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Abstract

Decentralization is a promising method of scal-
ing up parallel machine learning systems. In this
paper, we provide a tight lower bound on the iter-
ation complexity for such methods in a stochastic
non-convex setting. Our lower bound reveals a
theoretical gap in known convergence rates of
many existing decentralized training algorithms,
such as D-PSGD. We prove by construction this
lower bound is tight and achievable. Motivated
by our insights, we further propose DeTAG, a
practical gossip-style decentralized algorithm that
achieves the lower bound with only a logarithm
gap. Empirically, we compare DeTAG with other
decentralized algorithms on image classification
tasks, and we show DeTAG enjoys faster con-
vergence compared to baselines, especially on
unshuffled data and in sparse networks.

1. Introduction
Parallelism is a ubiquitous method to accelerate model train-
ing (Abadi et al., 2016; Alistarh, 2018; Alistarh et al., 2020;
Lu et al., 2020). A parallel learning system usually consists
of three layers (Table 1): an application to solve, a commu-
nication protocol deciding how parallel workers coordinate,
and a network topology determining how workers are con-
nected. Traditional design for these layers usually follows a
centralized setup: in the application layer, training data is
required to be shuffled and shared among parallel workers;
while in the protocol and network layers, workers either
communicate via a fault-tolerant single central node (e.g.
Parameter Server) (Li et al., 2014a;b; Ho et al., 2013) or
a fully-connected topology (e.g. AllReduce) (Gropp et al.,
1999; Patarasuk & Yuan, 2009). This centralized design lim-
its the scalability of learning systems in two aspects. First,
in many scenarios, such as Federated Learning (Koloskova
et al., 2019a; McMahan et al., 2016) and Internet of Things
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Table 1. Design choice of centralization and decentralization in
different layers of a parallel machine learning system. The protocol
specifies how workers communicate. The topology refers to the
overlay network that logically connects all the workers.

Layer Centralized Decentralized

Application Shuffled Data Unshuffled Data
(Federated Learning)

Protocol AllReduce/AllGather GossipParameter Server

Network Complete- Arbitrary GraphTopology (Bipartite) Graph

(IOT) (Kanawaday & Sane, 2017), a shuffled dataset or a
complete (bipartite) communication graph is not possible or
affordable to obtain. Second, a centralized communication
protocol can significantly slow down the training, especially
with a low-bandwidth or high-latency network (Lian et al.,
2017b; Tang et al., 2019b; Yu et al., 2018).

The rise of decentralization. To mitigate these limitations,
decentralization comes to the rescue. Decentralizing the
application and network allows workers to learn with un-
shuffled local datasets (Li et al., 2019) and arbitrary topolo-
gies (Seaman et al., 2017; Shanthamallu et al., 2017). Fur-
thermore, the decentralized protocol, i.e. Gossip, helps to
balance load, and has been shown to outperform centralized
protocols in many cases (Lian et al., 2017a; Yu et al., 2019;
Nazari et al., 2019; Lu & De Sa, 2020).

Understanding decentralization with layers. Many de-
centralized training designs have been proposed, which can
lead to confusion as the term “decentralization” is used
inconsistently in the literature. Some works use “decen-
tralized” to refer to approaches that can tolerate non-iid or
unshuffled datasets (Li et al., 2019), while others use it to
mean gossip communication (Lian et al., 2017a), and still
others use it to mean a sparse topology graph (Wan et al.,
2020). To eliminate this ambiguity, we formulate Table 1,
which summarizes the different “ways” a system can be
decentralized. Note that the choices to decentralize different
layers are independent, e.g., the centralized protocol AllRe-
duce can still be implemented on a decentralized topology
like the Ring graph (Wan et al., 2020).
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Figure 1. Figure illustrating how decentralization in different layers lead to different learning systems. From left to right: 1 : A fully
centralized system where workers sample from shared and shuffled data; 2 : Based on 1 , workers maintain their own data sources,
making it decentralized in the application layer; 3 : Based on 2 , workers are decentralized in the topology layer; 4 : A fully
decentralized system in all three layers where the workers communicate via Gossip. Our framework and theory are applicable to all kinds
of decentralized learning systems.

The theoretical limits of decentralization. Despite the
empirical success, the best convergence rates achievable by
decentralized training—and how they interact with different
notions of decentralization—remains an open question. Pre-
vious works often show complexity of a given decentralized
algorithm with respect to the number of iterations T or the
number of workers n, ignoring other factors including net-
work topologies, function parameters or data distribution.
Although a series of decentralized algorithms have been
proposed showing theoretical improvements—such as using
variance reduction (Tang et al., 2018b), acceleration (Sea-
man et al., 2017), or matching (Wang et al., 2019)—we do
not know how close they are to an “optimal” rate or whether
further improvement is possible.

In light of this, a natural question is: What is the optimal
complexity in decentralized training? Has it been achieved
by any algorithm yet? Previous works have made initial at-
tempts on this question, by analyzing this theoretical limit in
a non-stochastic or (strongly) convex setting (Seaman et al.,
2017; Scaman et al., 2018; Koloskova et al., 2020; Wood-
worth et al., 2018; Dvinskikh & Gasnikov, 2019; Sun &
Hong, 2019). These results provide great heuristics but still
leave the central question open, since stochastic methods are
usually used in practice and many real-world problems of in-
terest are non-convex (e.g. deep learning). In this paper we
give the first full answer to this question: our contributions
are as follows.

