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Abstract
A common workflow in single-cell RNA-seq anal-
ysis is to project the data to a latent space, cluster
the cells in that space, and identify sets of mark-
er genes that explain the differences among the
discovered clusters. A primary drawback to this
three-step procedure is that each step is carried
out independently, thereby neglecting the effects
of the nonlinear embedding and inter-gene depen-
dencies on the selection of marker genes. Here
we propose an integrated deep learning frame-
work, Adversarial Clustering Explanation (ACE),
that bundles all three steps into a single workflow.
The method thus moves away from the notion of
“marker genes” to instead identify a panel of ex-
planatory genes. This panel may include genes
that are not only enriched but also depleted rela-
tive to other cell types, as well as genes that exhib-
it differences between closely related cell types.
Empirically, we demonstrate that ACE is able to
identify gene panels that are both highly discrimi-
native and nonredundant, and we demonstrate the
applicability of ACE to an image recognition task.
1

1. Introduction
Single-cell sequencing technology has enabled the high-
throughput interrogation of many aspects of genome biolo-
gy, including gene expression, DNA methylation, histone
modification, chromatin accessibility and genome 3D archi-
tecture (Stuart & Satija, 2019) In each of these cases, the
resulting high-dimensional data can be represented as a s-
parse matrix in which rows correspond to cells and columns
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correspond to features of those cells (gene expression val-
ues, methylation events, etc.). Empirical evidence suggests
that this data resides on a low-dimensional manifold with
latent semantic structure (Welch et al., 2017). Accordingly,
identifying groups of cells in terms of their inherent latent
semantics and thereafter reasoning about the differences be-
tween these groups is an important area of research (Plumb
et al., 2020).

In this study, we focus on the analysis of single cell RNA-
seq (scRNA-seq) data. This is the most widely available
type of single-cell sequencing data, and its analysis is chal-
lenging not only because of the data’s high dimensionality
but also due to noise, batch effects, and sparsity (Amodio
et al., 2019). The scRNA-seq data itself is represented as a
sparse, cell-by-gene matrix, typically with tens to hundreds
of thousands of cells and tens of thousands of genes. A com-
mon workflow in scRNA-seq analysis (Pliner et al., 2019)
consists of three steps: (1) learn a compact representation
of the data by projecting the cells to a lower-dimensional
space; (2) identify groups of cells that are similar to each
other in the low-dimensional representation, typically via
clustering; and (3) characterize the differences in gene ex-
pression among the groups, with the goal of understanding
what biological processes are relevant to each group. Op-
tionally, known “marker genes” may be used to assign cell
type labels to the identified cell groups.

A primary drawback to the above three-step procedure is
that each step is carried out independently. Here, we pro-
pose an integrated, deep learning framework for scRNA-seq
analysis, Adversarial Clustering Explanation (ACE), that
projects scRNA-seq data to a latent space, clusters the cells
in that space, and identifies sets of genes that succinctly
explain the differences among the discovered clusters (Fig-
ure 1). At a high level, ACE first “neuralizes” the clustering
procedure by reformulating it as a functionally equivalent
multi-layer neural network (Kauffmann et al., 2019). In
this way, in concatenation with a deep autoencoder that gen-
erates the low-dimensional representation, ACE is able to
attribute the cell’s group assignments all the way back to
the input genes by leveraging gradient-based neural network
explanation methods. Next, for each sample, ACE seeks
small perturbations of its input gene expression profile that
lead the neuralized clustering model to alter the group as-
signments. These adversarial perturbations allow ACE to
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define a concise gene set signature for each cluster or pair of
clusters. In particular, ACE attempts to answer the question,
“For a given cell cluster, can we identify a subset of genes
whose expression profiles are sufficient to identify members
of this cluster?” We frame this problem as a ranking task,
where thresholding the ranked list yields a set of explanatory
genes.

