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Abstract
To cope with high annotation costs, training a
classifier only from weakly supervised data has
attracted a great deal of attention these days.
Among various approaches, strengthening super-
vision from completely unsupervised classifica-
tion is a promising direction, which typically
employs class priors as the only supervision
and trains a binary classifier from unlabeled (U)
datasets. While existing risk-consistent methods
are theoretically grounded with high flexibility,
they can learn only from two U sets. In this paper,
we propose a new approach for binary classifica-
tion from m U sets for m ≥ 2. Our key idea is
to consider an auxiliary classification task called
surrogate set classification (SSC), which is aimed
at predicting from which U set each observed sam-
ple is drawn. SSC can be solved by a standard
(multi-class) classification method, and we use the
SSC solution to obtain the final binary classifier
through a certain linear-fractional transformation.
We built our method in a flexible and efficient
end-to-end deep learning framework and prove it
to be classifier-consistent. Through experiments,
we demonstrate the superiority of our proposed
method over state-of-the-art methods.

1. Introduction
Deep learning with large-scale supervised training data has
shown great success on various tasks (Goodfellow et al.,
2016). However, in practice, obtaining strong supervision,
e.g., the complete ground-truth labels, for big data is very
costly due to the expensive and time-consuming manual
annotations (Zhou, 2018). Thus, it is desirable for machine
learning techniques to work with weaker forms of supervi-
sion, such as noisy labels (Natarajan et al., 2013; Patrini
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et al., 2017; Van Rooyen & Williamson, 2018; Han et al.,
2018; 2020; Fang et al., 2020; Xia et al., 2020), partial la-
bels (Cour et al., 2011; Ishida et al., 2017; 2019; Feng et al.,
2020; Lv et al., 2020), and pairwise comparison information
(Bao et al., 2018; Xu et al., 2019; Feng et al., 2021).

This paper focuses on a challenging setting which we call
Um classification: the goal is to learn a binary classifier
from m (m ≥ 2) sets of U data with different class pri-
ors, i.e., the proportion of positives in each U set. Such a
learning scheme can be conceivable in many real-world sce-
narios. For example, U sets with different class priors can
be naturally collected from spatial or temporal differences.
Considering morbidity rates, they can be potential patient
data collected from different areas (Croft et al., 2018). Like-
wise, considering approval rates, they can be unlabeled voter
data collected in different years (Newman, 2003). In such
cases, individual labels are often not available due to privacy
reasons, but the corresponding class priors of U sets, i.e.,
the morbidity rates or approval rates in the aforementioned
examples, can be obtained from related medical reports or
pre-existing census (Quadrianto et al., 2009; Ardehaly &
Culotta, 2017; Tokunaga et al., 2020), and is the unique
weak supervision that will be leveraged in this work.

Breakthroughs in Um classification research were brought
by Menon et al. (2015) and Lu et al. (2019) in proposing the
risk-consistent methods given two U sets. Recently, Scott &
Zhang (2020) extended them to incorporate multiple U sets
by two steps: firstly, pair all the U sets so that they are suffi-
ciently different in each pair; secondly, linearly combine the
unbiased balanced risk estimators obtained from each pair.
Although this method is advantageous since it is compatible
with any model and stochastic optimizer, and is statistically
consistent, there are several issues that may limit its poten-
tial for practical use: first, the computational complexity
for the optimal pairing strategy is O(m3) for m U sets (Ed-
monds & Karp, 1972), which cannot work efficiently with
a large number of U sets; second, the optimal combination
weights are proved with strong model assumptions and thus
remaining difficult to be tuned in practice.

Now, a natural question arises: can we propose a compu-
tationally efficient method for Um classification with both
flexibility on the choice of models and optimizers and theo-
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retical guarantees? The answer is affirmative.

In this paper, we provide a new approach for Um classifi-
cation by solving a Surrogate Set Classification task (Um-
SSC). More specifically, we regard the index of each U
set as a surrogate-set label and consider the supervised
multi-class classification task of predicting the surrogate-set
labels given observations. The difficulty is how to link our
desired binary classifier with the learned surrogate multi-
class classifier. To solve it, we theoretically bridge the
original and surrogate class-posterior probabilities with a
linear-fractional transformation, and then implement it by
adding a transition layer to the neural network so that the
trained model is guaranteed to be a good approximation
of the original class-posterior probability. Our proposed
Um-SSC scheme is built within an end-to-end framework,
which is computationally efficient, compatible with any
model architecture and stochastic optimization, and natu-
rally incorporates multiple U sets. Our contributions can be
summarized as follows:

• Theoretically, we prove that the proposed Um-SSC
method is classifier-consistent (Patrini et al., 2017; Lv
et al., 2020), i.e., the classifier learned by solving the
surrogate set classification task from multiple sets of
U data converges to the optimal classifier learned from
fully supervised data under mild conditions. Then we
establish an estimation error bound of our method.

