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Abstract

In large-scale time series forecasting, one often en-
counters the situation where the temporal patterns
of time series, while drifting over time, differ from
one another in the same dataset. In this paper, we
provably show under such heterogeneity, training
a forecasting model with commonly used stochas-
tic optimizers (e.g. SGD) potentially suffers large
variance on gradient estimation, and thus incurs
long-time training. We show that this issue can
be efficiently alleviated via stratification, which
allows the optimizer to sample from pre-grouped
time series strata. For better trading-off gradient
variance and computation complexity, we further
propose SCott (Stochastic Stratified Control Vari-
ate Gradient Descent), a variance reduced SGD-
style optimizer that utilizes stratified sampling via
control variate. In theory, we provide the conver-
gence guarantee of SCott on smooth non-convex
objectives. Empirically, we evaluate SCott and
other baseline optimizers on both synthetic and
real-world time series forecasting problems, and
demonstrate SCott converges faster with respect
to both iterations and wall clock time.

1. Introduction

Large-scale time series forecasting is prevalent in many
real-world applications, such as traffic flow prediction (Vla-
hogianni et al., 2014), stock price monitoring (Box et al.,
2011), weather forecasting (Xu et al., 2019), etc. Tradi-
tional forecasting models such as SSM (Durbin & Koopman,
2012), ARIMA (Zhang, 2003), ETS (De Livera et al., 2011)
and Gaussian Processes (Brahim-Belhouari & Bermak,
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2004) are the folklore methods for modeling the dynamics
of a single time series. Recently, deep forecasting models
(Faloutsos et al., 2019) that leverage deep learning tech-
niques have been proven to be particularly well-suited at
modeling over an entire collection of time series (Rangapu-
ram et al., 2018; Wang et al., 2019; Salinas et al., 2020). In
such setting, multiple time series are jointly learned, which
enables forecasting over a large scope.

In practice, a time series dataset can be heterogeneous with
respect to a single forecasting model (Lee et al., 2018).
The heterogeneity here specifically indicates the underlying
distribution of interests may vary across different time se-
ries instances due to local effects (Wang et al., 2019; Sen
et al., 2019); or is correlated to time in each time series
individually — a phenomenon we refer to as concept drift
(Gama et al., 2014). In light of this, a seemingly plausi-
ble solution is to maintain multiple forecasters. However,
in most applications training a single model is inevitable
since deploying multiple models incurs storage overhead
and sometimes generalizes worse (Montero-Manso & Hyn-
dman, 2020; Oreshkin et al., 2019; Gasthaus et al., 2019).
As a first investigation in this paper, we provably show
the time series heterogeneity can induce arbitrarily large
gradient estimation variance in many optimizers, including
SGD (Bottou, 2010), Adam (Kingma & Ba, 2014), AdaGrad
(Ward et al., 2019), etc.

Extensive study has been conducted on reducing gradient
estimation variance in stochastic optimization such as using
mini-batching (Gower et al., 2019), control variate (John-
son & Zhang, 2013) and importance sampling (Csiba &
Richtarik, 2018). These methods are mostly motivated by
optimization theory and do not consider time series hetero-
geneity at a finer-grained level. In this paper, we take a
different perspective: observing that the distribution of in-
terests in time series is usually recurring over time horizon
or is correlated over instances (Liao, 2005; Aghabozorgi
et al., 2015; Maharaj et al., 2019), we argue gradient vari-
ance induced by time series heterogeneity can be mitigated
via stratification. Specifically, the intuition is that if we can
somehow stratify the time series into multiple strata where
each stratum contains homogeneous series, then the vari-
ance on the gradient estimation can be provably reduced via
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weighted sampling over all the strata. Our paper concludes
with a specific algorithm named SCott (Stochastic Stratified
Control Variate Gradient Descent), an SGD-style optimizer
that utilizes this stratified sampling strategy with control
variate to balance variance-complexity trade off.

Our contributions can be summarized as follows:

1. We show in theory that even on a simple AutoRegressive
(AR) forecasting model, the gradient estimation variance
can be arbitrarily large and slows down training.

2. We conduct a comprehensive study on temporal time
series, and show how stratification over timestamps al-
lows us to obtain homogeneous strata with negligible
computation overhead.