• In Section 4, we prove the first (to our knowledge) tight
lower bound for decentralized training in a stochastic
non-convex setting. Our results reveal an asymptotic gap
between our lower bound and known convergence rates
of existing algorithms.

• In Section 5, we prove our lower bound is tight by ex-
hibiting an algorithm called DeFacto that achieves it—
albeit while only being decentralized in the sense of the
application and network layers.

• In Section 6, we propose DeTAG, a practical algorithm

that achieves the lower bound with only a logarithm gap
and that is decentralized in all three layers.

• In Section 7, we experimentally evaluate DeTAG on the
CIFAR benchmark and show it converges faster com-
pared to decentralized learning baselines.

2. Related Work
Decentralized Training. In the application layer, decen-
tralized training usually denotes federated learning (Zhao
et al., 2018). Research on decentralization in this sense
investigates convergence where each worker samples only
from a local dataset which is not independent and identically
distributed to other workers’ datasets (Bonawitz et al., 2019;
Tran et al., 2019; Yang et al., 2019; Konečnỳ et al., 2016).
Another line of research on decentralization focuses on the
protocol layer—with average gossip (Boyd et al., 2005;
2006), workers communicate by averaging their parameters
with neighbors on a graph. D-PSGD (Lian et al., 2017a)
is one of the most basic algorithms that scales SGD with
this protocol, achieving a linear parallel speed up. Addi-
tional works extend D-PSGD to asynchronous and variance-
reduced cases (Lian et al., 2017b; Tang et al., 2018b; Tian
et al., 2020; Zhang & You, 2019b; Hendrikx et al., 2019; Xin
et al., 2021a). After those, Zhang & You (2019c); Xin et al.
(2019; 2021b) propose adding gradient trackers to D-PSGD.
Other works discuss the application of decentralization on
specific tasks such as linear models or deep learning (He
et al., 2018; Assran et al., 2018). Zhang & You (2019a)
treats the case where only directed communication can be
performed. Wang et al. (2019) proposes using matching
algorithms to optimize the gossip protocol. Multiple works
discuss using compression to decrease communication costs
in decentralized training (Koloskova et al., 2019b;a; Lu &
De Sa, 2020; Tang et al., 2019a; 2018a), and other papers
connect decentralized training to other parallel methods and
present a unified theory (Lu et al., 2020; Koloskova et al.,
2020; Wang & Joshi, 2018). In some even earlier works



Optimal Complexity in Decentralized Training

like (Nedic & Ozdaglar, 2009; Duchi et al., 2010), full local
gradients on a convex setting is investigated.

Lower Bounds in Stochastic Optimization. Lower
bounds are a well studied topic in non-stochastic optimiza-
tion, especially in convex optimization (Agarwal & Bottou,
2014; Arjevani & Shamir, 2015; Lan & Zhou, 2018; Fang
et al., 2018; Arjevani & Shamir, 2017). In the stochastic set-
ting, Allen-Zhu (2018) and Foster et al. (2019) discuss the
complexity lower bound to find stationary points on convex
problems. Other works study the lower bound in a convex,
data-parallel setting (Diakonikolas & Guzmán, 2018; Balka-
nski & Singer, 2018; Tran-Dinh et al., 2019), and Colin et al.
(2019) extends the result to a model-parallel setting. In the
domain of non-convex optimization, Carmon et al. (2017;
2019) propose a zero-chain model that obtains tight bound
for a first order method to obtain stationary points. Zhou &
Gu (2019) extends this lower bound to a finite sum setting,
and Arjevani et al. (2019) proposes a probabilistic zero-
chain model that obtains tight lower bounds for first-order
methods on stochastic and non-convex problems.

3. Setting
In this section, we introduce the notation and assumptions
we will use. Throughout the paper, we consider the standard
data-parallel training setup with n parallel workers. Each
worker i stores a copy of the model x ∈ Rd and a local
dataset Di. The model copy and local dataset define a local
loss function (or empirical risk) fi. The ultimate goal of the
parallel workers is to output a target model x̂ that minimizes
the average over all the local loss functions, that is,

x̂ = arg min
x∈Rd


f(x) = 1

n

n�

i=1

Eξi∼Di
fi(x; ξi)� �� �

fi(x)


 . (1)

Here, ξi is a data sample from Di and is used to compute a
stochastic gradient via some oracle, e.g. back-propagation
on a mini-batch of samples. The loss functions can (po-
tentially) be non-convex so finding a global minimum is
NP-Hard; instead, we expect the workers to output a point x̂
at which f(x̂) has a small gradient magnitude in expectation:
E�∇f(x̂)� ≤ �, for some small �.1 The assumptions our
theoretical analysis requires can be categorized by the layers
from Table 1: in each layer, “being decentralized” corre-
sponds to certain assumptions (or lack of assumptions). We
now describe these assumptions for each layer separately.

1There are many valid stopping criteria. We adopt �-stationary
point as the success signal. E�∇f(x̂)�2 ≤ �2 is another com-
monly used criterion; we adopt the non-squared one following
(Carmon et al., 2019). Other criterions regarding stationary points
can be converted to hold in our theory.

