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A. Details in Experiments and Addtional Results
A.1. Practical Version of SCott

We first discuss in details on the pratical version of SCott as mentioned in Section 6. The full description is shown in
Algorithm 2. The main difference between the plain SCott and Algorithm 2 is the latter treats the period K of performing
stratified as a constant, while adaptively altering K based on a stopping criteria γ. Adopting such technique, despite being
complicated in theory, allows us to adaptively perform the stratified sampling based on the progress of the training. The
hyperparameter γ can then be obtained via standard tuning algorithms such as grid search and random search.

Algorithm 2 The practical version of SCott, where we apply the early stopping technique, instead of choosing K based on
Geometric distribution.
Require: Total number of iterations T , learning rate {αt}1≤t≤T , initialize θ(0,0), strata: {Di}1≤i≤B , initialized selection

of K, hyperparameter γ.
1: for t = 0, 1, · · · , T − 1 do
2: Sample a ξ

(t)
i from stratum i and perform stratified sampling (with wi = |Di|/|D|):

g(t,0) =
�B

i=1 wi∇f
ξ
(t)
i
(θ(t,0)).

3: for k = 0, 1, · · · ,K − 1 do
4: Sample ξ(t,k) from D.
5: Compute the update v(t,k) as ∇fξ(t,k)(θ(t,k))−∇fξ(t,k)(θ(t,0)) + g(t,0).
6: Update the parameters as θ(t,k+1) = θ(t,k) − αtv

(t,k).
7: if �v(t,k)�2 ≤ γ�v(t,0)�2 then
8: break
9: end if

10: end for
11: Set θ(t+1,0) = θ(t,k+1).
12: end for
13: return Sample θ̂

(T )
from {θ(t,0)}T−1

t=0 with P(θ̂
(T )

= θ(t,0)) ∝ αtB

A.2. Synthetic Dataset Generation

In this subsection, we introduce the details of generating synthetic time series dataset as used in the experiments. We first
set the context length to be 72 and prediction length to be 24. This synthetic dataset contains 4 time series with different
patterns on their time horizon. We start from the definition of four types of patterns: t = [1, 2, · · · , 23, 24] ∈ R24, P1 =
sin(t) ∈ R24, P2 = t ∈ R24, P3 = t2 ∈ R24, P4 =

√
t ∈ R24, where all the transformations are element-wise, e.g.

sin(t) = [sin(1), sin(2), · · · , sin(23), sin(24)]. And the four patterns are four different time series slices of length 24 that
maps t to different values via transformations of sin, linear, quadratic, square root, respectively. With these patterns, the
time series data are then constructed via concatenating the patterns with different orders on the time horizon. Specifically,

TS1 = [P1, P2, P3, P4, · · · , P1, P2, P3, P4]� �� �
[P1,P2,P3,P4] repeats 2K times

+N (0,1), where N (0,1) ∈ R192K

TS2 = [P4, P3, P2, P1, · · · , P4, P3, P2, P1]� �� �
[P4,P3,P2,P1] repeats 2K times

+N (0,1), where N (0,1) ∈ R192K
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TS3 = [P1, P3, P2, P4, · · · , P1, P3, P2, P4]� �� �
[P1,P3,P2,P4] repeats 2K times

+N (0,1), where N (0,1) ∈ R192K

TS4 = [P4, P2, P3, P1, · · · , P4, P2, P3, P1]� �� �
[P4,P2,P3,P1] repeats 2K times

+N (0,1), where N (0,1) ∈ R192K

where N (0,1) denotes a random vector where each coordinate is sampled from a normal distribution. We can see each time
series is repeating a distinct order of the four patterns, forming a temporal pattern, on its time horizon. We let such temporal
pattern repeat 2K times on the time horizon of each time series. Finally, a Gaussian noise is added to each time series to
capture randomness. After generating the time series, we then extract the training examples via a sliding window which
slides 24 timestamps5 between adjacent training examples. With a simple calculation, the total number of training examples
in this dataset is 32K.

Stratification. From the data generation process, we can see in each time series contains exactly four types of mapping:
take TS1, the type of mappings on its time horizon are ∀i = 1, 2, 3, 4,

Mapping i: [P(i+1) mod 4, P(i+2) mod 4, P(i+3) mod 4] → Pi

Same conclusions can be drawn on other time series. And then we can stratify all the training examples via a simple
judgemental policy: the training examples that belonging to the same time series and having same pattern in their prediction
range are clustered to the same stratum. The total number of strata is then 16.