3. We propose a variance-reduced optimizer SCott based on
stratified sampling, and prove its convergence on smooth
non-convex objectives.

4. We empirically evaluate SCott on both synthetic and real-
world forecasting tasks. We show SCott is able to speed
up SGD, Adam and Adagrad without compromising the
generalization of forecasting models.

Notations. Throughout this paper, we use y; to denote
the j-th coordinate of a vector y. We use y, ., to denote
[YiasYiat1s " »Yip_1,Yipl For two variables g; and
g2, g1 = Q(g2) means there exists a numerical constant ¢
such that g1 > cg2. We use |S| to denote the cardinality of
a set S. We use E[X] and Var[X] to denote the expectation
and variance of a random variable X, given their existence.

2. Related Work

Learning from Heterogeneous Time Series. Heterogene-
ity in time series forecasting has been investigated in prior
arts. Previous works mostly address this from two aspects:
(1) Maintaining multiple models. A representatitive work
is ESRNN (Smyl, 2020), the M4 forecasting competition
winner that proposes using ensemble of experts (Hewa-
malage et al., 2021); (2) Modifying the model architecture
that characterizes the time series prior to training (Ban-
dara et al., 2020b; Chen et al., 2020; Bandara et al., 2020a;
Lara-Benitez et al., 2021). In this paper, we investigate an
orthogonal direction on variance-reduced gradients. Our
method does not require multiple models or modification of
model architectures.

Sampling in Stochastic Optimization. In the domain of
stochastic optimization, uniform sampling is the folklore
sampler used in many first-order optimizers, e.g. SGD
(Zhang, 2004). Based on that, Nagaraj et al. (2019) dis-
cusses uniform sampler without replacement, Gao et al.
(2015) proposes adopting an active weighted sampler for
training and Park & Ryu (2020) discusses sampling with
cyclic scanning. Several fairness-aware samplers are also
investigated in (Iosifidis et al., 2019; Wang et al., 2020;

Holstein et al., 2019). In other works, London (2017); Aber-
nethy et al. (2020) study the effect of adaptive sampling
on model generalization. A series of works extensively
discuss the importance sampling based on gradient norm
(Alain et al., 2015), gradient bound (Lee et al., 2019), loss
(Loshchilov & Hutter, 2015), etc, is able to accelerate train-
ing. Perhaps the closest works to this paper are (Zhao &
Zhang, 2014; Zhang et al., 2017), which propose using strat-
ified sampling for more diverse gradients. This, however,
is notably different from our investigation as we do not
use stratified sampling for mini-batching, and we focus on
efficient stratification on time series data.

Stratification in Machine Learning. Stratification is a
powerful technique for machine learning. For instance,
application-driven works like Liberty et al. (2016) proposes
using stratified sampling to solve a specialized regression
problem in databases whereas Yu et al. (2019) discusses
stratification in weakly supervised learning. In terms of
variance-reduced training, most of the previous works ex-
clusively focus on using stratification for diversifying mini-
batches. Concretely, with the basic proposition of strati-
fied mini-batching from (Zhao & Zhang, 2014), subsequent
works like Zhang et al. (2017) extends that to a sampling
framework; Liu et al. (2020) proposes using adaptive strata;
and Fu & Zhang (2017) discusses trasferring stratification
framework to Bayesian learning.

3. Preliminaries

In this section we introduce the formulation of training
forecasting models and stochastic gradient optimizers.

Problem Statement. As in other machine learning tasks,
training forecasting models is often formulated into the
Empirical Risk Minimization (ERM) framework. Given [NV
different time series: {z;}2, where z; ; denotes the value
of i-th time series at time ¢, let «; ; denote the (potentially)
available features of ¢-th time series at time ¢, we aim to
train a forecasting model F' with parameters 8 (Table 1).
The training is then formulated by connecting F' with a loss
function £ to be minimized. For instance, given the notation
in Table 1, a deterministic model over loss function £ at
prediction time ¢y can be expressed as

fi,to(e) = E(zi,t0+1:t0+7p7 2i7t0+1:t0+7'p)7

where 20110047, = F(Zitg—ret1:t0s Tin:1;;0) and
fito(0) : R — R is the loss incurred on the i-th time se-
ries at time ¢y. Popular options for loss functions £ include
Mean Square Error (MSE) Loss, Quantile Loss, Negative
Log Likelihood, KL Divergence, etc (Gneiting & Katzfuss,
2014). The training is then formulated as an optimization
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Table 1. Quantity of interests to approximate in different forecasting types. Inside the table, F' denotes the model where it takes context
and features as input, and then make predictions via model parameters 8. 7. and 7, denote the context length and prediction length, ¢ is

referred to as prediction time by convention.