ACE’s joint modeling approach offers several benefits rela-
tive to the existing state of the art. First, most existing meth-
ods for the third step of the analysis pipeline—identifying
genes associated with a given group of cells—treat each
gene independently (Love et al., 2014). These approach-
es ignore the dependencies among genes that are induced
by gene networks, and often yield lists of genes that are
highly redundant. ACE, in contrast, aims to find a smal-
l set of genes that jointly explain a given cluster or pair
of clusters. Second, most current methods identify genes
associated with a group of cells without considering the
nonlinear embedding model which maps the gene expres-
sion to the low-dimensional representation where the groups
are defined in the first place. To our knowledge, the only
exception is the global counterfactual explanation (GCE)
algorithm (Plumb et al., 2020), but that algorithm is limited
to using a linear transformation. A third advantage of ACE’s
integrated approach is its ability to take into account batch
effects during the assignment of genes to clusters. Stan-
dard nonlinear embedding methods, such as t-SNE (Van der
Maaten & Hinton, 2008) and UMAP (McInnes & Healy,
2018; Becht et al., 2019), cannot take such structure into
account and hence may lead to incorrect interpretation of
the data (Amodio et al., 2019; Li et al., 2020). To address
this problem, deep autoencoders with integrated denoising
and batch correction can be used for scRNA-seq analysis
(Lopez et al., 2018; Amodio et al., 2019; Li et al., 2020).
We demonstrate below that batch effect structure can be
usefully incorporated into the ACE model.

A notable feature of ACE’s approach is that, by identify-
ing genes jointly, the method moves away from the notion
of a “marker gene” to instead identify a “gene panel”. As
such, genes in the panel may not be solely enriched in a
single cluster, but may together be predictive of the clus-
ter. In particular, in addition to a ranking of genes, ACE
assigns a Boolean to each gene indicating whether its inclu-
sion in the panel is positive or negative, i.e., whether the
gene’s expression is enriched or depleted relative to clus-
ter membership. We have applied ACE to both simulated
and real datasets to demonstrate its empirical utility. Our
experiments demonstrate that ACE identifies gene panels
that are highly discriminative and exhibit low redundancy.
We further provide results suggesting that ACE is useful in
domains beyond biology, such as image recognition.

2. Related work
ACE falls into the paradigm of deep neural network interpre-
tation methods, which have been developed primarily in the
context of classification problems. These methods can be
loosely categorized into three types: feature attribution meth-
ods, counterfactual-based methods, and model-agnostic ap-
proximation methods. Feature attribution methods assign
an importance score to individual features so that higher
scores indicate higher importance to the output prediction
(Simonyan et al., 2013; Shrikumar et al., 2017; Lundberg
& Lee, 2017). Counterfactual-based methods typically i-
dentify the important subregions within an input sample by
perturbing the subregions (by adding noise, rescaling (Sun-
dararajan et al., 2017), blurring (Fong & Vedaldi, 2017), or
inpainting (Chang et al., 2018)) and measuring the resulting
changes in the predictions. Lastly, model-agnostic approxi-
mation methods approximate the model being explained by
using a simpler, surrogate function which is self-explainable
(e.g., a sparse linear model, etc.) (Ribeiro et al., 2016).
Recently, some interpretation methods have emerged to un-
derstand models beyond classification tasks (Samek et al.,
2020; Kauffmann et al., 2020; 2019), including the one we
present in this paper for the purpose of cluster explanation.

ACE’s perturbation approach draws inspiration from ad-
versarial machine learning (Xu et al., 2020) where imper-
ceivable perturbations are maliciously crafted to mislead
a machine learning model to predict incorrect outputs. In
particular, ACE’s approach is closest to the setting of a
“white-box attack,” which assumes complete knowledge to
the model, including its parameters, architecture, gradients,
etc. (Szegedy et al., 2013; Kurakin et al., 2016; Madry et al.,
2017; Carlini & Wagner, 2017). In contrast to these meth-
ods, ACE re-purposes the malicious adversarial attack for a
constructive purpose, identifying sets of genes that explain
clusters in scRNA-seq data.