3.1. Application Layer

Application-layer assumptions comprise constraints on the
losses fi from (1) and the gradient oracle via which they are
accessed by the learning algorithm, as these are constraints
on the learning task itself.

Function class (Δ and L). As is usual in this space, we
assume the local loss functions fi : Rd → R are L-smooth,

�∇fi(x)−∇fi(y)� ≤ L�x− y�, ∀x,y ∈ Rd, (2)

for some constant L > 0, and that the total loss f is range-
bounded by Δ in the sense that f(0)− infx f(x) ≤ Δ. We
let the function class FΔ,L denote the set of all functions
that satisfy these conditions (for any dimension d ∈ N+).

Oracle class (σ2). We assume each worker interacts with its
local function fi only via a stochastic gradient oracle g̃i, and
that when we query this oracle with model x, it returns an
independent unbiased estimator to ∇fi(x) based on some
random variable z with distribution Z (e.g. the index of a
mini-batch randomly chosen for backprop). Formally,

Ez∼Z [g̃i(x, z)] = ∇fi(x), ∀x ∈ Rd. (3)

As per the usual setup, we additionally assume the local
estimator has bounded variance: for some constant σ > 0,

Ez∼Z�g̃i(x, z)−∇fi(x)�2 ≤ σ2, ∀x ∈ Rd. (4)

We let O denote a set of these oracles {g̃i}i∈[n], and let the
oracle class Oσ2 denote the class of all such oracle sets that
satisfy these two assumptions.

Data shuffling (ς2 and ς20 ). At this point, an analysis with
a centralized application layer would make the additional
assumption that all the fi are equal and the g̃i are identically
distributed: this roughly corresponds to the assumption that
the data all comes independently from a single centralized
source. We do not make this assumption, and lacking such
an assumption is what makes an analysis decentralized in
the application layer. Still, some assumption that bounds
the fi relative to each other somehow is needed: we now
discuss two such assumptions used in the literature, from
which we use the weaker (and more decentralized) one.

One commonly made assumption (Lian et al., 2017a;
Koloskova et al., 2019b;a; Lu & De Sa, 2020; Tang et al.,
2018a) in decentralized training is

1

n

n�

i=1

�∇fi(x)−∇f(x)�2 ≤ ς2, ∀x ∈ Rd, (5)

for some constant ς , which is said to bound the “outer vari-
ance” among workers. This is often unreasonable, as it
suggests the local datasets on workers must have close dis-
tribution: in practice, ensuring this often requires some sort
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Table 2. Complexity comparison among different algorithms in the stochastic non-convex setting on arbitrary graphs. The blue text are the
results from this paper. Definitions to all the parameters can be found in Section 3. Other algorithms like EXTRA (Shi et al., 2015) or
MSDA (Scaman et al., 2017) are not comparable since they are designed for (strongly) convex problems. Additionally, Liu & Zhang
(2021) provides alternative complexity bound for algorithms like D-PSGD which improves upon the spectral gap. However, the new
bound would compromise the dependency on �, which does not conflict with our comparison here.

Source Protocol Sample Complexity Comm. Complexity Gap to Lower Bound

Lower Bound Theorem 1 Central Ω
�

ΔLσ2

nB�4

�
Ω
�
ΔLD
�2

�
/

Corollary 1 Decentral Ω
�

ΔLσ2

nB�4

�
Ω
�

ΔL
�2

√
1−λ

�
/

Upper Bound

DeFacto (Theorem 2) Central O
�

ΔLσ2

nB�4

�
O
�
ΔLD
�2

�
O(1)

DeTAG (Theorem 3) Decentral O
�

ΔLσ2

nB�4

�
O

�
ΔL log

�
ς0n

�
√

ΔL

�

�2
√
1−λ

�
O
�
log

�
ς0n

�
√
ΔL

��

D-PSGD (Lian et al., 2017a) Decentral O
�

ΔLσ2

nB�4

�
O
�

ΔLnς
�2(1−λ)2

�
O

�
nς

(1−λ)
3
2

�

SGP (Assran et al., 2019) Decentral O
�

ΔLσ2

nB�4

�
O
�

ΔLnς
�2(1−λ)2

�
O

�
nς

(1−λ)
3
2

�

D2 (Tang et al., 2018b) Decentral O
�

ΔLσ2

nB�4

�
O
�

λ2ΔLnς0
�2(1−λ)3

�
O

�
λ2nς0

(1−λ)
5
2

�

DSGT (Zhang & You, 2019c) Decentral O
�

ΔLσ2

nB�4

�
O
�

λ2ΔLnς0
�2(1−λ)3

�
O

�
λ2nς0

(1−λ)
5
2

�

GT-DSGD (Xin et al., 2021b) Decentral O
�

ΔLσ2

nB�4

�
O
�

λ2ΔLnς0
�2(1−λ)3

�
O

�
λ2nς0

(1−λ)
5
2

�

of shuffling or common centralized data source. We do not
assume (5) but instead adopt the much weaker assumption

1

n

n�

i=1

�∇fi(0)−∇f(0)�2 ≤ ς20 , (6)

for constant ς0 > 0.2 This assumption only requires a
bound at point 0, which is, to the best of our knowledge, the
weakest assumption of this type used in the literature (Tang
et al., 2018b; Zhang & You, 2019c). Requiring such a weak
assumption allows workers to (potentially) sample from
different distributions or vary largely in their loss functions
(e.g. in a federated learning environment).