A.3. Additional Results

A.3.1. RESULTS ADDITIONAL TO THE MAIN PAPER SETTINGS

In the main paper, we show the convergence curves of training MLP on Traffic dataset and training NBEATS on Electricity
dataset. Here, we provide the additional curves of training MLP on Electricity dataset.
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Figure 4. Additional Results of MLP on Electricity Dataset.

A.3.2. APPLYING EARLY STOPPING TECHNIQUE TO SCSG AND SVRG

In this subsection, we investigate how the baseline SCSG and SVRG would perform when the early stopping technique
introduced in Section A.1 is applied on them. We rerun the MLP model on Traffic and Electricity dataset, and the fine tuned
results are shown in Figure 5. In the literature, SVRG is shown to perform bad on deep learning tasks (Defazio & Bottou,
2018).

A.4. Hyperparameter Tuning

We apply the grid search to tune the hyperparameters in each experiment, the grids for the step sizes are: {0.1, 0.05, 0.025,
0.01, 0.005, 0.0025, 0.001, 0.0005, 0.00025, 0.0001}. We set the weight decay to be 1e-5. For experiments in Section 7.1
and 7.2, the optimal step size is specified. For SCott, we additionally tune γ from {0.1, 0.125, 0.15, 0.2}, and the optimal

5We do this to guarantee each training example can include a completely different pattern in its prediction range. In practice, this can
mean extracting training examples by day on a hourly measured time series.



Variance Reduced Training with Stratified Sampling for Forecasting Models

0 500 1000 1500
Time(s)

−2.5

−2.0

−1.5

L
o
s
s
 o

n
 T

ra
in

in
g

 S
e
t SVRG

SCSG

SCott

(a) Training Loss w.r.t. Time(s)
Traffic Dataset

0 500 1000 1500
Time(s)

−2.5

−2.0

−1.5

T
e
s
t 

L
o
s
s

SVRG

SCSG

SCott

(b) Test Loss w.r.t. Time(s)
Traffic Dataset

0 500 1000 1500
Time(s)

6.5

7.0

7.5

L
o
s
s
 o

n
 T

ra
in

in
g

 S
e
t SVRG

SCSG

SCott

(c) Training Loss w.r.t. Time(s)
Electricity Dataset

0 500 1000 1500
Time(s)

5.5

6.0

6.5

T
e
s
t 

L
o
s
s

SVRG

SCSG

SCott

(d) Test Loss w.r.t. Time(s)
Electricity Dataset

Figure 5. Applying the early stopping technique on SCSG and SVRG.

choice of γ on synthetic dataset is 0.125. Hyperparameters in other settings is shown in Table A.4. For the experiment in
section 7.3, we have two extra hyperparameters β1 and β2, we set the grids to be {0.9, 0.99, 0.999}. Finally, for γ, we
extend the grids range to {0.1, 0.125, 0.15, 0.2, 0.4, 0.8}. The optimal choice of hyperparameter for each settings are shown
in Table A.4.

Table 4. Hyperparameters used for experiments on real-world applications. The format of the hyperparameters is shown as the following:
the first value is the optimal choice of step size. For SCott-type optimizers, the last value is the optimal choice for γ. Additionally, the β1

and β2 for Adam-type optimizers are set to be 0.9 and 0.999 respectively for optimal performance.

Model Dataset Optimizer

SGD SCSG SCott Adam S-Adam Adagrad S-Adagrad

MLP
Exchange Rate 5e-3 5e-2 5e-2/0.125 5e-3 5e-3/0.1 2.5e-2 2.5e-2/0.1
Traffic 2.5e-2 2.5e-2 2.5e-2/0.125 5e-3 5e-3/0.125 5e-3 5e-3/0.125
Electricity 2.5e-2 2.5e-2 2.5e-2/0.125 5e-3 2.5e-3/0.125 5e-3 2.5e-3/0.125

