theorem 1.

(Setting 2 Step 1 & Step 2) We assign all the workers with index from 1 to n, we first define two indices set

I0 = {1, · · · , |I0|} ,
I1 = {n, n− 1, · · · , n− |I1|+ 1} . (29)

where | · | denotes a cardinality of a set. Consider the construction of G in Figure 4:

If D ≥ n− 2�n/3�+ 2, then it implies the number of nodes between A and B is larger than �n/3�. In this case, denote A’
and B’ as a sub linear graph where its number of nodes is exactly �n/3�. Let all the nodes on the left of A’ be in I0 and all
the nodes on the right of B’ be I1 We define all the local functions on such graph as following:

f̂i(x) =





− 2n
n−�n/3�Ψ(1)Φ(x(1)) +

�
i=2k,k∈{1,2,··· },i<T

2n
n−�n/3� [Ψ(−x(i))Φ(−x(i+1))−Ψ(x(i))Φ(x(i+1))] i ∈ I0,

�
i=2k−1,k∈{1,2,··· },i<T

2n
n−�n/3� [Ψ(−x(i))Φ(−x(i+1))−Ψ(x(i))Φ(x(i+1))] i ∈ I1,

0 i �∈ I0, I1.
(30)

If D < n− 2�n/3�+ 2, the distance between node A and node B is D − 2 and the sub linear graph whose end points are A
and B contains D − 1 nodes. We let the number of nodes on the left of A be

�
n−D+1

2

�
, we denote the set of indices of all

such nodes as I0; and then we let the number of nodes on the right of B be
�
n−D+1

2

�
, we denote the set of indices of all

such nodes as II . Since D < n− 2�n/3�+ 2, this implies |I0|, |I1| > n/3. We define all the local functions on such graph
as following:

f̂i(x) =





− n
|I0|Ψ(1)Φ(x(1)) +

�
i=2k,k∈{1,2,··· },i<T

n
|I0| [Ψ(−x(i))Φ(−x(i+1))−Ψ(x(i))Φ(x(i+1))] i ∈ I0,

�
i=2k−1,k∈{1,2,··· },i<T

n
|I1| [Ψ(−x(i))Φ(−x(i+1))−Ψ(x(i))Φ(x(i+1))] i ∈ I1,

0 i �∈ I0, I1.
(31)

In both cases discussed based on D, we can see that f̂(x) = 1
n

�n
i=1 f̂i(x), and we are splitting hard zero-chain function

into two main different part: the even components of the chain and the odd components of the chain. It is easy to see that for
the zero chain function to make progress, it takes at least �n/3�, i.e., Ω(D) number of iterations in the first case (since here
D = γ̃n for some γ̃ > 1/3) and D number of iterations in the seconds case. Then the total number of iterations is lower
bounded by Ω(TD).

For the oracle, we let oracle on worker i as
[ĝi(x)]j = ∇j f̂i(x). (32)

(Setting 2, Step 3) The last step is to rescale the parameters. Compared to setting 1, we know here all the f̂i are 3l1-smooth,
as before we let

fi(x) =
Lλ2

3l1
f̂i

�x
λ

�
, λ =

6l1�

L
. (33)

For the Δ bound we have
Lλ2Δ0T/3l1 ≤ Δ (34)
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to fulfill this it suffices to set

T =

�
ΔL

Δ0l1(12�)2

�
. (35)

It also can be seen that f is L-smooth. So in this setting,

T�(A, f,O,G) ≥ Ω(TD) = Ω

�
ΔLD

�2

�
. (36)

Combining Setting 1 and 2 we complete the proof.

Lemma 2. In setting 1 in the proof of Theorem 1, with probability at least 1−δ, �∇f(xt)� ≥ � for all t ≤ T+log(δ)
min{nBp,1}(e−1) .

Proof. Define a filtration at iteration t as the sigma field of all the previous events happened before iteration t. Let
i
(t)
j = prog(xt,j), ∀j ∈ [n] and i(t) = maxj i

(t)
j . And we denote E(t,m,j) as the event of the i

(t)
m +1-th coordinate

of output of j-th query on worker m at iteration t is non-zero. Based on the independent
sampling, these events are independent. Thus we know:

P[i(t+1) − i(t) = 1|U (t)] = P




�

i∈[n]
j≤B

E(t,i,j)|U (t)


 ≤

�

i∈[n],j≤B

P
�
E(t,i,j)|U (t)

�
≤ min{nBp, 1}. (37)

Let q(t) = i(t+1) − i(t), with Chernoff bound, we obtain

P[i(t) ≥ T ] = P[e
�t−1

j=0 q(j) ≥ eT ] ≤ e−TE[e
�t−1

j=0 q(j) ]. (38)

For the expectation term we know that

E[e
�t−1

j=0 q(j) ] = E



t−1�

j=0

E
�
eq

(j) |U (j)
�

 ≤ (1−min{nBp, 1}+min{nBp, 1}e)t ≤ emin{nBp,1}t(e−1). (39)

Thus we know
P[i(t) ≥ T ] ≤ e(e−1)min{nBp,1}t−T ≤ δ, (40)

for every t ≤ T+log(δ)
min{nBp,1}(e−1) .