• Practically, we propose an easy-to-implement, flexible,
and computationally efficient method for Um classifica-
tion, which is shown to outperform the state-of-the-art
methods in experiments. We also verify the robustness
of the proposed method by simulating Um classifica-
tion in the wild, e.g., on varied set sizes, set numbers,
noisy class priors, and the results are promising.

Our method provides new perspectives of solving the Um

classification problem, and is more suitable to be applied in
practice given its theoretical and practical advantages.

2. Problem Setup and Related Work
In this section, we introduce some notations, formulate the
Um classification problem, and review the related work.

2.1. Learning from Fully Labeled Data

Let X be the input feature space and Y = {+1,−1} be a
binary label space, x ∈ X and y ∈ Y be the input and output
random variables following an underlying joint distribution
D. Let f : X → R be an arbitrary binary classifier, and
`b(t, y) : R×Y → R+ be a loss function such that the value
`b(t, y) means the loss by predicting t when the ground-
truth is y. The goal of binary classification is to train a
classifier f that minimizes the risk defined as

R(f) = E(x,y)∼D[`b(f(x), y)] (1)

where E denotes the expectation. For evaluation, `b is often
chosen as `01(t, y) = (1 − sign((t − 1

2 ) · y))/2 and then
the risk R becomes the standard performance measure for
classification, a.k.a. the classification error. For training,
`01 is replaced by a surrogate loss,1 e.g., the logistic loss
`log(t, y) = ln(1 + exp(−t · y)), since `01 is discontinuous
and therefore difficult to optimize (Ben-David et al., 2003).

In most cases, R cannot be calculated directly because the
joint distribution D is unknown to the learner. Given the
labeled training set X = {(xi, yi)}ni=1

i.i.d.∼ D with n sam-
ples, empirical risk minimization (ERM) (Vapnik, 1998) is
a common practice that computes an approximation of R by

R̂(f) =
1

n

∑n

i=1
`b(f(xi), yi). (2)

2.2. Learning from Multiple Sets of U Data

Next, we consider Um classification. We are given m(m ≥
2) sets of unlabeled samples drawn from m marginal densi-
ties {pjtr(x)}mj=1, where

pjtr(x) = πjpp(x) + (1− πj)pn(x), (3)

each pjtr(x) is seen as a mixture of the positive and nega-
tive class-conditional densities (pp(x), pn(x)) = (p(x|y =

+1), p(x|y = −1)), and πj = pjtr(y = +1) denotes the
class prior of the j-th U set. Note that given only U data,
it is theoretically impossible to learn the class priors with-
out any assumptions (Menon et al., 2015), so we assume
all necessary class priors are given, which are the only
weak supervision we will leverage.2 To make the prob-
lem mathematically solvable, among the m sets of U data,
we also assume that at least two of them are different, i.e.,
∃j, j′ ∈ {1, . . . ,m} such that j 6= j′ and πj 6= πj′ .

In contrast to supervised classification where we have a fully
labeled training set X directly drawn from D, now we only
have access to m sets of U data Xtr = {X jtr}mj=1, where

X jtr = {xj1, . . . ,xjnj
} i.i.d.∼ pjtr(x), (4)

and nj denotes the sample size of the j-th U set. But our
goal is still the same as supervised classification: to obtain
a binary classifier that generalizes well with respect to D,
despite the fact that it is unobserved.

2.3. Related Work

Here, we review some related works for Um classification.
1The surrogate loss `s should be classification-calibrated so

that the predictions can be the same for classifiers learned by using
`s and `01 (Bartlett et al., 2006).

2By introducing the mutually irreducible assumption (Scott
et al., 2013), the class priors become identifiable and can be esti-
mated in some cases, see Menon et al. (2015), Liu & Tao (2016),
Jain et al. (2016), and Yao et al. (2020) for details.
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Table 1. Comparisons of the proposed method with previous works in the Um classification setting.

Methods
Deal with

2+ sets
Theoretical
guarantee

No negative
training risk

Pre-computing
complexity

Risk
Measure

R̂U2(f) (Lu et al., 2019) × X × O(1) Classification risk (1)
R̂U2-b(f) (Menon et al., 2015) × X × O(1) Balanced risk (7)
R̂U2-c(f) (Lu et al., 2020) × X X O(1) Classification risk (1)

R̂Um(f) (Scott & Zhang, 2020) X X × O(m3) Balanced risk (7)
R̂prop-c(f) (Tsai & Lin, 2020) X × X O(1) Proportion risk (5)

Proposed X X X O(1) Classification risk (1)

Clustering methods Learning from only U data is previ-
ously regarded as discriminative clustering (Xu et al., 2004;
Gomes et al., 2010). However, these methods are often
suboptimal since they rely on a critical assumption that one
cluster exactly corresponds to one class, and hence even
perfect clustering may still result in poor classification. As
a consequence, we prefer ERM to clustering.