Forecasting Model Type Mappings/Distributions to Approximate
Deterministic Zitor1itorry = F(Zitg—ret1:t0, Ti1:1y; 0)
Probabilistic P(Zi,t0+1;zo+7p |Zi,t0—ret1:t0, Ti1:1y 3 0) = F(Zi,tg—re+1:t0, Ti,1:735 0)

problem as

6 = arg min
fcr4

\D|sz”

i=1 t=1

], (D

where T; denotes the maximum prediction time in the -
th time series. We denote D as the set of all the training
examples indexed by (i,¢),V1 < i < N,V1 <t <T;. A
time series segment with certain length is then used as a
single training example'.

Stochastic Gradient Optimizers. A stochastic gradient
optimizer refers to an iterative algorithm that repeatedly
updates model parameters with a uniformly sampled mini-
batch of training examples. Concretely, this stochastic gra-
dient with mini-batch size M is computed as follows:

Vfe(® MZ” Vfi4(0), 2

where || = M and each element in ¢ is in the form of a tu-
ple (¢,t) where i ~ Uniform[1, N] and ¢ ~ Uniform[1, T}].
Popular optimizers includes SGD, Adam, Adagrad, etc.

4. Motivation

Based on the preliminaries, in this section we discuss our
motivation that gradient variance in training forecasting
models can be arbitrarily large and slow down training. Our
motivation study is done with showing a complexity lower
bound on the classic AutoRegressive (AR) model.

Motivation example: AutoRegression with MSE Loss.
Throughout this section, we consider p-th order AutoRegres-
sive, or AR(p) model, which can be expressed as follows:

. p
Zit =€+ E )
Jj=1

where ¢; is a Gaussian noise term at time ¢. We further con-
sider adopting the Mean Squared Error (MSE) loss function,
which is

0i_jz;—j, 3)

fzt( ) ( zlt)Q' (4)

'In practice, this slice is of length that relates to the context and
prediction length as shown in Table 1. A commonly used method
to obtain all such segments is to use a sliding window strategy.

We start from studying the variance of Stochastic Gradient
(SG): Var [V f¢(0)]. For any iterative stochastic gradient op-
timizer A, let 0 and 8 denote its initial parameters and
its output model parameters after ¢ iterations respectively.
Let £®) denote the mini-batch sampled in its ¢-th iteration.
We start from a mild assumption on A.

Assumption 1. If stochastic optimizer A satisfies
[fouc)(O(k))} = O0foreveryt > 0and k = 1,...,t,
J

then [G(t)]j =
1<j<p

[6(0)] j holds for any index of parameter

Assumption 1 is often referred to as "zero-respecting” in
optimization theory (Carmon et al., 2019) and widely cov-
ers many popular optimizers (e.g. SGD, Adam, Adagrad,
RMSProp, Momentum SGD, etc) under arbitrary hyperpa-
rameter settings. This states that the SG optimizer A will
not modify a certain parameter of the model unless a gradi-
ent updates it in the training. With Assumption 1, we obtain
the following theorem.

Theorem 1. For any AR(p) model (p > 1,p € N) defined
in Equation (3), there exists a time series dataset D with
max; . |2, ¢| = 0, such that for any stochastic gradient

optimizer A with any 0 € R? and hyperparameters, for

5 _5
all0 < e<? & ~, A needs to compute at least

T =0 (Var |V fe0 (6))) 5)

number of stochastic gradients to find a 0 cRr achieving
E||Vf(0)| < €. Furthermore,

Var [v f§<o>(0<°>)] =Q(5'). ©6)

Theorem 1 provides important insights in two aspects.
Specifically, Equation (5) shows if we wish to find a target
model with small error, then the least number of stochas-
tic gradients we need is lower bounded by the complexity
of variance on the SG. And this conclusion holds for ar-
bitrary hyperparameter scheduling (even with very small
learning rate in gradient descent type optimizers). On the
other hand, Equation (6) reveals that the variance of SG can
be arbitrarily large in theory, even with advanced transforma-
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tion/preprocessing on the dataset such as magnitude scaler?
(Salinas et al., 2020). As the magnitude of the dataset, or
the order of AR model increases, the variance on the SG
can increase to infinity in theory.