NBEATS
Exchange Rate 1e-3 1e-3 1e-3/0.1 1e-3 1e-3/0.1 1e-3 1e-3/0.1
Traffic 1e-4 1e-4 2.5e-3/0.125 1e-4 1e-4/0.125 1e-4 1e-4/0.125
Electricity 5e-3 1e-2 1e-2/0.125 1e-2 1e-2/0.125 1e-2 1e-2/0.125

B. Technical Proof.
B.1. Heterogeneity Noise with Uniform Sampling

As a supplementary to the main paper, here we investigate another example to illustrate why time series data can be
heterogeneous, and how uniform sampling could cause extra noise on such dataset. Consider the simplest AR model with
p = 1. Without the loss of generality, we assume the parameter is initialized at point 0: θ(0) = 0 ∈ R. Now consider a
dataset D contains a single time series that takes the following form:

−1����
t=1

,−δ, 1, δ,−1,−δ, 1, δ� �� �
Temporal Pattern

, · · · ,

where δ > 0 denote some constant. We can see in this example a temporal pattern of length 4 is repeating on the time
horizon, and the conditional distribution over the timestamp has two types. With some simple analysis, for all the examples
whose prediction time t0 fulfilling t0 mod 2 = 1, their global minima are centering around θ∗1 = δ. We denote all these
training examples as D1. Similarly, for all the t0 with t0 mod 2 = 0, their global minima are centering around θ∗2 = − 1

δ .
We denote all these training examples as D2. In this toy dataset, the heterogeneity comes from the fact that D1 and D2 are
not gathering around the same global minimia: when δ increases, the distance of two minima |δ + 1/δ| centers will increase.
We now present the problem with uniform sampling in the following lemma.
Lemma 2. Consider using uniform sampling on D to obtain a mini-batch ξ with size of M = 2, then when the training
examples in ξ are either both sampled from D1 or both from D2, with high probability,

Var
�
∇fξ(θ

(0))
�
= O(δ2)� �� �

heterogeneity noise

+o(δ). (12)
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On the otherhand, when the training examples in ξ are sampled from both D1 and D2 using stratified sampling, with high
probability,

Var
�
∇fξ(θ

(0))
�
= o(δ)����

model randomness

. (13)

Lemma 2 shows with uniform sampling, the variance of the stochastic gradients is closely related to the samples: If the
samples are somewhat similar, the variance on the gradient will suffer from an additional term – to which we informally
refer as heterogeneity noise.

Proof to Lemma 2.

Proof. Note that for AR(1), the model only has a single parameter. In this proof, θ and [θ] are interchangeable. The loss
functions at different time can be expressed as:

f1,t(θ) = f1,t([θ]) =





(δθ + 1 + �t)
2 t mod 4 = 0

(θ − δ − �t)
2 t mod 4 = 1

(δθ + 1− �t)
2 t mod 4 = 2

(θ − δ + �t)
2 t mod 4 = 3

,

Take gradient with respect to the model parameter θ and without the loss of generality, taking θ(0) = [0], we obtain

∇f1,t([0]) =





2δ + 2δ�t t mod 4 = 0

−2δ − 2�t t mod 4 = 1

2δ − 2δ�t t mod 4 = 2

−2δ + 2�t t mod 4 = 3

. (14)

As defined by Equation (1), the gradient on the total loss can be expressed as (with out the loss of generality, we set T = 4T̃
where T̃ is an integer.)

∇f(θ(0)) =
1

T

T�

t=1

∇f1,t(θ
(0)) =

2

T

T̃−1�

m=0

(−�m+1 − δ�m+2 + �m+3 + δ�m+4). (15)

Denote E as the event of "two training examples in the mini-batch are either both sampled from D1 or both sampled from
D2". Depend on the event of E , we first obtain when the event E happens,

Var
�
∇fξ(0)(θ

(0))
���E
�

(16)

=
1

T 2

�

t,t� mod 4=0

������
2δ + δ�t + δ�t� −

2

T

T̃−1�

m=0

(−�m+1 − δ�m+2 + �m+3 + δ�m+4)

������

2

(17)

+
1

T 2

�

t,t� mod 4=1

������
−2δ − �t − �t� −

2

T

T̃−1�

m=0

(−�m+1 − δ�m+2 + �m+3 + δ�m+4)

������

2

(18)