Proportion risk methods The Um classification setting
is also related to learning with label proportions (LLP), with
a subtle difference in the experimental design.3 However,
most LLP methods are not ERM-based, but based on the
following empirical proportion risk (EPR) (Yu et al., 2014):

R̂prop(f) =
∑m

j=1
dprop(πj , π̂j), (5)

where πj and π̂j = 1
nj

∑nj

i=1(1 + sign(f(xji ) − 1/2))/2

are the true and predicted label proportions for the j-th U
set X jtr, and dprop is a distance function. State-of-the-art
method in this line combined EPR with consistency regular-
ization and proposed the following learning objective:

R̂prop-c(f) = R̂prop(f) + α`cons(f), (6)

where `cons(f) = dcons(f(x), f(x̂)) is the consistency loss
given a distance function dcons and x̂ is a perturbed input
from the original one x (Tsai & Lin, 2020).

Classification risk methods A breakthrough of the ERM-
based method for Um classification is Lu et al. (2019) which
assumed m = 2 and π1 > π2, and proposed an equivalent
expression of the classification risk (1):

RU2(f) = Ex∼p1trc
+
1 `b(f(x),+1)− Ex∼p2trc

+
2 `b(f(x),+1)︸ ︷︷ ︸

RU2 -p(f)

−Ex∼p1trc
−
1 `b(f(x),−1) + Ex∼p2trc

−
2 `b(f(x),−1)︸ ︷︷ ︸

RU2 -n(f)

,

3The majority of LLP papers use uniform sampling for bag
generation, which may result in the same label proportion for all
the U sets and make the LLP problem computationally intractable
(Scott & Zhang, 2020). Our simulation in Sec. 4 avoids the issue.

where c+1 = (1−π2)πD
π1−π2

, c−1 = π2(1−πD)
π1−π2

, c+2 = (1−π1)πD
π1−π2

,

c−2 = π1(1−πD)
π1−π2

, and πD denotes the class prior of the test
set. If πD is assumed to be 1

2 in RU2(f), the obtained
RU2-b(f) (Menon et al., 2015) corresponds to the balanced
risk, a.k.a. the balanced error (Brodersen et al., 2010):

Rb(f) =
1

2
Ex∼pp [`b(f(x),+1)] +

1

2
Ex∼pn [`b(f(x),−1)],

(7)

where `b is `01. Note that Rb(f) = R(f) for any f if
and only if πD = 1

2 , which means that it definitely biases
learning when πD ≈ 1

2 is not the case. Given X 1
tr and

X 2
tr, RU2(f) and RU2-b(f) can be approximated by their

empirical counterparts R̂U2(f) and R̂U2-b(f).

It is shown in Lu et al. (2020) that the empirical training risk
R̂U2(f) can take negative values which causes overfitting,
so they proposed a corrected learning objective that wraps
the empirical risks of the positive class R̂U2-p(f) and the
negative class R̂U2-n(f) into some non-negative correction
function fc, such that fc(x) = x for all x ≥ 0 and fc(x) >

0 for all x < 0: R̂U2-c(f) = fc(R̂U2-p(f))+fc(R̂U2-n(f)).
Note that R̂U2-c is biased with finite samples, but Lu et al.
(2020) showed its risk-consistency, i.e., it converges to the
original risk R in (1) if n1, n2 →∞.

Although these risk-consistent methods are advantageous in
terms of flexibility and theoretical guarantees, they are lim-
ited to 2 U sets. Recently, Scott & Zhang (2020) extended
the previous method for the general m(m ≥ 2) setting.
More specifically, they assumed the number of sets m = 2k
and proposed a pre-processing step that finds k pairs of the
U sets by solving a maximum weighted matching problem
(Edmonds, 1965). Then they linearly combine the unbiased
balanced risk estimator of each pair.4 The resulted weighted
learning objective is given by

R̂Um(f) =
∑k

j=1
ωjR̂U2-b(f). (8)

This method is promising but has some practical issues:

4In Scott & Zhang (2020), it is assumed that π1 6= π2 in each
pair, which is a stronger assumption than ours.
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the pairing step is computationally very inefficient and the
weights are hard to tune in practice.

A comparison of the previous works with our proposed
method that will be introduced in Sec. 3 is given in Table 1.

3. Um classification via Surrogate Set
Classification

In this section, we propose a new ERM-based method for
learning from multiple U sets via a surrogate set classifi-
cation task and analyze it theoretically. All the proofs are
given in Appendix A.