S. Training with Stratified Sampling

Our motivation study in the previous section reveals that
to provably reduce the gradient estimation variance, op-
timizers beyond Assumption 1 should be considered. In
this section we first illustrate comprehensively a notion of
low-cost stratification over time series, and how it leads to
stratified gradients. Then we introduce the stratified sam-
pling, which provably reduces gradient variance induced
from the entire heterogeneous time series instances to the
inter-strata homogeneous ones. We conclude this section
with a proposition of an algorithm SCott, which modifies an
existing optimizer with stratified sampling while trading-off
the variance and complexity.

5.1. Stratification over Time Series

Toy examples. While we defer the discussion on obtaining
variance-reduced gradients, we start from a toy example
demonstrating simple stratification over timestamps on a
stationary time series instance leads to strata of the gradi-
ents. The toy example is shown in Figure 1 with a simple
yet effective stratification policy: hashing the timestamp
based on the temporal interval. The intuition behind this
toy example is fairly straightforward: note that in Table 1,
the gradients induced on a certain time series segment only
relates to the input features/observations, output observa-
tions and model parameters. That means, with the identical
parameters, close input and output leads to close gradients
in the sense of Euclidean distance. Building on top of this in-
sight, if the distribution of interest is recurring over the time
horizon, we can simply stratify all the time series segments
based on timestamps with negligible cost. Additionally, we
provide another example in Section B.1 that provably illus-
trates the variance reduced effect through stratified sampling
over timestamps.

Generalized stratification. Given the toy example, we pro-
ceed to discuss performing similar low-cost stratification
over time series in general cases that leads to adequate clus-
tering on the gradients. A natural extension is to consider
the long- and short-term temporal patterns (Lai et al., 2018)
and perform recursive stratification. For instance, if a time
series instance is recurring both in terms of months and
seasons, we can generalize the timestamp stratification from
Figure 1 and perform two dimensional hashing on (months,

2With proper scaling, the magnitude § can become a limited
number, such as 1, making 54 bounded by a constant. However,
the lower bound is still proportional to p, which can be arbitrarily
large.

seasons) tuples. Note that such stratification induces much
smaller overhead than clustering on high-dimensional fea-
tures, since we are performing hierarchical hashing and are
able to determine the stratum for each time series within
logarithm time complexity. As will be shown in the experi-
mental section, this extended policy of stratification suffice
in many settings.

On the other hand, however, finer-grained stratification can
be adopted. A de facto method is to utilize features from
the dataset or extracted from the time series (e.g., density,
spectrum, etc), and run a clustering algorithms such as K-
Means based on that feature space (Bandara et al., 2020b).
Note that based on our intuition, the main objective here is
to identify time series with similar input/output as homoge-
neous instances while leaving the others as heterogeneous
ones. In light of this, we do not need accurate stratification
in high-dimensional feature space as the previous works did
(Aghabozorgi et al., 2015).

5.2. Stratified Sampling

Stratification outputs several strata, we next discuss how
to perform low-variance gradient estimation from these
strata. Without the loss of generality, suppose the time
series dataset is stratified into B € N7 strata, i.e., D =
D;1 U---UDg, such that each training example (¢, t) (recall
Equation (1)) belongs to one unique stratum. Using the
standard definition of stratified sampling, we obtain a new
estimator as

B
g(0) = Z M’ (7)
= [P

where &; is a set of size b and each element in &; is in the form
of a tuple (j,t) where (j,¢) ~ Uniform [D;]. Comparing
Equation (7) with (2) we can see the stratified sampling
essentially accumulates the examples from different strata
and perform a weighted average. With simple derivation,
the property of stratified sampling is summarized in the
following lemma