3.2. Protocol Layer

Protocol-layer assumptions comprise constraints on the par-
allel learning algorithm itself, and especially on the way that
the several workers communicate to approach consensus.

Algorithm class (B). We consider algorithms A that divide
training into multiple iterations, and between two adjacent
iterations, there must be a synchronization process among
workers (e.g. a barrier) such that they start each iteration
simultaneously.3 Each worker running A has a local copy

2As we only use ς0 for upper bounds, not lower bounds, we do
not define a “class” that depends on this parameter.

3We consider synchronous algorithms only here for simplicity
of presentation; further discussion of extension to asynchronous
algorithms is included in the supplementary material.

of the model, and we let xt,i ∈ Rd denote this model on
worker i at iteration t. We assume without loss of generality
that A initializes each local model at zero: x0,i = 0 for all
i. At each iteration, each worker makes at most B queries
to its gradient oracle g̃i, for some constant B ∈ N+, and
then uses the resulting gradients to update its model. We do
not make any explicit rules for output and allow the output
of the algorithm x̂t at the end of iteration t (the model that
A would output if it were stopped at iteration t) to be any
linear combination of all the local models, i.e.

x̂t ∈ span({xt,j}j∈[n]) = {�n
j=1 cjxt,j | cj ∈ R}. (7)

Beyond these basic properties, we further require A to sat-
isfy the following “zero-respecting” property from Carmon
et al. (2017). Specifically, if z is any vector worker i queries
its gradient oracle with at iteration t, then for any k ∈ [d], if
e�k z �= 0, then there exists a s ≤ t and a j ∈ [n] such that
either j = i or j is a neighbor of i in the network connec-
tivity graph G (i.e. (i, j) ∈ {(i, i)} ∪G) and (e�k xs,j) �= 0.
More informally, the worker will not query its gradient ora-
cle with a nonzero value for some weight unless that weight
was already nonzero in the model state of the worker or one
of its neighbors at some point in the past. Similarly, for any
k ∈ [d], if (e�k xt+1,i) �= 0, then either there exists an s ≤ t
and j such that (i, j) ∈ {(i, i)} ∪G and (e�k xs,j) �= 0, or
one of the gradient oracle’s outputs v on worker i at iteration
t has e�k v �= 0. Informally, a worker’s model will not have
a nonzero weight unless either (1) that weight was nonzero
on that worker or one of its neighbors at a previous iteration,
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or (2) the corresponding entry in one of the gradients the
worker sampled at that iteration was nonzero.

Intuitively, we are requiring that algorithm A will not mod-
ify those coordinates that remain zero in all previous or-
acle outputs and neighboring models.4 This lets A use a
wide space of accessible information in communication
and allows our class to cover first-order methods includ-
ing SGD (Ghadimi & Lan, 2013), Momentum SGD (Nes-
terov, 1983), Adam (Kingma & Ba, 2014), RMSProp (Tiele-
man & Hinton, 2012), Adagrad (Ward et al., 2018), and
AdaDelta (Zeiler, 2012). We let algorithm class AB denote
the set of all algorithms A that satisfy these assumptions.

So far our assumptions in this layer cover both central-
ized and decentralized protocols. Decentralized protocols,
however, must satisfy the additional assumption that they
communicate via gossip (see Section 2) (Boyd et al., 2005;
2006). A single step of gossip protocol can be expressed as

zt,i ←
�

j∈Ni
yt,jW ji, ∀i ∈ [n] (8)

for some constant doubly stochastic matrix W ∈ Rn×n

called the communication matrix and y and z are the input
and output of the gossip communication step, respectively.
The essence of a single Gossip step is to take weighted aver-
age over the neighborhood specified by a fixed matrix. To
simplify later discussion, we further define the gossip ma-
trix class Wn as the set of all matrices W ∈ Rn×n, where
W is doubly stochastic and W ij �= 0 only if (i, j) ∈ G.
We call every W ∈ Wn a gossip matrix and we use
λ = max{|λ2|, |λn|} ∈ [0, 1) to denote its general second-
largest eigenvalue, where λi denotes the i-th largest eigen-
value of W . We let gossip algorithm class AB,W denote
the set of all algorithms A ∈ AB that only communicate
via gossip using a single matrix W ∈ Wn. It trivially holds
that AB,W ⊂ AB .

3.3. Topology Layer

Topology-layer assumptions comprise constraints on how
workers are connected topologically. We let the graph class
Gn,D denote the class of graphs G connecting n workers
(vertices) with diameter D, where diameter of a graph mea-
sures the maximum distance between two arbitrary ver-
tices (so 1 ≤ D ≤ n − 1). A centralized analysis here
typically will also require that G be either complete or
complete-bipartite (with parameter servers and workers as
the two parts): lacking this requirement and allowing arbi-
trary graphs is what makes an analysis decentralized in the

4On the other hand, it is possible to even drop the zero-
respecting requirement and extend A to all the deterministic (not
in the sense of sampling but the actual executions) algorithms. At
a cost, we would need the function class to follow an “orthogonal
invariant” property, and the model dimension needs to be large
enough. We leave this discussion to the appendix.

topology layer.