3.1. Surrogate Set Classification Task

The main challenge in the Um classification problem is that
we have no access to the ground-truth labels of the training
examples so that the empirical risk (2) in supervised binary
classification cannot be computed directly. Our idea is to
consider a surrogate set classification task that could be
tackled easily from the given U sets. It serves as a proxy
and gives us a classifier-consistent solution to the original
binary classification problem.

Specifically, denote by ȳ ∈ {1, 2, . . . ,m} the index of the
U set, i.e., the index of the corresponding marginal den-
sity. By treating ȳ as a surrogate label, we formulate the
surrogate set classification task as the standard multi-class
classification. Let D̄ be the joint distribution for the random
variables x ∈ X and ȳ ∈ Ȳ = {1, 2, . . . ,m}. Any D̄ can
be identified via the class priors {ρj = p(ȳ = j)}mj=1 and
the class-conditional densities {p(x | ȳ = j) = pjtr(x)}mj=1,
where ρj can be estimated by ρj =

nj∑m
j=1 nj

.

The goal of surrogate set classification is to train a classifier
g(x) : X → Rm that minimizes the following risk:

Rsurr(g) = E(x,ȳ)∼D̄[`(g(x), ȳ)], (9)

where `(g(x), ȳ) : Rm × Ȳ → R+ is a proper loss for
m-class classification, e.g., the cross-entropy loss:

`ce(g(x), ȳ) = −
m∑
j=1

1(ȳ = j) log(gj(x)) = − log(gȳ(x)),

where 1(·) is the indicator function, gj(x) is the j-th el-
ement of g(x), and is a score function that estimates the
true class-posterior probability η̄j(x) = p(ȳ = j | x).
Typically, the predicted label ȳpred takes the form ȳpred =
argmaxj∈[m] gj(x).

Now the unlabeled training sets given by (4) for the binary
classification can be seen as a labeled training set Xtr =

{(xi, ȳi)}ntr
i=1

i.i.d.∼ D̄ for the m-class classification, where
ntr =

∑m
j=1 nj is the total number of U data. We can use

Xtr to approximate the risk Rsurr by

R̂surr(g) =
1

ntr

∑ntr

i=1
`(g(xi), ȳi). (10)

3.2. Bridge Two Posterior Probabilities

Let η(x) = p(y = +1 | x) be the class-posterior probabil-
ity for class +1 in the original binary classification problem,
and η̄j(x) = p(ȳ = j | x) be the class-posterior probability
for class j in the surrogate set classification problem. We
theoretically bridge them by the following theorem.

Theorem 1. By the definitions of D, η(x), D̄, and η̄j(x),
we have

η̄j(x) = Tj(η(x)), ∀j = 1, . . . ,m, (11)

where

Tj(η(x)) =
aj · η(x) + bj
c · η(x) + d

,

aj = ρj(πj−πD), bj = ρjπD(1−πj), c =
∑m
j=1 ρj(πj−

πD), and d =
∑m
j=1 ρjπD(1− πj).

Such a relationship has been previously studied by Menon
et al. (2015) in the context of corrupted label learning for a
specific 2× 2 case, i.e., 2 clean classes are transformed to 2
corrupted classes, and they used Tj(·) to post-process the
threshold of the score function learned from corrupted data.
Our proposal can be regarded as its extension to a general
2×m case and Tj(·) is used to connect the original binary
classifier with the surrogate multi-set-class classifier.

Let T (·) : R→ Rm be a vector form of the transition func-
tion T (·) = [T1(·), . . . , Tm(·)]>. Note that the coefficients
in Tj(·) are all constants and T (·) is deterministic. Next, we
study properties of the transition function T in the following
lemma, which implies the feasibility of approaching η(x)
by means of estimating η̄j(x).

Lemma 2. The transition function T (·) is an injective func-
tion in the domain [0, 1].

3.3. Classifier-consistent Algorithm

Given the transition function T , we have two choices to
obtain η(x) from η̄j(x). First, one can estimate η̄j(x), then
calculate η(x) via the inverse function T−1

j (η̄j(x)). Sec-
ond, one can encode η(x) as a latent variable into the com-
putation of η̄j(x) and obtain both of them simultaneously.
We prefer the latter for three reasons.

• Computational efficiency: the latter is a one-step solu-
tion and avoids additional computations of the inverse
functions, which provides computational efficiency and
easiness for implementation.

• Robustness: since the coefficients of Tj(·) may be
perturbed by some noise in practice, its inversion in
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Algorithm 1 Um-SSC based on stochastic optimization
Input: Model f , m sets of unlabeled data Xtr, class priors
{πj}mj=1 and πD

1: Compute aj , bj , c and d of T (·) = [T1(·), . . . , Tm(·)]>
in Theorem 1 using {πj}mj=1 and πD.