Lemma 1. Stratified sampler at any point 6 € RY satisfies
B
D;|*Var(V fe, (0
Elg(®) = V/(6), Varlg(®) =3 2 |2£|2fsz( )

i=1

Lemma 1 reveals stratified sampling ensures the unbiased
estimation of true gradient V f, and the variance on such
sampler only depends on the variance of stochastic gradient
sampled within each stratum instead of the entire dataset
Var[V f¢(0)]. In other words, stratified sampling does not
suffer additional noise even if the distribution among strata
are significantly, or even adversarially different.
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Figure 1. A toy example illustrating simple stratification over the gradients via grouping the timestamps associated with each time series
segment, based on estimated temporal interval in a recurring series. (Left) A time series follows the dynamics of sin(t) + cos(2t) + 0.2¢;
with respect to time ¢ where ¢ is a Gaussian noise. (Middle) The gradient distribution computed on an AR(2) model. (Right) The
stratified gradients where the time series segment at time ¢ is grouped into the (£ mod 8)-th stratum with 8 strata in total.

Algorithm 1 SCott (Stochastic Stratified Control Variate
Gradient Descent)
Require: Total number of iterations 7', learning rate
{4 }1<i<r, initialized 0% strata {Di}1<i<B.
1: fort=0,1,--- , T —1do
2:  Samplea 52@ from stratum ¢ and perform Stratified

Sampling (with w; = |D;|/|D|):
B
gt = Zi:l wiV few (6™“) ®)
3: fork=0,1,--- ,K; —1do
4: Sample ¢“F) from D.
5: Compute the update v**) as
V feterr (0UF)) =V feny (010) + g0 (9)
6: Update the parameters as
0(t,k‘+1) _ e(t,k) _ at,v(t,k:) (10)
7:  end for
8 Set@lT10) — gl
9: end for

10: return Sample 0" from {H(t’o)}tT;Ol with ]P’(é(T) =

049 x oy B

5.3. SCott: Trading-off Variance and Complexity

Despite stratified sampling mitigating the gradient variance,
naively utilizing such sampler in an optimizer is suboptimal
since a single sampling requires computation over O(B- M)
gradients comparing to the O(M) complexity as shown in
Equation (2). To address this, we propose a control variate
based design on top of stratified sampling. Our intuition
is that by periodically performing a stratified sampling and
computing some snapshot gradients over the training tra-
jectory, we can use those gradients as estimation anchors

Table 2. Ditferent stratification policies map SCott to algorithms
SCSG (Li & Li, 2018) and SVRG (Johnson & Zhang, 2013) as
illustrated in Section 6. Notations are defined in Section 6.

Stratification Policy =~ Complexity Equivalence
Arbitrary Theorem 2 SCott
Random Hashing (0] (ALO'% s ) SCSG

Finest-Grained O (AL|D|%E_2) SVRG

to reduce variance while allowing the optimizers to adopt
flexible mini-batch sizes in the effective iterations. In other
words, we seek to achieve an intermediate solution between
the plain stratified sampling and stochastic optimizers, so
that we can benefit from both worlds.

The formal description of such algorithm, which we refer
to as SCott, is shown in Algorithm 1. Note that SCott has
seperate outer and inner interation loops. A stratified sam-
pling is only performed in each outer loop in Equation (8)
and the output of stratified sampling g(**) is then used as
control variate® in inner loop as in Equation (9).

6. Convergence Analysis
In this section, we derive the convergence rate of SCott. We
first start from several assumptions.

Assumption 2. The loss on each single training example
fit, Vi, t is L-smooth:for some constant L > 0,

IV £i:(81) — V£ii(82)] < L||6; — 02],V0:1,05 € RY.

Assumption 2 is a standard assumption in optimization the-
ory. Note that smooth function is not necessarily convex,
which implies our theory works with non-convex models,

3Refer to (Nelson, 1990) for principles on the control variate.
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e.g. deep neural networks with Sigmoid activations. We also
make the assumption on the sampling variance as follows.

Assumption 3. Forall @ € R%, i € {1,--- B} andt =

0,---,T — 1in Equation (8), there exists a constant 2 s.t.