3.4. Complexity Measures

Now that we have defined the classes we are interested in,
we can use them to define the complexity measures we
will bound in our theoretical results. Given a loss function
f ∈ FΔ,L, a set of underlying oracles O ∈ Oσ2 , a graph
G ∈ Gn,D, and an algorithm A ∈ AB , let x̂A,f,O,G

t denote
the output of algorithm A at the end of iteration t under this
setting. Then the iteration complexity of A solving f under
O and G is defined as

T�(A, f,O,G) = min
�
t ∈ N

���E
���∇f(x̂A,f,O,G

t )
��� ≤ �

�
,

that is, the least number of iterations required by A to find a
�-stationary-in-expectation point of f .

4. Lower Bound
Given the setup in Section 3, we can now present and discuss
our lower bound on the iteration complexity. Note that in
the formulation of protocol layer, the algorithm class AB

only specifies the information available for each worker, and
thus AB covers both centralization and decentralization in
the protocol layer. Here, we show our lower bound in two
parts: first a general bound where an arbitrary protocol that
follows AB is allowed, and then a corollary bound for the
case where only decentralized protocol is allowed.

4.1. Lower Bound for Arbitrary Protocol

We start from the general bound. We expect this lower
bound to show given arbitrary setting (functions, oracles and
graph), the smallest iteration complexity we could obtain
from AB , i.e.

inf
A∈AB

sup
f∈FΔ,L

sup
O∈Oσ2

sup
G∈Gn,D

T�(A, f,O,G), (9)

it suffices to construct a hard instance containing a loss
function f̂ ∈ FΔ,L, a graph Ĝ ∈ Gn,D and a set of
oracles Ô ∈ Oσ2 and obtain a valid lower bound on
infA∈AB

T�(A, f̂ , Ô, Ĝ) since Equation (9) is always lower
bounded by infA∈AB

T�(A, f̂ , Ô, Ĝ).

For the construction, we follow the idea of probabilistic
zero-chain model (Carmon et al., 2017; 2019; Arjevani et al.,
2019; Zhou & Gu, 2019), which is a special loss function
where adjacent coordinates are closely dependent on each
other like a “chain.” Our main idea is to use this function as
f and split this chain onto different workers. Then the work-
ers must conduct a sufficient number of optimization steps
and rounds of communication to make progress.5 From this,
we obtain the following lower bound.

5For brevity, we leave details in the supplementary material.
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Theorem 1. For function class FΔ,L, oracle class Oσ2 and
graph class Gn,D defined with any Δ > 0, L > 0, n ∈ N+,
D ∈ {1, 2, . . . , n − 1}, σ > 0, and B ∈ N+, there exists
f ∈ FΔ,L, O ∈ Oσ2 , and G ∈ Gn,D, such that no matter
what A ∈ AB is used, T�(A, f,O,G) will always be lower
bounded by

Ω

�
ΔLσ2

nB�4
+

ΔLD

�2

�
. (10)

Dependency on the parameters. The bound in Theorem 1
consists of a sample complexity term, which is the dominant
one for small �, and a communication complexity term. We
can see the increase of query budget B will only reduce the
sample complexity. On the other hand, as the diameter D
of a graph will generally increase as the number of vertices
n increases, we can observe a trade-off between two terms
when the system scales up: when more workers join the sys-
tem, the communication complexity will gradually become
the dominant term.

Consistency with the literature. Theorem 1 is tightly
aligned with the state-of-the-art bounds in many settings.
With n = B = D = 1, we recover the tight bound for se-
quential stochastic non-convex optimization Θ(ΔLσ2�−4)
as shown in Arjevani et al. (2019). With σ = 0, D = 1,
we recover the tight bound for sequential non-stochastic
non-convex optimization Θ(ΔL�−2) as shown in Carmon
et al. (2019). With B = 1, D = 1, we recover the tight
bound for centralized training Θ(ΔLσ2(n�4)−1) given in
Li et al. (2014b).

Improvement upon previous results. Previous works like
Seaman et al. (2017); Scaman et al. (2018) provide similar
lower bounds in a convex setting which relates to the diam-
eter. However, these results treat D as a fixed value, i.e.,
D = n− 1, and thus makes the bound to be only tight on
linear graph. By comparison, Theorem 1 allows D to be
chosen independently to n.

4.2. Lower Bound for Decentralized Protocol

The bound in Theorem 1 holds for both centralized and
decentralized protocols. A natural question is: How would
the lower bound adapt if the protocol is restricted to be
decentralized? i.e., the quantity of

inf
A∈AB,W

sup
f∈FΔ,L

sup
O∈Oσ2

sup
G∈Gn,D

T�(A, f,O,G),

we can extend the lower bound to Gossip in the following
corollary.