B.2. Proof to Corollary

Proof. The proof of the Corollary consists of two parts: In the first part, we first prove given any n, how to construct the
graph and the gossip matrix with λ = 0, cos(π/n). Then we proceed to discuss how the other λ ∈ (0, cos(π/n)) can be
achieved.

We start from the first part of proving the lower bound. We propose two settings of construction. The first setting is the same
as the one shown in the proof of Theorem 1 as the complete graph. For setting 2, consider the two special cases of dumbbell
graph in Figure 4: if the graph is fully connected, then we can use the average consensus matrix W that fulfills λ = 0, and
this can be seen as the special case where D = 1; on the other hand, if the graph is a linear graph, we can first prove the
lower bound using the diameter as follows:

(Linear graph, Step 1) We first let |I0| = |I1| = �n/3� in the proof of Theomrem 1, meaning I0 denotes the first �n/3�
workers and I1 denotes the last �n/3� workers. We define all the local functions as following:

f̂i(x) =





− n
�n/3�Ψ(1)Φ(x(1)) +

�
i=2k,k∈{1,2,··· },i<T

n
�n/3� [Ψ(−x(i))Φ(−x(i+1))−Ψ(x(i))Φ(x(i+1))] i ∈ I0,

�
i=2k−1,k∈{1,2,··· },i<T

n
�n/3� [Ψ(−x(i))Φ(−x(i+1))−Ψ(x(i))Φ(x(i+1))] i ∈ I1,

0 i �∈ I0, I1.
(41)
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we can see that f̂(x) = 1
n

�n
i=1 f̂i(x). (Linear graph, Step 2) We consider linear graph in this setting and from one end to

the other, the worker’s index is 1 to n, without the loss of generality. It is easy to see that for the zero chain function to make
progress, it takes at least n− 2�n/3�+ 1 number of iterations. Note that in linear graph n− 1 = D, the total number of
iterations is at least

Ω (TD) . (42)

For the oracle, we let oracle on worker i as
[ĝi(x)]j = ∇j f̂i(x) (43)

(Linear graph, Step 3) The last step is to rescale the parameters. Compared to setting 1, we know here all the f̂i are
3l1-smooth, as before we let

fi(x) =
Lλ2

3l1
f̂i

�x
λ

�
, λ =

6l1�

L
. (44)

For the Δ bound we have
Lλ2Δ0T/3l1 ≤ Δ, (45)

to fulfill this it suffices to set

T =

�
ΔL

Δ0l1(12�)2

�
. (46)

It also can be seen that f is L-smooth. So in this setting,

T�(A, f,O,G) ≥ Ω(TD) ≥ Ω

�
ΔLD

�2

�
. (47)

Given the bound, we use two additional results on linear graph as (Berthier et al., 2020): the random walk matrix W rw on
linear graph with λ fulfilling

1√
1− λ

= O(D). (48)

Then we can rewrite the lower bound in the form of λ as shown in Corollary 1.

So far we’ve proved the two boundary cases, now the dumbbell graph can be seen as the intermediates between the two
boundary cases. Take any dumbbell graph as shown in Figure 4 and performs a random walk, we can easily see the second
largest eigenvalue for that random walk is some 0 < λ� < λ = cos(π/n), where cos(π/n) is the second largest eigenvalue
for the linear graph for n ≥ 2. Denote all these λ� associated with different dumbbell graph as {λ̃1, · · · , λ̃K}, then for any
0 ≤ λ̃i < λ < λ̃i+1 ≤ cos(π/n), a corresponding matrix W with second largest eigenvalue λ can always be achieved by
performing linear combination of the matrices with second largest eigenvalue λ̃i and λ̃i+1.

Finally, using the conclusion of λ = cos(π/n) for n ∈ {2, 3, · · · , } on linear graph we complete the proof.

B.3. Proof to Theorem 2

Proof. As (partially) discussed in the paper, DeFacto is statistically equivalent to centralized SGD. Specifically, it conduct
K = T/2R gradient steps where each step contains a mini-batch of R at the point of xk,i, ∀i ∈ [n]. Take the well-known
convergence rate for centralized SGD:

1

T

T−1�

t=0

�∇f(x̂)�2 ≤ O

�
ΔLσ√
nBT

+
ΔL

T

�
. (49)

The convergence rate of DeFacto can be expressed as:

1

T

T−1�

t=0

�∇f(x̂)�2 ≤ O

�
ΔLσ/

√
R√

nBK
+

ΔL

K

�
= O

�
ΔLσ√
nBT

+
ΔLR

T

�
= O

�
ΔLσ√
nBT

+
ΔLD

T

�
, (50)
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then we obtain for DeFacto, when T = O(ΔLσ2(nB�4)−1 +ΔLD�−2),

min
t=0,1,··· ,T−1

E �∇f (x̂)� ≤
�

min
t=0,1,··· ,T−1

E �∇f (x̂)�2 ≤
�
O

�
ΔLσ√
nBT

+
ΔLD

T

�
≤ �, (51)

that completes the proof.