+
1

T 2

�

t,t� mod 4=2

������
2δ − δ�t − δ�t� −

2

T

T̃−1�

m=0

(−�m+1 − δ�m+2 + �m+3 + δ�m+4)

������

2

(19)

+
1

T 2

�

t,t� mod 4=3

������
−2δ + �t + �t� −

2

T

T̃−1�

m=0

(−�m+1 − δ�m+2 + �m+3 + δ�m+4)

������

2

(20)

+
1

T 2

�

t mod 4=0,t� mod 4=2

������
2δ + δ�t − δ�t� −

2

T

T̃−1�

m=0

(−�m+1 − δ�m+2 + �m+3 + δ�m+4)

������

2

(21)
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+
1

T 2

�

t mod 4=2,t� mod 4=0

������
2δ − δ�t + δ�t� −

2

T

T̃−1�

m=0

(−�m+1 − δ�m+2 + �m+3 + δ�m+4)

������

2

(22)

+
1

T 2

�

t mod 4=1,t� mod 4=3

������
−2δ − �t + �t� −

2

T

T̃−1�

m=0

(−�m+1 − δ�m+2 + �m+3 + δ�m+4)

������

2

(23)

+
1

T 2

�

t mod 4=3,t� mod 4=1

������
−2δ + �t − �t� −

2

T

T̃−1�

m=0

(−�m+1 − δ�m+2 + �m+3 + δ�m+4)

������

2

(24)

≤ 4

T 2

�

t,t� mod 4=0

δ2 +
1

T 2

�

t,t� mod 4=0

������
δ�t + δ�t� −

2

T

T̃−1�

m=0

(−�m+1 − δ�m+2 + �m+3 + δ�m+4)

������

2

(25)

· · · (26)

+
4

T 2

�

t mod 4=3,t� mod 4=1

δ2 +
1

T 2

�

t mod 4=3,t� mod 4=1

������
�t − �t� −

2

T

T̃−1�

m=0

(−�m+1 − δ�m+2 + �m+3 + δ�m+4)

������

2

(27)

where in the last step we apply |a + b|2 ≤ 2a2 + 2b2, ∀a, b ∈ R, and we break each term into two parts. The first
part is independent of �t and is only related to δ2, and the second term is the average of some sequence of �t. Then
Var

�
∇fξ(0)(θ

(0))
���E
�

can be upper bounded by the following form

Var
�
∇fξ(0)(θ

(0))
���E
�
≤ O(δ2) + T�, (28)

where T� is the term containing all the �t. Next we prove that T� is a small quantity o(δ) with high probability. Note that here
all the �t are i.i.d. random variables, by applying the Hoeffding’s inequality, which is for i.i.d random variables Z1, · · · , ZN

following Gaussian white noise distribution,

P

������
1

N

N�

m=1

Zm

����� > t

�
≤ e−2Nt2 , (29)

applying this to T�, we obtain (we show the derivation on the first term, the others are similar), with probability 1−e−2To(δ)2 ,
������
δ�t + δ�t� −

2

T

T̃−1�

m=0

(−�m+1 − δ�m+2 + �m+3 + δ�m+4)

������

2

(30)

≤1

4

������
1

T̃

T̃−1�

m=0

(�m+1 − �m+3)

������

2

+
1

4

������
δ

T̃

T̃−1�

m=0

(�m+2 − �m+4 + �t + �t�)

������

2

(31)

≤o(δ). (32)

Apply this to every term, we obtain with high probability,

T� ≤ o(δ). (33)

We can do the similar analysis on Var
�
∇fξ(0)(θ

(0))
���¬E

�
, and obtain Var

�
∇fξ(0)(θ

(0))
���¬E

�
≤ o(δ). Here we omit this

part for brevity.

B.2. Proof to Theorem 1

Proof. Since this theorem states the existence of a dataset in order to show a lower bound, the proof of is done by constructing
such a dataset. This implies δ and N can be chosen freely. Without the loss of generality, in the proof we treat the mini-batch
M = 1.
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When p = 1, we let D contains one single time series of length p+ 1 and δ > 0. It is straightforward to see the variance is
zero (since the training here would be deterministic) and the theorem holds.