VarEiNDi [Vf&(e)} < 01'2'

The constant o7 in Assumption 3 denotes the upper bound
on the gradient variance when uniform sampling is per-
formed inside the ¢-th stratum. For the convenience of later
discussion, we further denote o as the upper bound on the
variance when uniform sampling over the entire dataset:
Varg.p [V f¢(0)] < 0. Without the loss of generality, we
let M = 1 in our theory. Based on the two assumptions, the
convergence rate of Algorithm 1 is shown in the following
theorem:

Theorem 2. Denote A = f(0) — infg f(0) and w; =
|D;|/|D|. For any € > 0, if we stratify the dataset D into
{D;}B. | such that Zf;l w?o? = O (€?), and let inner
loop iterations K; ~ Geo(B/(B +1))*, Algorithm I needs
to compute at most

B 2 2 % 2
AL(BEZLiutol)’  ALpliss = D))

10
3 €2

T=0

€

(67 <

€, where I{-} denotes the Indicator function.

number of stochastic gradients to ensure E ‘

If we deliberately let all the strata maintain the same size,
the convergence rate can be simplified as follows.

Corollary 1. Following Theorem 2, if all the strata are the
same size, i.e., |D;| = |D;| > 1,Vi, j, Algorithm I needs to
compute at most

2
AL (B_l Yins U?) ’
0

10
€73

T=0

Y

(T
number of stochastic gradients to ensure output 0( ) Sulfills

sfer(o") <

Remark 1: Consistent with Other Algorithms. Theo-
rem 2 demonstrates SCott can be seen as a general form of
other control variate type algorithms. Specifically, when we
stratify the time series by random hashing, i.e., cyclically
assign each example into B strata, then SCott matches with
SCSG (Li & Li, 2018). On the other hand, if we adopt
finest-grained stratification, i.e., B = |D|, then SCott will
be aligned with SVRG (Johnson & Zhang, 2013).

*Geo(p) is the geometric distribution with p, i.e., P(K; =
K) :pK(l _p)7VK = 0717"'

Remark 2: Reduced Variance Dependency. Note that
223:1 w?o? = O (€?) can always be fulfilled since we can
at least select B = |D| and obtain o7 = 0, as in that case
every stratum only contains one sample. If this precondition
is somehow violated, it may only guarantee suboptimality
in theory, converging to a noisy ball with Zf;l w?o?. How-
ever, comparing to other stochastic control variate type opti-
mizers, including (Li & Li, 2018) and (Babanezhad et al.,
2015), where noise ball is in the order of O(c?), SCott is
able to reduce the dependencg only on the inner stratum
variance, i.e., fromo? to B ,” , wio? (and B~! Zf;l o?
with Corollary 1).

Remark 3: Understanding the Selection of K;. The num-
ber of inner loops per outer loop (K), i.e., the frequency of
performing a stratified sampling is a crucial design choice.
Theorem 2 show that a Geometric distributed selection helps
with the convergence, which is a technique used in other
analysis of control variate type algorithms (Li & Li, 2018;
Horvith et al., 2020). In practice, we can optimize such
selection via an additional hyperparameter: in the supple-
mentary material, we discuss using ||v(**)]|2 < ~||v®:0)||2
as an additional criterion to terminate the inner loop for
some hyperparameter .

Remark 4: Improved Complexity Compared to
Stochastic Optimizers. Carmon et al. (2019) shows the
theoretical lower bound on the complexity of stochastic op-
timizers is {2 (AL026’4), Comparing Corollary 1 with this
bound, we can observe a complexity improvement of at least
0] (e_ %) from SCott compared to stochastic optimizers. On

the other hand, as also shown in Table 2, the convergence
rate of SCott improves upon SCSG and stochastic optimiz-
ers in the sense that its upper bound depends only on the
inner strata variance.

7. Experiment

In this section we empirically evaluate our algorithms and
investigate how SCott improves optimizers in practice. We
implement SCott in PytorchTS, a time series forecasting
library (Rasul et al., 2020). All the tasks run on a local
machine configured with a 2.6GHz Inter (R) Xeon(R) CPU,
8GB memory and a NVIDIA GTX 1080 GPU.

In Section 7.1 and Section 7.2, we focus on comparing SCott
with SGD and SCSG in different settings. These optimizers
all have SGD-style update formulas, which helps us better
understand the effect of variance reduction. Additionally,
in Section 7.3, we modify the main step of SCott and let
it follow the update rule of Adam and Adagrad. We rerun
the experiments from previous sections on the two SCott
variants.

Models and Loss functions. In this section, we focus on
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Table 3. Performance with different algorithms given the same time budget for training. We compute the loss over the entire training and
test dataset. We assign time budget of 0.5 and 3 hours for each setting, respectively, and present the mean and standard deviation among 5
different runs. All the optimizers are fine tuned in each task.