B.4. Proof to Theorem 3

Proof. In this proof, we adopt an updated version of notation: we denote at the beginning of phase k, the three quantities of
interests are Xk, Y k and G̃k, and the update rule becomes:

Y k+1 = M(Y k + G̃k − G̃k−1), (52)
Xk+1 = M(Xk − αY k), (53)

with

G̃k+1 =
�
∇f̃1(xk,1), · · · ,∇f̃n(xk,n)

�
∈ Rd×n, (54)

Gk+1 = [∇f1(xk,1), · · · ,∇fn(xk,n)] ∈ Rd×n, (55)

Xk = [xk,1, · · · ,xk,n] ∈ Rd×n, (56)

Y k =
�
yk,1, · · · ,yk,n

�
∈ Rd×n, (57)

where ∇f̃i denotes the stochastic gradient oracle on worker i, and ∇fi denotes the full gradient oracle on worker i. We use
X denote X 1

n for any matrix X with appropriate shape. We use λi(W ) to denote the i-th general largest eigenvalue of
matrix W . Under such notation, λ in the main paper is equavilent to λ2(W ). We use M(·) to denote the R-step accelerated
gossip which has the following property (Liu & Morse, 2011):

�M(X)−X� ≤ ρ�X −X�; M(X)
1

n
= X

1

n
, (58)

where ρ =
�
1−

�
1− λ2(W )

�R

. The proof to the statement of Equation (58) can be found in (Ye et al., 2020).

For the stochastic oracle, based on the oracle class assumption, we have

E�∇f̃i(x)−∇fi(x)�2 ≤ σ2, (59)

and we denote σ̃2 = σ2

BR as the variance of mini-batch of R.

First, from the update rule of DeTAG,

Y k = M(Y k−1 + G̃k−1 − G̃k−2)
1

n
= Y k−1 + G̃k−1 − G̃k−2 = Y −1 +

k−1�

j=−1

(G̃j − G̃j−1) = G̃k−1 (60)

and

Xk+1 = M(Xk − αY k)
1

n
= Xk − αY k. (61)

By Taylor Theorem, we obtain

Ef
�
Xk+1

�
=Ef

�
Xk − αY k

�
(62)

≤Ef
�
Xk

�
− αE

�
∇f

�
Xk

�
,Y k

�
+

α2L

2
E
��Y k

��2
(63)

(60)
= Ef

�
Xk

�
− αE

�
∇f

�
Xk

�
,Gk−1

�
+

α2L

2
E
���G̃k−1

���
2

. (64)
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For the last term, we have

E
���G̃k−1

���
2

=E
��Gk−1

��2
+ E

���Gk−1 − G̃k−1

���
2

+ 2E
�
Gk−1,Gk−1 − G̃k−1

�
(65)

=E
��Gk−1

��2
+ E

���Gk−1 − G̃k−1

���
2

(66)

=E
��Gk−1

��2
+

1

n2

n�

i=1

E
���Gk−1ei − G̃k−1ei

���
2

(67)

≤E
��Gk−1

��2
+

σ̃2

n
, (68)

where in the second step, we use the fact that the sampling noise is independent of the gradient itself. Putting it back we
obtain

Ef
�
Xk+1

�
≤Ef

�
Xk

�
− αE

�
∇f

�
Xk

�
,Gk−1

�
+

α2L

2
E
��Gk−1

��2
+

α2σ̃2L

2n
(69)

=Ef
�
Xk

�
− α

2
E
��∇f

�
Xk

���2 − α− α2L

2

��Gk−1

��2
+

α2σ̃2L

2n
+

α

2
E
��Gk−1 −∇f

�
Xk

���2
, (70)

where the last step we use 2�a, b� = �a�2 + �b�2 − �a− b�2. Expand the last term, we obtain

E
��Gk−1 −∇f

�
Xk

���2
(71)

≤2E
��Gk−1 −Gk+1

��2
+ 2E

��Gk+1 −∇f
�
Xk

���2
(72)

=2E

�����
1

n

n�

i=1

∇fi(xk,i)−
1

n

n�

i=1

∇fi(xk−2,i)

�����

2

+ 2E

�����
1

n

n�

i=1

∇fi(xk,i)−
1

n

n�

i=1

∇fi(Xk)

�����

2

(73)

≤ 2

n

n�

i=1

E �∇fi(xk,i)−∇fi(xk−2,i)�2 +
2

n

n�

i=1

E
��∇fi(xk,i)−∇fi(Xk)

��2
(74)

≤2L2

n
E �Xk −Xk−2�2F +

2L2

n
E
��Xk −Xk1

�
n

��2

F
. (75)