When p ≥ 2, the D we construct contains N = 2 �p/2� different time series, and each time series is of length p+ 1. Note
that here we have N ≥ 2 because p ≥ 2. Since the model is predicting the same time here (it is predicting time p + 1
given time 1 to p), we let c = �p denote a fixed value6. Without the loss of generality let 2c ≤ δ such that maxi,t |zi,t| = δ.
Within the proof of this theorem, we let p = �p/2�, D is constructed as the following:


δ

2
, 0, · · · , 0� �� �

p−1

,
δ

2
+ c


 , i = 1

Time Series i:


0, · · · , 0� �� �

i−2

,
δ

2
,−δ

2
, 0, · · · , 0� �� �

p−i

, c


 , 2 ≤ i ≤ p


0, · · · , 0� �� �

p

,
δ

2
· · · , δ

2� �� �
p−p

,
δ

2
+ c


 , p+ 1 ≤ i ≤ 2p.

Fit in the MSE loss we obtain:

f1(θ) =

�
δ

2
− δ

2
θ1

�2

fi(θ) =

�
δ

2
θi−1 −

δ

2
θi

�2

, ∀2 ≤ i ≤ p

fi(θ) =

�
δ

2
− δ

2
θp+1 − · · ·− δ

2
θp

�2

, ∀p+ 1 ≤ i ≤ 2p,

where fi denotes the loss incurred on the i-th time series. The total loss function can then be expressed as

f(θ) =
1

2p

2p�

i=1

fi(θ) =
1

2p

p�

i=1

fi(θ)

� �� �
g1(θ)

+
1

2p

2p�

i=p+1

fi(θ)

� �� �
g2(θ)

. (34)

Note that when taking derivative of function f with respect to the θ, the first p coordinates will only be affected by g1(θ),
i.e.,

∂f

∂θi
=

∂g1
∂θi

, ∀i ≤ p, (35)

then we obtain

�∇f(θ)�2 =

p�

j=1

����
∂f

∂θi

����
2

≥
p�

j=1

����
∂f

∂θi

����
2

=

p�

j=1

����
∂g1
∂θi

����
2

= �∇g1(θ)�2. (36)

Lemma 1 in (Carmon et al., 2019) shows that for every θ with θp = 0,

�∇g1(θ)� ≥ δ2

4p
5
2

. (37)

As a result, we obtain for every θ with θp = 0,

�∇f(θ)� ≥ δ2

4p
5
2

. (38)

Without the loss of generality we set7 θ(0) = 0. Now if we look at the expression of function g1, if the model starts from 0,

6The �p can be obtained by generating the dataset using the same random seed as used in the model.
7If the initialization v �= 0, we just need to replace all the θ with θ − v in the original functions and the proof will be the same.
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it follows a "zero-respecting" property: θj will remain zero if fewer then j number of gradients on g1 is computed (Carmon
et al., 2019). Define a filtration F (t) at iteration t as the sigma field of all the previous events happened before iteration t. Let
τi denote the recent time where sample i is sampled for computing the stochastic gradient. And let Nt be a random variable,
denoting the largest number where τ1 to τNt

is strictly increasing. Since each sample is uniformly sampled, we obtain

P[N (t+1) −N (t) = 1|F (t)] ≤ 1

2p
≤ 1

p
. (39)

Let q(t) = N (t+1) −N (t), with Chernoff bound, we obtain

P[N (t) ≥ p] = P[e
�t−1

j=0 q(j) ≥ ep] ≤ e−pE[e
�t−1

j=0 q(j) ]. (40)

For the expectation term we know that

E[e
�t−1

j=0 q(j) ] = E



t−1�

j=0

E
�
eq

(j) |F (j)
�

 ≤

�
1− 1

p
+

e

p

�t

≤ et(e−1)/p. (41)

Thus we know
P[N (t) ≥ p] ≤ e

(e−1)t
p −p ≤ ω, (42)

for every t ≤ p2+p log(ω)
(e−1) . Take ω = 1

2 , for any 0 < � < δ2

8p
5
2
≤ δ2

8p
5
2

, we obtain

E�∇f(θ)� =P(N (t) ≥ p)
�
�∇f(θ)�

���N (t) ≥ p
�
+ P(N (t) < p)

�
�∇f(θ)�

���N (t) < p
�

(43)

≥1

2
�∇f(θ)� (44)

>
1

2
· 2� (45)

=�, (46)

where we use Equation (38). The gradient is calculated as follows:

∇f1(0) =


−δ2

2
, 0, · · · , 0� �� �

p−1




∇fi(0) =


0, · · · , 0� �� �

p


 , 2 ≤ i ≤ p

∇fi(0) =


0, · · · , 0� �� �

p

,−δ2

2
· · · ,−δ2

2� �� �
p−p


 , p+ 1 ≤ i ≤ 2p

∇f(0) =


−

δ2

4p
, 0, · · · , 0� �� �

p−1

,− δ2

4p
· · · ,− δ2

4p� �� �
p−p


 .