2: Let g = T (f) and A be a SGD-like optimizer working
on g.

3: for t = 1, 2, . . . ,number of epochs do
4: Shuffle Xtr

5: for i = 1, 2, . . . ,number of mini-batches do
6: Fetch mini-batch X̄tr from Xtr

7: Forward X̄tr and get f(X̄tr)
8: Compute g

(
X̄tr

)
= T

(
f(X̄tr)

)
9: Compute loss by (10) using g(X̄tr)

10: Update g by A, which induces an update on f
11: end for
12: end for
Output: f

the former method may enlarge the noise by orders of
magnitude, making the learning process less robust.

• Identifiability: calculating T−1
j (η̄j(x)) in the former

method for all j = {1, . . . ,m} induces m estimates
of η(x), and they are usually non-identical due to the
estimation error of η̄j(x) from finite samples or noisy
Tj(·), causing a new non-identifiable problem.

Therefore, we choose to embed the estimation of η(x) into
the estimation of η̄j(x). More specifically, let f(x) be the
model output that estimates η(x), then we make use of
the transition function Tj(·) and model gj(x) = Tj (f(x)).
Based on it, we propose to learn with the following modified
loss function:

`(g(x), ȳ) = `(T (f(x)), ȳ), (12)

where T (f(x)) = [T1(f(x)), . . . , Tm(f(x))]>. Then the
corresponding risk for the surrogate task can be written as

Rsurr(f) = E(x,ȳ)∼D̄[`(T (f(x)), ȳ)]

= E(x,ȳ)∼D̄[`(g(x), ȳ)] = Rsurr(g), (13)

and an equivalent expression of the empirical risk (10) is
given by

R̂surr(f) =
1

ntr

∑ntr

i=1
`(T (f(xi)), ȳi). (14)

In order to prove that this method is classifier-consistent, we
introduce the following lemma.
Lemma 3. Let η̄(x) = [η̄1(x), . . . , η̄m(x)]> and g?(x) =
argming Rsurr(g; `) be the optimal classifier of (9). Pro-
vided that a proper loss function, e.g., the cross-entropy
loss or mean squared error, is chosen for `, we have
g?(x) = η̄(x).

Neural 

network
Sigmoid 𝑻(𝑓 𝒙;𝑤 )

𝒙 𝑓 𝒙 𝒈 𝒙

Transition layer 

ℓ(𝒈 𝒙 , ത𝑦)

ത𝑦: Surrogate (set) label

𝑤

Figure 1. Implementation diagram of Um-SSC.

Since g(x) = T (f(x)) and T (·) is deterministic, when
considering minimizing Rsurr(f) that takes f as the argu-
ment, we can prove the following classifier-consistency.

Theorem 4 (Identification of the optimal binary classifier).
Assume that the cross-entropy loss or mean squared error
is used for ` and `b, and the model G used for learning g is
very flexible, e.g., deep neural networks, so that g? ∈ G. Let
f?surr be the Um-SSC optimal classifier induced by g?, and
f? = argminf R(f ; `b) be the optimal classifier of (1), we
have f?surr = f?.

So far, we have proved that the optimal classifier for the
original binary classification task can be identified by the
Um-SSC learning scheme. Its algorithm is described in
Algorithm 1 and its implementation is illustrated in Figure 1.

We implement T (·) by adding a transition layer following
the sigmoid function of the neural network (NN). At the
training phase, a sample (xtr, ȳtr) is fetched to the network.
A sigmoid function fsig(x) = 1

1+e−x is used to map the out-
put of NN to the range [0, 1] such that the output f(x) is an
estimate of η(x). Then f(x) is forwarded to the transition
layer and a vector output g(x) = T (f(x)) is obtained. The
loss computed on the output g(x) and the surrogate label ȳtr

by (10) is then used for updating the NN weights w. Note
that the transition layer is fixed and only the weights in the
base network are learnable. At the test phase, for any test
sample xte, we compute f(xte) using only the trained base
network and sigmoid function. The test sample is classified
by using the sign function, i.e., sign(f(xte)− 1

2 ). Our pro-
posed method is model-agnostic and can be easily trained
with a stochastic optimization algorithm, which ensures its
scalability to large-scale datasets.

3.4. Theoretical Analysis

In what follows, we upper-bound the estimation error of our
proposed method. Let f̂surr = argminf∈F R̂surr(f) be our
empirical classifier, where F = {f : X → R} is a class
of measurable functions, and f?surr = argminf∈F Rsurr(f)
be the optimal classifier, the estimation error is defined
as the gap between the risk of f̂surr and that of f?surr, i.e.,
Rsurr(f̂surr)−Rsurr(f

?
surr). To derive the estimation error

bound, we firstly investigate the Lipschitz continuity of the
transition function T (f(x)).
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Table 2. Specification of datasets and corresponding models.