ACE operates in concatenation with a deep autoencoder that
generates the low-dimensional representation. In this paper,
ACE uses SAUCIE (Amodio et al., 2019), a commonly-
used scRNA-seq embedding method that incorporates batch
correction. In principle, ACE is generalizable to any off-the-
shelf scRNA-seq embedding methods, including SLICER
(Welch et al., 2016), scVI (Lopez et al., 2018), scANVI (Xu
et al., 2021), DESC (Li et al., 2020), and ItClust (Hu et al.,
2020).

3. Approach
3.1. Problem setup

We aim to carry out three analysis steps for a given scRNA-
seq dataset, producing a low-dimensional representation
of each cell’s expression profile, a cluster assignment for
each cell, and a concise set of “explanatory genes” for each
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Figure 1. ACE workflow. ACE takes as input a single-cell gene expression matrix and learns a low-dimensional representation for each
cell. Next, a neuralized version of the k-means algorithm is applied to the learned representation to identify cell groups. Finally, for
pairs of groups of interest (either each group compared to its complement, or all pairs of groups), ACE seeks small perturbations of its
input gene expression profile that lead the neuralized clustering model to alter the assignment from one group to the other. The workflow
employs a combined objective function to induce the nonlinear embedding and clustering jointly. ACE produces as output the learned
embedding, the cell group assignments, and a ranked list of explanatory genes for each cell group.

cluster or pair of clusters. Let X = (x1, x2, · · · , xn)
T ∈

Rn×p be the normalized gene expression matrix obtained
from a scRNA-seq experiment, where rows correspond to n
cells and columns correspond to p genes. ACE relies on the
following three components: (1) an autoencoder to learn a
low-dimensional representation of the scRNA-seq data, (2) a
neuralized clustering algorithm to identify groups of cells in
the low-dimensional representation, and (3) an adversarial
perturbation scheme to explain differences between groups
by identifying explanatory gene sets.

3.2. Learning the low-dimensional representation

Embedding scRNA-seq expression data into a low-
dimensional space aims to capture the underlying structure
of the data, based upon the assumption that the biological
manifold on which cellular expression profiles lie is inher-
ently low-dimensional. Specifically, ACE aims to learn a
mapping f(·) : Rp 7→ Rd that transforms the cells from the
high-dimensional input space Rp to a lower-dimensional
embedding space Rd, where d� p. To accurately represent
the data in Rd, we use an autoencoder consisting of two
components, an encoder f(·) : Rp 7→ Rd and a decoder
g(·) : Rd 7→ Rp. This autoencoder optimizes the generic
loss

min
θ

n∑
i=1

‖xi − g(f(xi))‖22 (1)

Finally, we denote Z = (z1, z2, · · · , zn)
T ∈ Rn×d as the

low-dimensional representation obtained from the encoder,
where zi ∈ Rd = f(xi) is the embedded representation of
cell xi.

The autoencoder in ACE can be extended in several impor-
tant ways. For example, in some settings, Equation 1 is
augmented with a task-specific regularizer Ω(X):

min
θ

n∑
i=1

‖xi − g(f(xi))‖22 + Ω(X). (2)

As mentioned in Section 2, the scRNA-seq embedding
method used by ACE, SAUCIE, encodes in Ω(X) a batch
correction regularizer by using maximum mean discrepancy.
In this paper, ACE uses SAUCIE coupled with a feature se-
lection layer (Abid et al., 2019), with the aim of minimizing
redundancy and facilitating selection of diverse explanatory
gene sets.

3.3. Neuralizing the clustering step

To carry out clustering in the low-dimensional space learned
by the autoencoder, ACE uses a neuralized version of the
k-means algorithm. This clustering step aims to partition
Z ∈ Rn×d into C groups, where each group potentially
corresponds to a distinct cell type.

The standard k-means algorithm aims to minimize the fol-
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lowing objective function by identifying a set of group cen-
troids

{
µc ∈ Rd : c = 1, 2, · · · , C

}
:

min
∑
ic

δicoc(zi) (3)

where δic indicates whether cell zi belongs to group c and
the “outlierness” measure oc(zi) of cell zi relative to group
c is defined as oc(zi) = ‖zi − µc‖2.