Corollary 1. For every Δ > 0, L > 0, n ∈ {2, 3, 4, · · · },
λ ∈ [0, cos(π/n)], σ > 0, and B ∈ N+, there exists a loss
function f ∈ FΔ,L, a set of underlying oracles O ∈ Oσ2 ,
a gossip matrix W ∈ Wn with second largest eigenvalue
being λ, and a graph G ∈ Gn,D, such that no matter what

Algorithm 1 Decentralized Stochastic Gradient Descent
with Factorized Consensus Matrices (DeFacto) on worker i
Require: initialized model x0,i, a copy of model x̃0,i ← x0,i,

gradient buffer g = 0, step size α, a sequence of communica-
tion matrices {W r}1≤r≤R of size R, number of iterations T ,
neighbor list Ni

1: for t = 0, 1, · · · , T − 1 do
2: k ← �t/2R�.
3: r ← t mod 2R.
4: if 0 ≤ r < R then
5: Spend all B oracle budgets to compute stochastic gradi-

ent g̃ at point xk,i and accumulate it to gradient buffer:
g ← g + g̃.

6: else
7: Update model copy with the r-th matrix in {W r}1≤r≤R:

x̃t+1,i ←
�

j∈Ni∪{i}
x̃t,j [W r]ji (12)

8: end if
9: if r = 2R− 1 then

10: Update Model: xt+1,i ← x̃t+1,i − α g
R

.
11: Reinitialize gradient buffer: g ← 0.
12: Copy the current model: x̃t+1,i ← xt+1,i.
13: end if
14: end for
15: return x̂ = 1

n

�n
i=1 xT,i

A ∈ AB,W is used, T�(A, f,O,G) will always be lower
bounded by

Ω

�
ΔLσ2

nB�4
+

ΔL

�2
√
1− λ

�
. (11)

Gap in the existing algorithms. Comparing this lower
bound with many state-of-the-art decentralized algorithms
(Table 2), we can see they match on the sample complexity
but leave a gap on the communication complexity. In many
cases, the spectral gap significantly depends on the number
of workers n and thus can be arbitrarily large. For example,
when the graph G is a cycle graph or a linear graph, the
gap of those baselines can increase by up to O(n6) (Brooks
et al., 2011; Gerencsér, 2011)!

5. DeFacto: Optimal Complexity in Theory
In the previous section we show the existing algorithms
have a gap compared to the lower bound. This gap could
indicate the algorithms are suboptimal, but it could also be
explained by our lower bound being loose. In this section
we address this issue by proposing DeFacto, an example
algorithm showing the lower bound is achievable, which
verifies the tightness of our lower bound—showing that (10)
would hold with equality and Θ(·), not just Ω(·).
We start with the following insight on the theoretical gap:
the goal of communication is to let all the workers obtain
information from neighbors. Ideally, the workers would, at
each iteration, perform (8) with W ∗ = 1n1

�
n /n, where 1n
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Algorithm 2 Decentralized Stochastic Gradient Tracking
with By-Phase Accelerated Gossip (DeTAG) on worker i
Require: initialized model x0,i, a copy of model x̃0,i ← x0,i,

gradient tracker y0,i, gradient buffer g(0) = g(−1) = 0, step
size α, a gossip matrix W , number of iterations T , neighbor
list Ni

1: for t = 0, 1, · · · , T − 1 do
2: k ← �t/R�.
3: r ← t mod R.
4: Perform the r-th step in Accelerate Gossip:

x̃t+1,i ← AG(x̃t,i,W ,Ni, i) (13)
yt+1,i ← AG(yt,i,W ,Ni, i) (14)

5: Spend all B oracle budgets to compute stochastic gradient
g̃ at point xk,i and accumulate it to gradient buffer: g(k) ←
g(k) + g̃.

6: if r = R− 1 then
7: Update gradient tracker and model:

xt+1,i ← x̃t+1,i − αyi (15)
yt+1,i ← yt+1,i + g(k) − g(k−1) (16)

8: Reinitialize gradient buffer: g(k−1) ← g(k) and then
g(k) ← 0.

9: Copy the current model: x̃t+1,i ← xt+1,i.
10: end if
11: end for
12: return x̂ = 1

n

�n
i=1 xT,i

Algorithm 3 Accelerated Gossip (AG) with R steps
Require: z0,i, W , Ni, i

1: z−1,i ← z0,i

2: η ← 1−
√
1−λ2

1+
√
1−λ2

3: for r = 0, 1, 2, · · · , R− 1 do
4: zr+1,i ← (1 + η)

�
j∈Ni∪{i} zr,jW ji − ηzr−1,i

5: end for
6: return zR,i

is the n-dimensional all-one vector. We call this matrix the
Average Consensus matrix. The Average Consensus is statis-
tically equivalent to centralized communication (All-Reduce
operation). However, due to the graph constraints, we can
not use this W ∗ unless workers are fully connected; instead,
a general method is to repeatedly apply a sequence commu-
nication matrices in consecutive iterations and let workers
achieve or approach the Average Consensus. Previous work
uses Gossip matrix W and expect

�R
r=1 W ≈ 1n1

�
n /n for

some R. This R is known to be proportional to the mixing
time of the Markov Chain W defines (Lu et al., 2020; Lu &
De Sa, 2020), which is related to the inverse of its spectral
gap (Levin & Peres, 2017). This limits convergence depend-
ing on the spectrum of the W chosen. The natural question
to ask here is: can we do better? What are the limits of how
fast we can reach average consensus on a connectivity graph
G? This question is answered by the following lemma.