The sampling variance in the first iteration:

Var
�
∇fξ(0)(θ

(0))
�
=Ei∼[2p]�∇fi(0)−∇f(0)�2 (47)

=
1

2p

��
2p− 1

4p

�2

δ4 +
p− p

16p2
δ4

�
+

p− 1

2p

�
p− p+ 1

16p2
δ4
�
+

p

2p

�
1

16p2
δ4 + (p− p)

�
2p− 1

4p

�2

δ4

�

(48)
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≤3

p
δ4 + pδ4 (49)

≤p2, (50)

where the last step holds when we let δ4 ≤ min{p3/6, p}. Since for every t ≤ p2+p log(ω)
(e−1) , E�∇f(θ)� ≥ �, the lower bound

on the iterations (number of gradients to be computed) Tb is

Tb = Ω
�
p2
�
, (51)

which implies

Tb = Ω
�

Var
�
∇fξ(0)(θ

(0))
��

. (52)

Furthermore,

Var
�
∇fξ(0)(θ

(0))
�
=

1

2p

��
2p− 1

4p

�2

δ4 +
p− p

16p2
δ4

�
+

p− 1

2p

�
p− p+ 1

16p2
δ4
�
+

p

2p

�
1

16p2
δ4 + (p− p)

�
2p− 1

4p

�2

δ4

�

(53)

≥p− p

2

�
2p− 1

4p

�2

δ4 (54)

=Ω(δ4p), (55)

and thus we complete the proof.

B.3. Proof to Theorem 2

B.3.1. MAIN PROOF

Proof. Take the expectation with respect to the sampling randomness in the inner loop for v(t,k), we obtain

Eξ(t,k)

�
v(t,k)

�
= Eξ(t,k)

�
∇f(θ(t,k); ξ(t,k))−∇f(θ(t,0); ξ(t,k)) + g(t,0)

�
= ∇f(θ(t,k)) + g(t,0) −∇f(θ(t,0))� �� �

=ζt

(56)

Due to ζt, the main step for SCott (v(t,k)) is a biased estimation of the true gradient ∇f
�
θ(t,k)

�
. The challenge of the

proof is to handle such biasedness. The rest of our analysis largely follows the proof routine in SCSG-type methods
(Babanezhad Harikandeh et al., 2015; Lei et al., 2017; Li & Li, 2018). We do not take credit for those analysis.

Li & Li (2018) proposes a nice framework of analyzing stochastic control variate type algorithm, where in their framework,
the control variate g(t,0) is computed via a randomly sampled mini-batch. This, as we discussed in the paper, can be seen
as a special case of random grouping. The main difference of SCott is in bounding ζt since here the noise is not from the
uniform sampling. For brevity, we summarize several lemmas from previous work. and focus on analyzing ζt in the main
proof.

We summarize the main results in Lemma 4. We encourage readers to refer to (Li & Li, 2018) for complete derivation for
this part of results. From Lemma 4 we obtain when αtL = cB− 2

3 (where c is a numerical constant),

αtB

�
2− 2

B
− 2αtL− 1

1− α2
tL

2B − α3
tL

3B2

�
E�∇f(θ(t,0))�2 (57)

≤2E(f(θ(t−1,0))− f(θ(t,0))) + 2αtB

�
1 + αtL+

1

B

�
E�ζt�2, (58)

given αtL = cB− 2
3 , we obtain

1− α2
tL

2B − α3
tL

3B2 ≥ 1−B− 1
3 c2 − c3, (59)
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put it back together with αtL = cB− 2
3 , we get,

cB
1
3

�
2− 2

B
− 2cB− 2

3 − 1

1−B− 1
3 c2 − c3

�
E�∇f(θ(t,0))�2 (60)