Dataset # Train # Test # Features πD Model
MNIST (LeCun et al., 1998) 60,000 10,000 784 0.49 5-layer MLP
Fashion-MNIST (Xiao et al., 2017) 60,000 10,000 784 0.8 5-layer MLP
Kuzushiji-MNIST (Clanuwat et al., 2018) 60,000 10,000 784 0.3 5-layer MLP
CIFAR-10 (Krizhevsky, 2009) 50,000 10,000 3,072 0.7 ResNet-32

Lemma 5. Assume that among the m sets of U data, at
least two of them are different, i.e., ∃j, j′ ∈ {1, . . . ,m}
such that j 6= j′ and πj 6= πj′ , and 0 ≤ f(x) ≤ 1,∀x ∈ X ,
e.g., f(x) is mapped to [0, 1] by the sigmoid function. Then,
∀j = 1, . . . ,m, the function Tj(f(x)) is Lipschitz continu-
ous w.r.t. f(x) with a Lipschitz constant 2/α2, where

α = min

 m∑
j=1

ρjπj(1− πD),

m∑
j=1

ρjπD(1− πj)

 .

Then we analyze the estimation error as follows.

Theorem 6 (Estimation error bound). Assume that the loss
`(T (f), ȳ) is upper-bounded by M` and is L`-Lipschitz
continuous w.r.t. T (f). Let Rntr

(F) be the Rademacher
complexity of F (Mohri et al., 2012; Shalev-Shwartz & Ben-
David, 2014). Then, for any δ > 0, we have with probability
at least 1− δ,

Rsurr(f̂surr)−Rsurr(f
?
surr) ≤

8
√

2mL`
α2

Rntr
(F) + 2M`

√
ln(2/δ)

2ntr
. (15)

Theorem 6 demonstrates that as the number of training
samples goes to infinity, the risk of f̂surr converges to the
risk of f?surr, since Rntr(F)→ 0 for all parametric models
with a bounded norm. Moreover, the coefficient α implies
that a tighter error bound could be obtained when the class
priors πj are close to 0 or 1. This conclusion agrees with our
intuition that purer U sets (containing almost only positive/
negative examples) lead to better performance.

4. Experiments
In this section, we experimentally analyze the proposed
method and compare it with state-of-the-art methods in the
Um classification setting.5

Datasets We train on widely adopted benchmarks MNIST,
Fashion-MNIST, Kuzushiji-MNIST, and CIFAR-10. Table 2
briefly summarizes the benchmark datasets. Since the four
datasets contain 10 classes originally, we manually corrupt

5Our implementation of Um-SSC is available at https://
github.com/leishida/Um-Classification.

them into binary classification datasets. More details about
the datasets are in Appendix B.1.

In the experiments, unless otherwise specified, the number
of training data contained in all U sets are the same and fixed
as nj = ntr/m for all benchmark datasets; and the class
priors {πj}mj=1 of all U sets are randomly sampled from
the range [0.1, 0.9] under the constraint that the sampled
class priors are not all identical, ensuring that the problem is
mathematically solvable. Given {nj}mj=1 and {πj}mj=1, we
generate m sets of U training data following (4). Note that
in most LLP papers, each U set is uniformly sampled from
the shuffled U training data, therefore the label proportions
of all the U sets are the same in expectation. As the set size
increases, all the proportions converge to the same class
prior, making the LLP problem computationally intractable
(Scott & Zhang, 2020). As shown above, our experimental
scheme avoids this issue by determining valid class priors
before sampling each U set.

Models The models are optimizers used are also described
in Table 2, where MLP refers to multi-layer perceptron,
ResNet refers to residual networks (He et al., 2016), and
their detailed architectures are in Appendix B.2. As a com-
mon practice, we use Adam (Kingma & Ba, 2015) with the
cross-entropy loss for optimization. We train 300 epochs
for all the experiments, and the classification error rates at
the test phase are reported. All the experiments are repeated
3 times and the mean values with standard deviations are
recorded for each method.