Lemma 1. For any G ∈ Gn,D, let WG denote the set of
n × n matrices such that for all W ∈ WG, W ij = 0 if

edge (i, j) does not appear in G. There exists a sequence
of R matrices {W r}r∈[R] that belongs to WG such that
R ∈ [D, 2D] and

WR−1WR−2 · · ·W 0 =
1n1

�
n

n
= W ∗.

Lemma 1 is a classic result in the literature of graph theory.
The formal proof and detailed methods to identify these ma-
trices can be found in many previous works (Georgopoulos,
2011; Ko, 2010; Hendrickx et al., 2014). Here we treat this
as a black box procedure.6

Lemma 1 shows that we can achieve the exact average con-
sensus by factorizing the matrix 1n1

�
n /n, and we can obtain

the factors from a preprocessing step. From here, the path
to obtain an optimal rate becomes clear: starting from t = 0,
workers first spend R iterations only computing stochastic
gradients and then another R iterations to reach consensus
communicating via factors from Lemma 1; they then repeat
this process until a stationary point is found. We call this
algorithm DeFacto (Algorithm 1).

DeFacto is statistically equivalent to centralized SGD op-
erating T/2R iterations with a mini-batch size of BR. It
can be easily verified that DeFacto holds membership in
AB . A straightforward analysis gives the convergence rate
of DeFacto shown in the following Theorem.

Theorem 2. Let A1 denote Algorithm 1. For FΔ,L, Oσ2

and Gn,D defined with any Δ > 0, L > 0, n ∈ N+, D ∈
{1, 2, . . . , n − 1}, σ > 0, and B ∈ N+, the convergence
rate of A1 running on any loss function f ∈ FΔ,L, any
graph G ∈ Gn,D, and any oracles O ∈ Oσ2 is bounded by

T�(A1, f, O,G) ≤ O

�
ΔLσ2

nB�4
+

ΔLD

�2

�
. (17)

Comparing Theorem 1 and Theorem 2, DeFacto achieves
the optimal rate asymptotically. This shows that our lower
bound in Theorem 1 is tight.

Despite its optimality, the design of DeFacto is unsatisfying
in three aspects: (1) It compromises the throughput7 by
a factor of two because in each iteration, a worker either
communicates with neighbors or computes gradients but not
both. This fails to overlap communication and computation
and creates extra idle time for the workers. (2) It needs to
iterate over all the factor matrices before it can query the
gradient oracle at subsequent parameters. When diameter
D increases, the total time to finish such round will increase
proportionally. (3) DeFacto works with decentralized data
and arbitrary graph, achieving decentralization in both ap-
plication and topology layers. However, the matrices used

6We cover specific algorithms and details in the supplementary.
7The number of stochastic gradients computed per iteration.



Optimal Complexity in Decentralized Training

in Lemma 1 are not Gossip matrices as defined in Wn, and
thus it fails to be decentralized in the protocol-layer sense.

6. DeTAG: Optimal Complexity in Practice
To address the limitations of DeFacto, a natural idea is to
replace all the factor matrices in Lemma 1 with a gossip
matrix W . The new algorithm after this mild modification
is statistically equivalent to a D-PSGD variant: every R
iterations, it updates the model the same as one iteration in
D-PSGD with a mini-batch size of BR and communicate
with a matrix W � whose second largest eigenvalue λ� = λR,
with T/R iterations in total. However, even with arbitrarily
large R, the communication complexity in this “updated
D-PSGD” is still O(ΔLnς�−2) (Table 2), leaving an O(nς)
gap compared to our lower bound.

To close this gap, we adopt two additional techniques:8 one
is a gradient tracker y that is used as reference capturing
gradient difference in the neighborhood; the other is using
acceleration in gossip as specified in Algorithm 3. Modify-
ing DeFacto results in Algorithm 2, which we call DeTAG.
DeTAG works as follows: it divides the total number of
iterations T into several phases where each phase contains
R iterations. In each iteration, the communication process
calls Accelerated Gossip to update a model replica x̃ and
the gradient tracker (line 4) while the computation process
constantly computes gradients at the same point (line 5). At
the end of each phase, model x, its replica x̃ and gradient
tracker y are updated in line 7-10 and then DeTAG steps into
the next phase. Aside from the two additional techniques,
the main difference between DeTAG and DeFacto is that the
communication matrix in DeTAG is a fixed gossip matrix
W , which allows DeTAG to benefit from decentralization
in the protocol layer as well as to adopt arbitrary R ≥ 1 in
practice (allowing R to be tuned independently of G).

Improvement on design compared to baselines. Compar-
ing with other baselines in Table 2, the design of DeTAG
improves in the sense that (1) It removes the dependency
on the outer variance ς . (2) It drops the requirement9 on
the gossip matrix assumed in Tang et al. (2018b). (3) The
baseline DSGT (Zhang & You, 2019c) and GT-DSGD (Xin
et al., 2021b) can be seen as special cases of taking R = 1
and η = 0 in DeTAG. That implies in practice, a well tuned
DeTAG can never perform worse than the baseline DSGT
or GT-DSGD.

The convergence rate of DeTAG is given in the following
theorem.

8Note that neither of these techniques is our original design,
and we do not take credit for them. Our main contribution here is
to prove their combination leads to optimal complexity.

9Tang et al. (2018b) requires the gossip matrix to be symmetric
and its smallest eigenvalue is lower bounded by − 1

3
.