≤2LE(f(θ(t−1,0))− f(θ(t,0))) + 2cB
1
3

�
1 + cB− 2

3 +B−1
�
E�ζt�2, (61)

select c ≤ 1
4 we can get,

2− 2

B
− 2cB− 2

3 − 1

1−B− 1
3 c2 − c3

≥ 1

4
(62)

1 + cB− 2
3 +B−1 ≤ 1.35. (63)

Fit in Lemma 5, we obtain

E�∇f(θ(t,0))�2 ≤ 8LE(f(θ(t−1,0))− f(θ(t,0)))

cB
1
3

+ 11

B�

i=1

w2
i σ

2
i . (64)

Telescoping from t = 0 to T − 1, we obtain

E
���∇f

�
θ̂
(T )

����
2

≤8(f(0)− infθ f(θ))L

cB
1
3T

+ 11

B�

i=1

w2
i σ

2
i (65)

=O

�
(f(0)− infθ f(θ))L

B
1
3T

+
B�

i=1

w2
i σ

2
i

�
, (66)

given our selection on the value of B,

B�

i=1

w2
i σ

2
i ≤ O

�
�2
�
, (67)

and then, with

T = O

�
(f(0)− infθ f(θ))L

B
1
3 �2

�
, (68)

we obtain

E
���∇f

�
θ̂
(T )

���� ≤
�

E
���∇f

�
θ̂
(T )

����
2

(69)

=

����O

�
(f(0)− infθ f(θ))L

B
1
3T

+

B�

i=1

w2
i σ

2
i

�
(70)

≤�. (71)

Applying Lemma 3, the total number of stochastic gradient being computed can then be calculated as

T−1�

t=0

(B + E[Kt]) = 2BT = O

�
ΔLB

2
3

�2

�
, (72)

when B = |D|, then σ2
|D| = 0, the total number of gradients to be computed is

O

�
ΔL|D| 23

�2

�
, (73)
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when B �= |D|, then put in

B = O

�
B
�B

i=1 w
2
i σ

2
i

�2

�
, (74)

the total number of gradients to be computed is

O



ΔL

�
B
�B

i=1 w
2
i σ

2
i

� 2
3

�
10
3


 . (75)

And thus we complete the proof.

B.3.2. TECHNICAL LEMMA

Lemma 3. ((Horváth et al., 2020), Lemma 1) Let N ∼ Geom(γ), for γ > 0. Then for any sequence D0, D1, · · · with
E|DN | ≤ ∞,

E(DN −DN+1) =

�
1

γ
− 1

�
(D0 − EDN ). (76)

Lemma 4. ((Li & Li, 2018), Proof to Theorem 3.1) when αtL = cB− 2
3 ,

αtB

�
2− 2

B
− 2αtL− 1

1− α2
tL

2B − α3
tL

3B2

�
E�∇f(θ(t,0))�2 (77)

≤2E(f(θ(t−1,0))− f(θ(t,0))) + 2αtB

�
1 + αtL+

1

B

�
E�ζt�2. (78)

Proof. The proof can be established straightforwardly by considering the contant batch size case in (Li & Li, 2018).

Lemma 5.

E�ζt�2 ≤
B�

i=1

w2
i σ

2
i . (79)

Proof.

E�ζt�2 (80)

=E�g(t,0) −∇f(θ(t,0))�2 (81)

=E

�����
B�

i=1

|Di|∇f(θ(t,0); ξ
(t)
i )

|D| −∇f(θ(t,0))

�����

2

(82)

=E

�����
B�

i=1

|Di|∇f(θ(t,0); ξ
(t)
i )

|D| −
B�

i=1

|Di|
|D| ∇f(θ(t,0))

�����

2

(83)

=

B�

i=1

w2
iE

���∇f(θ(t,0); ξ
(t)
i )−∇f(θ(t,0))

���
2

+
�

i�=i�

E�∇f(θ(t,0); ξ
(t)
i )−∇f(θ(t,0)),∇f(θ(t,0); ξ

(t)
i� )−∇f(θ(t,0))�

(84)

≤
B�

i=1

w2
i σ

2
i (85)

where in the final step, we use the property that ξ(t)i is independent of ξ(t)i� .