Setting Optimizer Exchange Rate Traffic Electricity
Training Test Training Test Training Test
SGD -1.825 +£0.013 -1.7154+0.017 | -2.387 £ 0.015 -2.443 £0.021 | 6.512 +£0.028 5.558 £+ 0.021
SCSG -2.037 £0.009 -1.732 £ 0.019 | -2.612 £0.013 -2.674 +£0.024 | 6.424 +=0.017 5.477 £+ 0.022
MLP SCott -2.145 + 0.008 -1.685 £ 0.009 | -2.867 £ 0.019 -2.812 + 0.020 | 6.303 + 0.018 5.348 4+ 0.016
NLL Adam -2.762 £0.009 -2.945 +0.012 | -2.597 £0.021 -2.593 £ 0.015 | 6.388 £ 0.025 5.483 £ 0.021
S-Adam -3.917 + 0.009  -3.032 £ 0.006 | -3.038 +0.011 -3.012 & 0.018 | 5.737 +0.023 5.015 £+ 0.014
Adagrad -3488 £0.011 -3.218 = 0.011 | -2.692 £0.012 -2.763 +0.021 | 6.185 +0.019 5.295 + 0.017
S-Adagrad  -3.886 & 0.007 -3.239 + 0.012 | -2.864 + 0.013  -2.895 4+ 0.018 | 6.022 + 0.020 5.182 + 0.029
SGD 1.224 £0.018 1.346 £ 0.021 2.798 £ 0.008 3.024 £0.019 | 0.628 +0.023 0.676 + 0.030
SCSG 1.034 - 0.016  1.182 £ 0.019 | 2.024 £0.012 2.644 =0.017 | 0.610 £0.021 0.635 £ 0.029
N-BEATS SCott 1.077 £ 0.022 1.222 £0.012 1.898 + 0.013  2.373 £ 0.011 | 0.516 & 0.020 0.546 £ 0.021
MAPE Adam 0.695 £ 0.021 0.773 £0.018 1.013 £ 0.012 1.036 £0.019 | 0.589 £0.017 0.697 £+ 0.021
S-Adam 0.514 £ 0.012  0.593 + 0.021 0.809 £ 0.021 0.813 £ 0.021 | 0.445 £+ 0.025 0.528 + 0.011
Adagrad 0.764 £0.022  0.806 £ 0.012 | 2.068 4+ 0.012 1.997 £ 0.018 | 0.537 £0.011 0.631 4 0.025
S-Adagrad  0.563 + 0.013  0.692 £ 0.009 1.486 + 0.014 1.724 + 0.018 | 0.428 4+ 0.020 0.512 £ 0.016

four representative settings in forecasting problems:

* Vector AutoRegressive Model (VAR) with MSE loss (Lai
et al., 2018).

e LSTM with MSE loss (Maharaj et al., 2019). We set the
hidden layer size to be 100 and the depth to be 2.

* Simple FeedForward Network (MLP) with Negative Log
Likelihood (NLL) loss (Alexandrov et al., 2019). We set
the hidden layer size to be 80 and the depth to be 4.

* N-BEATS with MAPE loss (Oreshkin et al., 2019). We
set the number of stacks to be 30.

7.1. Warm-up: Synthetic Dataset

We start from training VAR and LSTM on a synthetic
dataset, where we know the ground-truth for stratification.
We generate the synthetic dataset by repeatedly transform-
ing a linear curve based on simple functions such as sin
and polynomial. For brevity, the details for generating the
dataset is discussed in the supplementary material. We plot
the results of SGD and SCott from Figure 2(a) to 2(d). We
show SGD and SCott with the fine-tuned learning rate while
for SGD we show the top three curves with different learn-
ing rate. In Figure 2(a) and Figure 2(c). For SGD, if the
learning rate is large, then the convergence curve is noisy
and unstable. To ensure stable convergence, SGD needs
to adopt small learning rate, and that results in more itera-
tions. SCSG, on the other hand, slightly improve over SGD,
while is still noisy in later iterations. By comparison, SCott
contains less variance noise, and it allows us to use larger
learning rate while keeping a stable convergence.