Following Kauffmann et al. (2019), we neuralize the k-
means algorithm by creating a neural network containing
C modules, each with two layers. The architecture is mo-
tivated by a soft assignment function that quantifies, for a
particular cell zi and a specified group c, the group assign-
ment probability score

pc(zi) =
exp(−βoc(zi))∑
k exp(−βok(zi))

(4)

where the hyperparameter β controls the clustering fuzzi-
ness. As β approaches infinity, Equation 4 approaches the
indicator function for the closest centroid and thus reduces
to hard clustering. To measure the confidence of group
assignment, we use a logit function written as

mc(zi) = log

(
pc(zi)

1− pc(zi)

)
= β ·

β

min
k 6=c

{
‖zi − µk‖2 − ‖zi − µc‖2

} (5)

where minβk 6=c {·} = − 1
β log

∑
exp(−β(·)) indicates a

soft min-pooling layer. (See Kauffmann et al. (2019) for a
detailed derivation.) The rationale for using the logit func-
tion is that if there is as much confidence supporting the
group membership as against it, then the confidence score
mc(z) = 0. Additionally, Equation 5 has the following
interpretation: the data point z belongs to the group c if
and only if the distance to its centroid is smaller than the
distance to all other competing groups. Equation 5 further
decomposes into a two-layer neural network module:

hck(zi) = wTckzi + bck

mc(zi) = β ·
β

min
k 6=c
{hck(zi)}

(6)

where the first layer is a linear transformation layer with
parameters wck = 2 · (µc − µk) and bck = ‖µk‖2 − ‖µc‖2,
and the second layer is the soft min-pooling layer introduced
in Equation 5. ACE constructs one such module for each of
the C clusters, as illustrated in Figure 1.

3.4. Explaining the groups

ACE’s final step aims to induce, for each cluster identified
by the neuralized k-mean algorithm, a ranking on genes

such that highly ranked genes best explain that cluster. We
consider two variants of this task: the one-vs-rest setting
compares the group of interest Zs = f(Xs) ⊆ Z to its
complement set Zt = f(Xt) ⊆ Z, where Xt = X\Xs; the
one-vs-one setting compares one group of interest in Zs =
f(Xs) ⊆ Z to a second group of interest Zt = f(Xt) ⊆ Z.
In each setting, the goal is to identify the key differences
between the source group Xs ⊆ X and the target group
Xt ⊆ X in the input space, i.e., in terms of the genes.

We treat this as a neural network explanation problem by
finding the minimal perturbation within the group of interest,
x ∈ Xs, that alters the group assignment from the source
group s to the target group t. Specifically, we optimize an
objective function that is a mixture of two terms: the first
term is the difference between the current sample x and the
perturbed sample x̂ = x+ δ where δ ∈ Rp, and the second
term quantifies the difference in group assignments induced
by the perturbation.

The objective function for the one-vs-one setting is

min
δ
‖δ‖1 + λmax(0, α+ms(x+ δ)−mt(x+ δ)) (7)

where λ > 0 is a tradeoff coefficient to either encourage a
small perturbation of x when small or a stronger alternation
to the target group when large. The second term penalizes
the situation where the group logit for the source group s
is still larger than the target group t, up to a pre-specified
margin α > 0. In this paper we fix α = 1.0. The difference
between the current sample x and the potentially perturbed
x̂ is measured by the L1 norm to encourage sparsity and
non-redundancy. Note that Equation 7 assumes that the
input expression matrix is normalized so that a perturbation
added to one gene is equivalent to that same perturbation
added to a different gene.

Analogously, in the one-vs-rest case, the objective function
for the optimization is

min
δ
‖δ‖1+λmax(0, α+ms(x+δ)−max

t6=s
mt(x+δ)) (8)

where the second term penalizes the situation in which the
group logit for the source group s is larger than all non-
source target groups.