Denote f(0)− f∗ ≤ Δ, we obtain

K−1�

k=0

α(1− αL)
��Gk

��2
+

K−1�

k=0

αE
��∇f

�
Xk

���2
(76)

≤2Δ+
α2σ̃2LK

n
+

2αL2

n

K−1�

k=0

E
��Xk −Xk1

�
n

��2
F
+

2αL2

n

K−1�

k=0

E �Xk −Xk−2�2F (77)

≤2Δ+
α2σ̃2LK

n
+

16αL2

n

K−1�

k=0

E
��Xk −Xk1

�
n

��2

F
+

6αL2

n

K−1�

k=0

E
��Xk1

�
n −Xk−21

�
n

��2
F
, (78)

where in the last step we use

2αL2

n

K−1�

k=0

E �Xk −Xk−2�2F (79)

≤6αL2

n

K−1�

k=0

E
��Xk −Xk1

�
n

��2
F
+

6αL2

n

K−1�

k=0

E
��Xk−2 −Xk−21

�
n

��2

F
+

6αL2

n

K−1�

k=0

E
��Xk1

�
n −Xk−21

�
n

��2

F
. (80)

In addition, for the last term we have

6αL2

n

K−1�

k=0

E
��Xk1

�
n −Xk−21

�
n

��2

F
=
6αL2n

n

K−1�

k=0

E
��Xk −Xk−2

��2
(81)
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(61)
=

24α3L2n

n

K−1�

k=0

E
���G̃k

���
2

(82)

(65)

≤ 24α3L2
K−1�

k=0

E
��Gk

��2
+

24α3σ̃2L2

n
. (83)

Push it back we have

K−1�

k=0

α(1− αL− 24α2L2)
��Gk

��2
+

K−1�

k=0

αE
��∇f

�
Xk

���2
(84)

≤2Δ+
α2σ̃2LK

n
+

16αL2

n

K−1�

k=0

E
��Xk −Xk1

�
n

��2

F
+

24α3σ̃2L2

n
. (85)

The rest of the proof is to bound 16αL2

n

�K−1
k=0 E

��Xk −Xk1
�
n

��2

F
.

We start from
��Xk+1 −Xk+11

�
n

��2

F
(86)

(61)
=

��M(Xk − αY k)− (Xk − αY k)1
�
n

��2

F
(87)

=
��M(Xk)−Xk1

�
n

��2

F
− 2α

�
M(Xk)−Xk1

�
n ,M(Y k)− Y k1

�
n

�
+ α2

��M(Y k)− Y k1
�
n

��2

F
(88)

(58)

≤ ρ2
��Xk −Xk1

�
n

��2

F
+

ρ2(1− ρ2)

1 + ρ2
��Xk −Xk1

�
n

��2
F
+

ρ2(1 + ρ2)α2

1− ρ2
��Y k − Y k1

�
n

��2

F
(89)

+ α2ρ2
��Y k − Y k1

�
n

��2

F
(90)

=
2ρ2

(1 + ρ2)

��Xk −Xk1
�
n

��2

F
+

2ρ2α2

1− ρ2
��Y k − Y k1

�
n

��2

F
, (91)

where in the third step we use

−2�a, b� ≤ 1− ρ2

1 + ρ2
�a�2 + 1 + ρ2

1− ρ2
�b�2. (92)

Similarly, for Y k+1, we obtain

E
��Y k+1 − Y k+11

�
n

��2

F
(93)

(60)
= E

���M(Y k + G̃k − G̃k−1)− (Y k + G̃k − G̃k−1)1
�
n

���
2

F
(94)

=E
��M(Y k)− Y k1

�
n

��2

F
+ E

���M(G̃k − G̃k−1)− (G̃k − G̃k−1)1
�
n

���
2

F
(95)

+ 2E
�
M(Y k)− Y k1

�
n ,M(G̃k − G̃k−1)− (G̃k − G̃k−1)1

�
n

�
(96)

(92)(58)

≤ ρ2E
��Y k − Y k1

�
n

��2

F
+ ρ2E

��Gk −Gk−1 − (Gk −Gk−1)1
�
n

��2
F

(97)

+
(1− ρ2)ρ2

1 + ρ2
E
��Y k − Y k1

�
n

��2

F
+

(1 + ρ2)ρ2

1− ρ2
E
��Gk −Gk−1 − (Gk −Gk−1)1

�
n

��2
F

(98)

+ 2ρ2E�Gk − G̃k�2F + 2ρ2E�Gk−1 − G̃k−1�2F + 2ρ2E�Gk1
�
n − G̃k1

�
n �2F + 2ρ2E�Gk−11

�
n − G̃k−11

�
n �2F

(99)

≤ 2ρ2

1 + ρ2
E
��Y k − Y k1

�
n

��2
F
+

4ρ2

1− ρ2
E �Gk+2 −Gk+1�2F (100)

+
4ρ2

1− ρ2
E �Gk+2 −Gk+1 −Gk +Gk−1�2F + 8nρ2σ̃2, (101)
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where in the last step we use �I − 11�

n � ≤ 1 and �AB�F ≤ �A�F �B�.