Baselines We compare the proposed method with state-
of-the-art methods based on the classification risk (Scott &
Zhang, 2020) and the empirical proportion risk (Tsai & Lin,
2020) for the Um classification problem. Recall that the pro-
posed learning objective R̂Um(f) in Scott & Zhang (2020)
is a combination of the unbiased balanced risk estimators
R̂U2-b(f), which are shown to underperform the unbiased
risk estimator R̂U2(f) in Lu et al. (2019). So we improve
the baseline method of Scott & Zhang (2020) by combining
R̂U2(f) instead of R̂U2-b(f). As shown in Lu et al. (2020),
the empirical risks R̂U2(f) can go negative during training
which may cause overfitting, so we further improve the base-
line by combining the corrected non-negative risk estimators
R̂U2-c(f). The baselines are summarized as follows:

https://github.com/leishida/Um-Classification
https://github.com/leishida/Um-Classification
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Test error, 10 U sets Test error, 50 U sets Training risk, 50 U sets

MNIST

Fashion
-MNIST

Kuzushiji
-MNIST

CIFAR-10

Figure 2. Experimental results of learning from 10 and 50 sets of U data. Solid curves are the test errors (in percentage) and dashed curves
are the empirical training risks. Dark colors show the mean errors (risks) of 3 trials and light colors show the standard deviations.
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Figure 3. Box plot of the classification errors for the proposed Um-SSC method tested on learning from 50 U sets with inaccurate class
priors (ε = 0 means true; larger ε, larger noise).

Table 3. Mean errors (standard deviations) over 3 trials in percentage for the proposed Um-SSC method tested on different set sizes. The
uniform set size nj is shifted to τ · nj (smaller τ , larger shift). Random means uniformly sample a set size from range [0, T ].

Dataset Sets nj τ = 0.8 τ = 0.6 τ = 0.4 τ = 0.2 Random

MNIST 10 6000 2.83 (0.18) 2.91 (0.04) 3.2 (0.2) 3.19 (0.35) 2.66 (0.08)
50 1200 2.46 (0.1) 2.58 (0.08) 2.76 (0.13) 2.97 (0.11) 3.0 (0.12)

Fashion-MNIST 10 6000 7.88 (0.21) 7.68 (0.36) 7.84(0.17) 7.89 (0.24) 7.04 (0.13)
50 1200 8.29 (0.19) 8.91 (0.29) 7.61 (0.55) 8.8 (0.31) 8.62 (0.24)

Kuzushiji-MNIST 10 6000 8.98 (0.52) 9.83 (0.57) 9.43 (0.41) 10.03 (0.81) 8.38 (0.31)
50 1200 9.35 (0.33) 9.53 (0.64) 9.89 (0.72) 11.08 (0.61) 10.34 (0.73)

CIFAR-10 10 5000 12.55 (0.61) 12.25 (0.8) 12.41 (0.35) 12.49 (0.98) 11.65 (0.44)
50 1000 12.16 (0.23) 12.19 (0.75) 12.88 (0.37) 13.66 (0.54) 12.09 (0.42)

• MMC-U2-b (Scott & Zhang, 2020): the classification
risk based method in the multiple mutual contamina-
tion (MMC) framework, i.e., (8);

• MMC-U2: the method that improves MMC-U2-b with
unbiased risk estimators R̂U2(f);

• MMC-U2-c: the method that improves MMC-U2 with
non-negative risk correction R̂U2-c(f);

• LLP-VAT (Tsai & Lin, 2020): the empirical proportion
risk based method, i.e., (6).

More details about the implementation of baselines can be
found in Appendix B.3.

4.1. Comparison with State-of-the-art Methods

We first compare our proposed method with state-of-the-art
methods for the Um classification problem. The experimen-
tal results of learning from 10 and 50 U sets are reported in
Figure 2 and a table of the final errors is in Appendix C.1.

We can see that the classification risk based methods, i.e.,
MMC-U2-b, MMC-U2, MMC-U2-c, and our proposed Um-
SSC method generally outperform the empirical proportion
risk based method, i.e., LLP-VAT, with lower classification
error and more stability, which demonstrates the superiority
of the consistent methods.

Within the classification risk based methods, our observa-
tions are as follows. First, the proposed Um-SSC method
outperforms others in most cases. We believe that the advan-
tage comes from the surrogate set classification mechanism

in Um-SSC, which implies the classifier-consistent meth-
ods perform better than the risk-consistent methods. Sec-
ond, compared to MMC-U2-b, we can see our advantage
becomes bigger when πD ≈ 1

2 is not the case, e.g., Fashion-
MNIST and CIFAR-10. Moreover, the performance of the
improved MMC-U2 method (combination of unbiased risk
estimators) is better than MMC-U2-b (combination of bal-
anced risk estimators) in all cases. These empirical findings
corroborate our analysis that the balanced classification risk
(7) can be biased in such cases. Third, we confirm that the
training risks of MMC-U2-b and MMC-U2 go negative as
training proceeds, which incurs overfitting. Other methods
do not have this negative empirical training risk issue. And
we can see that the improved MMC-U2-c method effectively
mitigates this overfitting but its performance is still inferior
to our proposed method. These results are consistent with
the observations in Lu et al. (2020). We also notice that the
empirical training risks of the proposed Um-SSC method are
obviously higher than other baseline methods. This is due to
the fact that the added transition layer rescales the range of
model output. We provide a detailed analysis on this point
in Appendix C.1. A notable effect is that a relatively small
learning rate is more suitable for our method.