Finally, with the δ ∈ Rp obtained by optimizing either
Equation 7 or Equation 8, ACE quantifies the importance of
the ith gene relative to a perturbation from source group s to
target group t as the absolute value of δi, thereby inducing
a ranking in which highly ranked genes are more specific to
the group of interest.

4. Baseline methods
We compare ACE against six methodologically distinct base-
line methods, each of which induces a ranking on genes in
terms of group-specific importance, analogous to ACE.
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DESeq2 (Love et al., 2014) is a representative statistical
hypothesis testing method that tests for differential gene
expression based on a negative binomial model. The main
caveat of DESeq2 is that it treats each gene as independent.

The Jensen-Shannon Distance (JSD) (Cabili et al., 2011) is
a representative distribution distance-based method which
quantifies the specificity of a gene to a cell group. Similar
to DESeq2, JSD considers each gene independently.

Global counterfactual explanation (GCE) (Plumb et al.,
2020) is a compressed sensing method that aims to identify
consistent differences among all pairs of groups. Unlike
ACE, GCE requires a linear embedding of the scRNA-seq
data.

The gene relevance score (GRS) (Angerer et al., 2020) is a
gradient-based explanation method that aims to attribute a
low-dimensional embedding back to the genes. The main
limitations of GRS are two-fold. First, the embedding used
in GRS is constrained to be a diffusion map, which is chosen
specifically to make the gradient easy to calculate. Second,
taking the gradient with respect to the embedding only indi-
rectly measures the group differentiation compared to taking
the gradient with respect to the group difference directly, as
in ACE.

SmoothGrad (Smilkov et al., 2017) and SHAP (Lundberg &
Lee, 2017), which are designed primarily for classification
problems, are two representative feature attribution methods.
Each one computes an importance score that indicates each
gene’s contribution to the clustering assignment. Smooth-
Grad relies on knowledge to the model, whereas SHAP does
not.

5. Results
5.1. Performance on simulated data

To compare ACE to each of the baseline methods, we used
a recently reported simulation method, SymSim (Zhang
et al., 2019), to generate two synthetic scRNA-seq datasets:
one “clean” dataset and one “complex” dataset. In both
cases, we simulated many redundant genes, in order to
adequately challenge methods that aim to detect a minimal
set of informative genes.

The simulation of the clean dataset uses a protocol similar
to that of Plumb et al. (2020). We first used SymSim to
generate a background matrix containing simulated counts
from 500 cells, 2000 genes, and five distinct clusters. We
then used this background matrix to construct our simu-
lated dataset of 500 cells by 220 genes. The simulated
data is comprised of three sets of genes: 20 causal genes,
100 dependent genes, and 100 noise genes. To select the
causal genes, we identified all genes that are differentially
expressed by SymSim’s criteria (nDiff-EVFgene > 0 and

| log2 fold-change| > 0.8) between at least one pair of clus-
ters, and we selected the 20 genes that exhibit the largest
average fold-change across all pairs of clusters in which the
gene was differentially expressed. A UMAP embedding on
these causal genes alone confirms that they are jointly capa-
ble of separating cells into their respective clusters (Fig. 2A).
Next, we simulated 100 dependent genes, which are weight-
ed sums of 1–10 randomly selected causal genes, with added
gaussian noise. As such, a dependent gene is highly cor-
related with a causal gene or with a linear combination of
multiple causal genes. The weights were sampled from a
continuous uniform distribution, U(0.01, 0.8), and the gaus-
sian noise was sampled from N(0, 1). As expected, the
dependent genes are also jointly capable of separating cells
into their respective clusters (Fig. 2A). Lastly, we found all
genes that were not differentially expressed between any
cluster pair in the ground truth, and we randomly sampled
100 noise genes. These genes provide no explanation of the
clustering structure (Fig. 2A).