For the second term, we have

E �Gk+2 −Gk+1�2F (102)

=

n�

i=1

E �∇f(xk+1,i)−∇f(xk,i)�2 (103)

≤L2
n�

i=1

E �xk+1,i − xk,i�2 (104)

=L2E �Xk+1 −Xk�2F (105)
(61)
= L2E �M(Xk)−Xk − αM(Y k)�2F (106)

=L2E
��M(Xk −Xk1

�
n )− (Xk −Xk1

�
n )− αM(Y k)

��2

F
(107)

≤4L2E
��M(Xk)−Xk1

�
n

��2

F
+ 4L2E

��Xk −Xk1
�
n

��2
F
+ 4α2L2E

��M(Y k)− Y k1
�
n

��2

F
(108)

+ 4α2nL2E
��Y k

��2
(109)

≤4(1 + ρ2)L2E
��Xk −Xk1

�
n

��2
F
+ 4α2ρ2L2E

��Y k − Y k1
�
n

��2

F
+ 4α2nL2E

��Y k

��2
. (110)

Putting it back we obtain

E
��Y k+1 − Y k+11

�
n

��2

F
(111)

≤
�

2ρ2

1 + ρ2
+

16α2ρ4L2

1− ρ2

�
E
��Y k − Y k1

�
n

��2

F
+

16ρ2(1 + ρ2)L2

1− ρ2
E
��Xk −Xk1

�
n

��2

F
+

16α2ρ2nL2

1− ρ2
E
��Y k

��2
(112)

4ρ2

1− ρ2
E �Gk+2 −Gk+1 −Gk +Gk−1�2F + 8nρ2σ̃2. (113)

Combining Equation (91) and Equation (100), we have
�
E
��Xk+1 −Xk+11

�
n

��2

F

E
��Y k+1 − Y k+11

�
n

��2

F

�
�

�
P 11 P 12

P 21 P 22

� �
E
��Xk −Xk1

�
n

��2

F

E
��Y k − Y k1

�
n

��2

F

�
(114)

+

�
0

4ρ2

1−ρ2E �Uk�2F + 16α2ρ2nL2

1−ρ2 E
��Y k

��2
+ 8nρ2σ̃2

�
, (115)

where

P 11 =
2ρ2

(1 + ρ2)
(116)

P 12 =
2ρ2α2

1− ρ2
(117)

P 21 =
16ρ2(1 + ρ2)L2

1− ρ2
(118)

P 22 =
2ρ2

1 + ρ2
+

16α2ρ4L2

1− ρ2
(119)

Uk =Gk+2 −Gk+1 −Gk +Gk−1. (120)

For simplicity, define

zk =

�
E
��Xk+1 −Xk+11

�
n

��2

F

E
��Y k+1 − Y k+11

�
n

��2

F

�
(121)
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P =

�
P 11 P 12

P 21 P 22

�
(122)

uk =

�
0

4ρ2

1−ρ2E �Uk�2F + 16α2ρ2nL2

1−ρ2 E
��Y k

��2 + 8nρ2σ̃2,

�
(123)

then we can write this linear system as

zk � Pzk−1 + uk−1 � P kz0 +

k−1�

t=0

P k−tut, (124)

for simplicity.

Let λ1(P ),λ2(P ) denote the two eigenvalues of P (without the loss of generality, we denote λ1(P ) < λ2(P )), define

Ψ =
�
(P 11 − P 22)2 + 4P 12P 21, (125)

then with eigendecomposition, we obtain

λ1(P ) =
P 11 + P 22 −Ψ

2
(126)

λ2(P ) =
P 11 + P 22 +Ψ

2
=

2ρ2

1 + ρ2
+

8α2ρ4L2

1− ρ2
+

16αρ2L
�

α2ρ4L2 + (1 + ρ2)

1− ρ2
(127)

P k �
�

λk
1 (P )+λk

2 (P )
2 +

(P 11−P 22)(λ
k
2 (P )−λk

1 (P ))
2Ψ

P 12

Ψ (λk
2(P )− λk

1(P ))
P 21

Ψ (λk
2(P )− λk

1(P ))
λk
1 (P )+λk

2 (P )
2 +

(P 11−P 22)(λ
k
1 (P )−λk

2 (P ))
2Ψ

�
, (128)

when the step size is small enough such that

αL <
(1− ρ)2

32
, (129)

it can be verified that λ2(P ) ≤
√
ρ+ρ

1+ρ , and then we can compute the E�Xk −Xk1
�
n �2 and E�Y k − Y k1

�
n �2. We use

X[1 :] to denote the first row of matrix X . First for Xk, we obtain:

P kz0[1 :] ≤ P 12kλ
k−1
2 (P )E�Y 0 − Y 01

�
n �2F =

2ρ2α2k

1− ρ2
λk−1
2 (P )E�Y 0 − Y 01

�
n �2F (130)

where we use the property that λk
2(P ) − λk

1(P ) = (λ2(P ) − λ1(P ))
�k−1

l=0 λ2(P )lλ1(P )k−1−l = Ψkλk−1
2 (P ) and,

similarly

P k−tut[1 :] (131)