7.2. Real World Applications

We proceed to discuss the performance on real-world ap-
plications. In this experiment, we train the FeedForward
Network (MLP) and N-BEATS. We use three public bench-
mark datasets: Traffic, Exchange-Rate and Electricity (Lai
et al., 2018), where details are shown as below:

* Traffic: A collection of hourly data from the California
Department of Transportation. The data describes the
road occupancy rates (between 0 and 1) measured by
different sensors on San Francisco Bay area free ways.
For this dataset, we set 7. = 3 days (72 hours) and 7, = 1
day (24 hours).

Exchange-Rate: the collection of the daily exchange rates
of eight foreign countries including Australia, British,
Canada, Switzerland, China, Japan, New Zealand and
Singapore ranging from 1990 to 2016. For this dataset,
we set 7. = 8 days and 7, = 1 day.

Electricity: The electricity consumption in kWh was
recorded hourly from 2012 to 2014, for n = 321 clients.
We converted the data to reflect hourly consumption. For
this dataset, we set 7. = 3 days (72 hours) and 7, = 1
day (24 hours).

Stratification. As mentioned in Section 5, we adopt a sim-
ple timestamp-based stratification policy for all the datasets.
For Traffic dataset: we stratify all the time series segments
only based on its weekday and season, i.e., two time se-
ries segments are in the same stratum if and only if their
weekday and season are the same. This results in total 49
subgroups, we repeat this process on Electricity dataset and
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Figure 2. Performance of different optimizers. This experiment focus on comparing SCott with original SGD-type algorithms.
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Figure 3. SCott Variants on Adam and Adagrad. The "S-" denotes SCott version of the optimizer. The results are fine tuned.

it results in 70 strata; For Exchange-Rate dataset, we first
evenly divide the whole time series into 6 range based on the
time stamps. And then within each range we further group
the time series segments based on the time series instance,
this results in total 32 strata.

Results Analysis. We first see from Table 3 that given same
time budget, SCott achieves smaller loss on both training
and testset. We further plot the training curves in Figure 2(e)
to 2(f) and Figure 2(i) to 2(j). We can observe the results are
mostly aligned with our results on synthetic dataset: with
stratified sampling, SCott is able to adopt large learning rate

which allows it to converge faster compared to SGD and
SCSG. Additionally, we verify in Figure 2(g) and 2(k) the
benefits of SCott does not compromise the validation error
of the model. Finally, we plot in Figure 2(h) and 2(1) that the
stratified sampling does induce smaller variance compared
to uniform sampling, even with the simple stratification
policy we adopt.

7.3. Variants of SCott

So far, we focus on comparing SCott with SGD and SCSG.
Moreover, we investigate how SCott can be applicable to en-
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hance other types of optimizers, Adam and Adagrad. To do
s0, we incorporate the main step of SCott in Equation (10)
into the update rule of Adam and Adagrad, which we refer to
as S-Adam and S-Adagrad. We rerun all the experiments on
the real-world dataset. We first see from Table 3 S-Adam/S-
Adagrad is able to achieve smaller loss given same time.
Then we further plot the training curves in Figure 3. We
find SCott is able to improve both Adam and Adagrad by a
certain margin. As shown in Table 3, these SCott variants
improve upon their non-SCott baselines without compro-
mising the test loss. Additionally, comparing SGD-type
with Adam- and Adagrad-type optimizers, SCott sometimes
can outperform Adam and Adagrad (such as in MLP on
traffic dataset). On the other hand, we find S-Adam and
S-Adagrad consistently outperform SGD-type optimizers as
well as Adam and Adagrad.

8. Conclusions

In this paper, we show that heterogeneity in large scale
time series data is detrimental to the convergence of the
stochastic optimizers. To address the challenge, we intro-
duce SCott, a variance reduced optimizer that speeds up the
training of forecasting models based on stratified time series
data. A novel convergence analysis is provided for SCott,
which by varying the stratification conditions, recovers the
well-known results in stochastic optimization. Empirically,
we show SCott converges faster compared to plain stochas-
tic optimizer, with respect to both iterations and time on
both synthetic and real-world dataset. We leave the future
works of investigating the effect of stratification on SCott
variants, applying SCott tasks beyond forecasting, and de-
veloping practical stepsize selection (Park et al., 2020; Yu
et al., 2020).
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