4.2. On the Variation of Set Size

In practice, the size of the U sets may vary from a large range
depends on different tasks. However, as the set size varies,
given the data generation process in (3), the marginal density
of our training data ptr(x) shifts from that of the test one,
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Table 4. Mean test errors (standard deviations) over 3 trials in per-
centage for the Um-SSC method tested with different set numbers.

Dataset 2 sets 100 sets 500 sets 1000 sets

MNIST 2.36 2.59 3.07 2.84
(0.27) (0.11) (0.14) (0.16)

Fashion-
MNIST

7.95 8.61 8.50 8.64
(0.85) (0.43) (0.44) (0.26)

Kuzushiji-
MNIST

9.68 10.20 11.64 10.68
(0.96) (0.50) (0.54) (0.40)

CIFAR-10 13.21 13.30 12.98 13.16
(1.26) (0.65) (0.37) (0.70)

which may cause severe covariate shift (Shimodaira, 2000;
Zhang et al., 2020). To verify the robustness of our proposed
method against covariate shift, we conducted experiments
on the variation of set size. Recall that in other experiments,
we use uniform set size, i.e., all sets contain ntr/m U data.
In this subsection, we investigate two kinds of set size shift:

• Randomly select dm/2e U sets and change their set
sizes to τ · ntr/m where τ ∈ [0, 1];

• Randomly sample each set size nj from range [0, ntr]
such that

∑m
j=1 nj = ntr.

As shown in Table 3, the proposed method is reasonably ro-
bust as τ moves towards 0 in the first shift setting. The slight
performance degradation may come from the decreased to-
tal number of training samples ntr as τ decreases. We also
find that our method reaches the best performance in 3 out
of 4 benchmark datasets in the second shift setting. Since it
is a more natural way for generating set sizes, the robustness
of the proposed method on varied set sizes can be verified.

4.3. On the Variation of Set Numbers

Another main factor that may affect the performance is the
number of available U sets. As the U data can be easily
collected from multiple sources, the learning algorithm is
expected to be able to handle the variation of set numbers
well. The experimental results of learning from 10 and 50 U
sets have been shown in Section 4.1. In this subsection, we
test the proposed Um-SSC method on extremely small set
numbers e.g., m = 2, and large set numbers, e.g., m=1000.
The experimental results of learning form 2, 100, 500, and
1000 U sets are reported in Table 4.

From the results, we can see that the performance of the pro-
posed method is reasonably well on different set numbers.
In particular, a lower classification error can be observed
for m = 2 across all 4 benchmark datasets. The better
performance may come from the larger number of U data
contained in a single set, i.e., ntr/2 in this case. Since our
method uses class priors as the only weak supervision, an
increasing number of the sampled data within each U set
guarantees a better approximation of them. These experi-

mental results demonstrate the effectiveness of the proposed
method on the variation of set numbers. We note that it
is a clear advantage over the LLP methods, whose perfor-
mance drops significantly when the set number becomes
small and set size becomes large, because label proportions
converge to the same class prior in their setup, making the
LLP problem computationally intractable.

4.4. Robustness against Inaccurate Class Priors

Hitherto, we have assumed that the values of class priors
{πj}mj=1 are accessible and accurately used in the construc-
tion of our method, which may not be true in practice. In
order to simulate Um classification in the wild, where we
may suffer some errors from estimating the class priors, we
design experiments that add noise to the true class priors.
More specifically, we test the Um-SSC method by replacing
πj with the noisy π′j = πj+γ ·ε, where γ uniform randomly
take values in {+1,−1} and ε ∈ {0, 0.05, 0.1, 0.15, 0.2},
so that the method would treat noisy π′j as the true πj dur-
ing the whole learning process. The experimental setup is
exactly same as before except the replacement of πj . Note
that we tailor the noisy πj to [0, 1] if it surpasses the range.

The results on learning from 50 U sets with inaccurate class
priors are reported in Figure 3 and a table of the final test er-
rors is in Appendix C.2, where ε = 0 means true class priors.
We can see that our method works reasonably well using
noisy π′j , though the classification error slightly increases
for higher noise level ε which is as expected.

5. Conclusions
In this work, we focused on learning from multiple sets
of U data and proposed a new method based on a surro-
gate set classification task. We bridged the original and
surrogate class-posterior probabilities via a linear-fractional
transformation, and then studied its properties. Based on
them, we proposed the Um-SSC algorithm and implemented
it by adding a transition layer to the neural network. We
also proved that the Um-SSC method is classifier-consistent
and established an estimation error bound for it. Extensive
experiments demonstrated that the proposed method could
successfully train binary classifiers from multiple U sets,
and it compared favorably with state-of-the-art methods.
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