≤2ρ2α2(k − t)

1− ρ2
λk−t−1
2 (P )

�
4ρ2

1− ρ2
E �U t�2F +

16α2ρ2nL2

1− ρ2
E
��Y t

��2
+ 8nρ2σ̃2

�
(132)

=
2ρ2α2(k − t)

1− ρ2
λk−t−1
2 (P )

�
4ρ2

1− ρ2
E �U t�2F +

16α2ρ2nL2

1− ρ2
E
���G̃t−1

���
2

+ 8nρ2σ̃2

�
(133)

(65)

≤ 2ρ2α2(k − t)

1− ρ2
λk−t−1
2 (P )

�
4ρ2

1− ρ2
E �U t�2F +

16α2ρ2nL2

1− ρ2
E
��Gt−1

��2
+

16α2ρ2σ̃2L2

1− ρ2
+ 8nρ2σ̃2

�
, (134)

then we obtain

E
��Xk −Xk1

�
n

��2
F

(135)

≤2ρ2α2k

1− ρ2
λk−1
2 (P )E�Y 0 − Y 01

�
n �2F (136)

+

k−1�

t=0

2ρ2α2(k − t)

1− ρ2
λk−t−1
2 (P )

�
4ρ2

1− ρ2
E �U t�2F +

16α2ρ2nL2

1− ρ2
E
��Gt−1

��2
+

16α2ρ2σ̃2L2

1− ρ2
+ 8nρ2σ̃2

�
. (137)
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Summing over k = 0 to K − 1 we obtain

K−1�

k=0

E
��Xk −Xk1

�
n

��2

F
(138)

≤ 2ρ2α2

(1− ρ2)(1− λ2(P ))2

K−1�

k=0

E�Y 0 − Y 01
�
n �2F (139)

+
2ρ2α2

(1− ρ2)(1− λ2(P ))2

K−1�

k=0

�
4ρ2

1− ρ2
E �Uk�2F +

16α2ρ2nL2

1− ρ2
E
��Gk

��2
+

16α2ρ2σ̃2L2

1− ρ2
+ 8nρ2σ̃2

�
(140)

≤2ρ2α2(1 + ρ)nKς20
(1− ρ)(1−√

ρ)2
+

32ρ4α4nL2

(1− ρ)2(1−√
ρ)2

K−1�

k=0

E
��Gk

��2
+

8ρ4α2

(1− ρ)2(1−√
ρ)2

K−1�

k=0

E�Uk�2F (141)

+
32ρ4α4σ̃2L2K

(1− ρ)2(1−√
ρ)2

+
8ρ4α2nσ̃2(1 + ρ)K

(1− ρ)(1−√
ρ)2

] (142)

≤2ρ2α2(1 + ρ)nKς20
(1− ρ)(1−√

ρ)2
+

32ρ4α4nL2

(1− ρ)2(1−√
ρ)2

K−1�

k=0

E
��Gk

��2
+

8ρ4α2

(1− ρ)2(1−√
ρ)2

K−1�

k=0

E�Uk�2F (143)

+
16ρ4α2nσ̃2(1 + ρ)K

(1− ρ)(1−√
ρ)2

, (144)

where in the second step we used 1
1−λ2(P ) <

1+ρ
1−√

ρ since λ2(P ) ≤
√
ρ+ρ

1+ρ . And the third step holds due to Equation (129).
We proceed to analyze the case in Y k: we first have

[P k]22 =
λk
1(P ) + λk

2(P )

2
+

(P 11 − P 22)(λ
k
1(P )− λk

2(P ))

2Ψ
(145)

≤λk
2(P ) +

8α2ρ4L2kλk−1
2 (P )

1− ρ2
, (146)

then we can have

P kz0[2 :] ≤
�
λk
2(P ) +

8α2ρ4L2kλk−1
2 (P )

1− ρ2

�
E�Y 0 − Y 01

�
n �2F , (147)

and

P k−tut[2 :] (148)

≤
�
λk−t
2 (P ) +

8α2ρ4L2(k − t)λk−t−1
2 (P )

1− ρ2

�
·
�

4ρ2

1− ρ2
E �U t�2F +

16α2ρ2nL2

1− ρ2
E
��Y t

��2
+ 8nρ2σ̃2

�
(149)

≤
�
λk−t
2 (P ) +

8α2ρ4L2(k − t)λk−t−1
2 (P )

1− ρ2

�
·
�

4ρ2

1− ρ2
E �U t�2F +

16α2ρ2nL2

1− ρ2
E
��Gt−1

��2
+

16α2ρ2σ̃2L2

1− ρ2
+ 8nρ2σ̃2

�
.