Theorem 3. Let A2 denote Algorithm 2. For FΔ,L, Oσ2

and Gn,D defined with any Δ > 0, L > 0, n ∈ N+,
λ ∈ [0, 1), σ > 0, and B ∈ N+, under the assumption
of Equation (6), if we set the phase length R to be

R =
max

�
1
2 log(n),

1
2 log

�
ς20T
ΔL

��

√
1− λ

,

the convergence rate of A2 running on any loss function
f ∈ FΔ,L, any graph G ∈ Gn,D, and any oracles O ∈ Oσ2

is bounded by

T�(A2, f, O,G) ≤ O


ΔLσ2

nB�4
+

ΔL log
�
n+ ς0n

�
√
ΔL

�

�2
√
1− λ


 .

Comparing Theorem 1 and Theorem 3, DeTAG achieves
the optimal complexity with only a logarithm gap.

Improvement on complexity. Revisiting Table 2, we can
see the main improvement of DeTAG’s complexity is in the
two terms on communication complexity: (1) DeTAG only
depends on the outer variance term ς0 inside a log, and (2)
It reduces the dependency on the spectral gap 1− λ to the
lower bound of square root, as shown in Corollary 1.

Understanding the phase length R. In DeTAG, the phase
length R is a tunable parameter. Theorem 3 provides a
suggested value for R. Intuitively, the value of R captures
the level of consensus of workers should reach before they
step into the next phase. Theoretically, we observe R is
closely correlated to the mixing time of W : if we do not
use acceleration in Gossip, then R will become Õ

�
1

1−λ

�
,

which is exactly the upper bound on the mixing time of the
Markov Chain W defines (Levin & Peres, 2017).

7. Experiments
In this section we empirically compare the performance
among different algorithms. All the models and training
scripts in this section are implemented in PyTorch and run
on an Ubuntu 16.04 LTS cluster using a SLURM workload
manager running CUDA 9.2, configured with 8 NVIDIA
GTX 2080Ti GPUs. We launch one process from the host
as one worker and let them use gloo as the communication
backend. In each experiment, we compare the following
algorithms10: D-PSGD (Lian et al., 2017a), D2 (Tang et al.,
2018b), DSGT (Zhang & You, 2019c) and DeTAG. Note
that GT-DSGD (Xin et al., 2021b) and DSGT (Zhang & You,
2019c) are essentially the same algorithm so we omit the
comparison to GT-DSGD. Also note that SGP (Assran et al.,

10Since DeFacto is a only a "motivation" algorithm and in prac-
tice we observe it performs bad, we do not include the discussion
of that.
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Figure 2. Fine tuned results of training LeNet on CIFAR10 with different shuffling strategies.
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(b) κ = 0.1 (1− λ ≈ 4e-3)
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Figure 3. Fine tuned results of training Resnet20 on CIFAR100 with different spectral gaps.

2019) reduces to D-PSGD for symmetric mixing matrices in
undirected graphs. Throughout the experiment we use Ring
graph. Hyperparameters can be found in the supplementary
material.

Convergence over different outer variance. In the first
experiments, we investigate the correlation between conver-
gence speed and the outer variance ς(ς0). We train LeNet on
CIFAR10 using 8 workers, which is a standard benchmark
experiment in the decentralized data environment (Tang
et al., 2018b; Zhang & You, 2019c). To create the decen-
tralized data, we first sort all the data points based on its
labels, shuffle the first X% data points and then evenly split
to different workers. The X controls the degree of decen-
tralization, we test X = 0, 25, 50, 100 and plot the results
in Figure 2.

We can see in Figure 2(a) when the dataset is fully shuf-
fled, all the algorithms converge at similar speed while D-
PSGD converges a little slower than other variance reduced
algorithms. From Figure 2(b) to Figure 2(d) we can see
when we shuffle less portion of the dataset, i.e., the dataset
becomes more decentralized, D-PSGD fails to converge
even with fine-tuned hyperparameter. Meanwhile, among
D2, DSGT and DeTAG, we can see DeTAG converges the
fastest. When dataset becomes more decentralized, DSGT
seems to receive more stable performance than D2.

Convergence over different spectral gaps. In the sec-
ond experiments, we proceed to explore the relation between
convergence speed and spectral gap 1− λ of the gossip ma-
trix W . We use 16 workers connected with a Ring graph

to train Resnet20 on CIFAR100, and we generate a W 0 on
such graph using Metropolis method. Then we adopt the
slack matrix method to modify the spectral gap (Lu et al.,
2020): W κ = κW 0 + (1 − κ)I , where κ is a control pa-
rameter. We test κ = 1, 0.1, 0.05, 0.01 and plot the results
in Figure 3. We can see with different κ, DeTAG is able to
achieve faster convergence compared to baselines. When the
network becomes sparse, i.e., κ decreases, DeTAG enjoys
more robust convergence.

8. Conclusion
In this paper, we investigate the tight lower bound on the
iteration complexity of decentralized training. We propose
two algorithms, DeFacto and DeTAG, that achieve the lower
bound in terms of different decentralization in a learning
system. DeTAG uses Gossip protocol, and is shown to be
empirically competitive to many baseline algorithms, such
as D-PSGD. In the future, we plan to investigate the variants
of the complexity bound with respect to communication that
are compressed, asynchronous, etc.
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