(150)

Summing over k = 0 to K − 1, we obtain

K−1�

k=0

E�Y k − Y k1
�
n �2 (151)

≤ (1 + ρ)nKς20
1−√

ρ
+

8α2ρ4(1 + ρ)L2nKς20
(1− ρ)(1−√

ρ)2
(152)

+

�
1 + ρ

1−√
ρ
+

8α2ρ4(1 + ρ)L2

(1− ρ)(1−√
ρ)2

�K−1�

k=0

�
4ρ2

1− ρ2
E �Uk�2F +

16α2ρ2nL2

1− ρ2
E
��Gk

��2
+

16α2ρ2σ̃2L2

1− ρ2
+ 8nρ2σ̃2

�
.

(153)
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We next solve �Uk�F , from the definition of Uk we obtain that

K−1�

k=0

E �Uk�2F =

K−1�

k=0

E �Gk+2 −Gk+1 −Gk +Gk−1�2F (154)

≤2

K−1�

k=0

E �Gk+2 −Gk+1�2F + 2

K−1�

k=0

E �Gk −Gk−1�2F (155)

≤4

K−1�

k=0

E �Gk+2 −Gk+1�2F (156)

=4

K−1�

k=0

n�

i=1

E �∇f(xk+1,i)−∇f(xk,i)�2 (157)

≤4L2
K−1�

k=0

n�

i=1

E �xk+1,i − xk,i�2 (158)

=4L2
K−1�

k=0

E �Xk+1 −Xk�2F . (159)

Fit in the derivation from Equation (110) we obtain

K−1�

k=0

E �Uk�2F (160)

≤4L2
K−1�

k=0

E �Xk+1 −Xk�2F (161)

≤16(1 + ρ2)L2
K−1�

k=0

E
��Xk −Xk1

�
n

��2

F
+ 16α2ρ2L2

K−1�

k=0

E
��Y k − Y k1

�
n

��2

F
+ 16α2nL2

K−1�

k=0

E
��Y k

��2 (162)

≤32ρ2α2(1 + ρ)2nKς20L
2

(1− ρ)(1−√
ρ)2

+
512ρ4(1 + ρ)α4nL4

(1− ρ)2(1−√
ρ)2

K−1�

k=0

E
��Gk

��2
+

256ρ4(1 + ρ)α2L2

(1− ρ)2(1−√
ρ)2

K−1�

k=0

E�Uk�2F (163)

+
256ρ4α2nσ̃2(1 + ρ)2KL2

(1− ρ)(1−√
ρ)2

(164)

+
16α2ρ2(1 + ρ)nKς20L

2

1−√
ρ

+
128α4ρ6(1 + ρ)L4nKς20

(1− ρ)(1−√
ρ)2

(165)

+

�
16α2ρ2(1 + ρ)L2

1−√
ρ

+
128α4ρ6(1 + ρ)L4

(1− ρ)(1−√
ρ)2

�K−1�

k=0

4ρ2

1− ρ2
E �Uk�2F (166)

+

�
16α2ρ2(1 + ρ)L2

1−√
ρ

+
128α4ρ6(1 + ρ)L4

(1− ρ)(1−√
ρ)2

�K−1�

k=0

�
16α2ρ2nL2

1− ρ2
E
��Gk

��2
+

16α2ρ2σ̃2L2

1− ρ2
+ 8nρ2σ̃2

�
(167)

+ 16α2nL2
K−1�

k=0

E
��Y k

��2 (168)

≤64ρ2α2(1 + ρ)2nKς20L
2

(1− ρ)(1−√
ρ)2

+
512ρ4(1 + ρ)α2L2

(1− ρ)2(1−√
ρ)2

K−1�

k=0

E�Uk�2F +
512ρ4α2nσ̃2(1 + ρ)2KL2

(1− ρ)(1−√
ρ)2

(169)

+ 32α2nL2
K−1�

k=0

E
��Gk

��2
, (170)

where in the third step we use the derivation from Equation (138) and (151), in the fourth step we repeatedly use Equa-
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tion (129) and Equation (65), solve it we obtain

K−1�

k=0

E �Uk�2F ≤ 128ρ2α2(1 + ρ)2nKς20L
2

(1− ρ)(1−√
ρ)2

+
1024ρ4α2nσ̃2(1 + ρ)2KL2

(1− ρ)(1−√
ρ)2

+ 64α2nL2
K−1�

k=0

E
��Gk

��2
, (171)

where again we use Equation (129), combine it with Equation (138) we obtain

K−1�

k=0

E
��Xk −Xk1

�
n

��2

F
(172)

≤4ρ2α2(1 + ρ)nKς20
(1− ρ)(1−√

ρ)2
+

544ρ4α4nL2

(1− ρ)2(1−√
ρ)2

K−1�

k=0

E
��Gk

��2
+

32ρ4α2nσ̃2(1 + ρ)K

(1− ρ)(1−√
ρ)2

, (173)

where we use Equation (129).

Recall from Equation (84) that

K−1�

k=0

α(1− αL− 24α2L2)
��Gk

��2
+

K−1�

k=0

αE
��∇f

�
Xk

���2
(174)

≤2Δ+
α2σ̃2LK

n
+

16αL2

n

K−1�

k=0

E
��Xk −Xk1

�
n

��2

F
+

24α3σ̃2L2

n
. (175)

Combine Equation (129) and (173), we obtain

1

K

K−1�
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where we omit the numerical constants. Set
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we obtain
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Fit in T = KR and σ̃2 = σ2/BR, we obtain
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set
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this implies
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with the assignment of R, ρ2n < 1 and ρς0
√
T/

√
ΔL < 1, so since it also holds that R ≥ 1 (and so R2/3 ≤ R),
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when
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we have
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On the other hand, when
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we have
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to see this, note that
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Finally, we can obtain the upper bound
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as desired.

C. Details to footnotes
C.1. Asynchronous Algorithm (Footnote 2)

In the full paper, we focus on the synchronous algorithms, i.e., we assume the existence of a synchronization process among
workers between two adjacent iterations. We now extend our formulation to asynchronous algorithms. Since workers now
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update and communicate asynchronously, we define any gradient update that took place on a randomly chosen worker as
one iteration. This randomness depends on system implementation, stochastic events, etc. This is a commonly adopted
definition in the analysis of (decentralized) asynchronous algorithms (Lian et al., 2017b). To obtain a lower bound in such
case, consider the two settings as shown in the proof of Theorem 1. In setting 1, it can be easily verified that the lower bound
for sample complexity is

Ω

�
ΔLσ2

B�4

�
. (194)

This holds because in the extreme case, only one worker is making contributions to the optimization. And since we have
not made any assumption on how workers are sampled to conduct the next iteration, this is a valid bound for arbitrary
distribution. On the other hand, considering setting 2, the lower bound is still Ω(T0D) where T0 = Ω(ΔL�−2) is the lower
bound in the sequential case, since the systems need at least Ω(D) iterations for the workers in I0 and I2 to contact. The
lower bound for communication complexity is then

Ω

�
ΔLD

�2

�
. (195)

Combining them together, we can get the final lower bound as:

Ω

�
ΔLσ2

B�4
+

ΔLD

�2

�
. (196)

Note that this bound holds with probability 1. It is possible to propose finer-grained assumption on how workers are chosen
(e.g. uniformly random) and use concentration inequalities (e.g. Hoeffding’s inequality) to get tighter bounds, we leave this
as future work.

C.2. Relax zero-respecting assumption (Footnote 3)

To relax the zero-respecting assumption, we can use the technique proposed by (Carmon et al., 2019) (See their proofs to
Proposition 1 and 2). The basic idea is that to adversarially construct the loss function and rotate the non-zero coordinates in
t-th iterations, such that when the algorithm operates on the rotated function, the first t iterations match with that of the old
function. However, the new rotated function is still zero-respecting to the algorithm after t-th iteration so is generally hard
to optimize. The details can be found in (Carmon et al., 2019).

C.3. Specific algorithm for Average Consensus (Footnote 8)

Many algorithms have been proposed on solving the Average Consensus problem, readers can find details in many previous
works on graph theory such as (Georgopoulos, 2011; Hendrickx et al., 2014; Ko, 2010). A straightforward algorithm is
the Minimum Spanning Tree, that is, we first generate a spanning tree of the graph, and then the workers send and receive
message using propagation on the tree. Specifically, starting from the leaves, all the children nodes of the tree send its
accumulated value to the parents and the root compute the averaged value after gathering the information from the graph.
And then reversely, the parent nodes send the value back to the child nodes and eventually all the nodes will get the averaged
value. This algorithm is also known as the GATHER-PROPAGATE algorithm as discussed in (Ko, 2010), section 3. We
include the detailed pseudo-code11 in Algorithm 4.

11This code is proposed by Ko (2010), we do not intend to take credit for this.
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Algorithm 4 GATHER-PROPAGATE (Spanning Tree) for a single coordinate
Require: communication graph G, a single coordinate on workers (all the coordinates follow the same instructions) to be communicated

X ∈ Rn.
1: d ← vector of 1’s indexed by V (G) (vertices set of graph G).
2: I ← a spnning tree of G with root r arbitrarily picked.
3: for v ∈ V (I) do
4: lv ← D̄(r, v) (the distance between r and v)
5: end for
6: for α = maxv lv, · · · , 1 do
7: for v with lv = α do
8: v gives all its value onto its parents u:

�
Xu

Xv

�
←

�
1 1
0 0

� �
Xu

Xv

�

9: du ← du + dv

10: end for
11: end for
12: for α = 0, · · · ,maxv lv − 1 do
13: for u with lu = α do
14: {v1, · · · , vβ} ← set of children of u
15: re-distribute the results:




Xu

Xv1

...
Xvβ


 ← 1

du




du − du − · · ·− dvβ

dv1

...
dvβ


Xu

16: end for
17: end for
18: return X 11�

n