To simulate the complex dataset, we used SymSim to add
dropout events and batch effects to the background ma-
trix generated previously. We then selected the same exact
causal and noise genes as in the clean dataset, and used the
same exact random combinations and weights to generate
the dependent genes. Thus, the clean and complex datasets
contain the same 220 genes; however, the complex dataset
enables us to gauge how robust ACE is to artifacts of tech-
nical noise observed in real single-cell RNA-seq datasets
(Fig. 2B).

To compare the different gene ranking methods, we need to
specify the ground truth cluster labels and a performance
measure. We observe that the embedding representation
learned by ACE exhibits clear cluster patterns even in the p-
resence of dropout events and batch effects, and thus ACE’s
k-means clustering is able to recover these clusters (Ap-
pendix Figure A.1). Accordingly, to compare different meth-
ods for inducing gene rankings, we provide ACE and each
baseline method with the ground truth clustering labels from
the original study (Zheng et al., 2017). ACE then calculates
the group centroid used in Equation 3 by averaging the data
points of the corresponding ground truth cluster. The em-
bedding layer together with the group centroids are then
used to build the neuralized clustering model (Equation 6).
Each method produces gene rankings for every cluster in a
one-vs-rest fashion. To measure how well a gene ranking
captures clustering structure, we use the Jaccard distance to
measure the similarity between a cell’s k nearest neighbors
(k-NN) when using a subset of top-ranked genes and a cell’s
k-NN when using all genes. To compute the k-NN, we
use the Euclidean distance metric. The Jaccard distance is
defined as

JD(i) = 1− Sfull ∩ Ssub
Sfull ∪ Ssub

(9)



Adversarial clustering explanation

Figure 2. Comparing ACE to baseline methods on simulated scRNA-seq datasets. Each dataset consists of 20 causal genes, 100
dependent genes, and 100 noise genes. (A) UMAP embeddings of cells composing the clean dataset. Panels correspond to embeddings
using the three subsets of genes (causal, dependent, and noise), as well as all of the genes together. (B) Same as panel A, but for the
complex dataset. (C) Comparison of methods via Jaccard distance as a function of the number of genes in the ranking. ACE performs
substantially better than each of the baseline methods on the clean dataset. The gray dashed line indicates the mean Jaccard distance
achieved by the 20 causal genes alone. (D) Same as panel C but for the complex dataset.

where Sfull represents cell i’s k-NN’s when using all genes,
and Ssub represents cell i’s k-NN’s when using a subset of
top-ranked genes. If the subset of top-ranked genes does a
good job of explaining a cluster of cells, then Sfull ∩ Ssub
and Sfull ∪ Ssub should be nearly equal, and the Jaccard
distance should approach 0. We select the gene ranking
used to derive a subset of top-ranked genes based on the
cell cluster assignment. For example, if the cell belongs in
cluster 2, we use the cluster 2 vs. rest gene ranking. Thus, to
obtain a global measure of how well a clustering structure
is captured on a subset of top-ranked genes, we report the
mean Jaccard distance across all cells.

Our analysis shows that ACE considerably outperforms each
of the baseline methods on the clean dataset, indicating that
it is superior at identifying the minimal set of informative
genes (Fig. 2B). Notably, ACE outperforms the mean Jac-
card distance achieved by the causal genes alone before
reaching 20 genes used, suggesting that the method success-
fully identifies dependent genes that are more informative
than individual causal genes. ACE also performs strongly
on the complex dataset, though it appears to perform on
par with SmoothGrad and SHAP) (Fig. 2D). Notably, these
three methods —ACE, SHAP, and SmoothGrad —share a
common feature, employing the SAUCIE framework that
facilitates automatic batch effect correction, highlighting
the utility of DNN-based dimensionality reduction and in-
terpretation methods for single-cell RNA-seq applications.

5.2. Real data analysis

We next applied ACE to a real dataset of peripheral blood
mononuclear cells (PBMCs) (Zheng et al., 2017), repre-
sented as a cell-by-gene log-normalized expression matrix
containing 2638 cells and 1838 highly variable genes. The
cells in the dataset were previously categorized into eight
cell types, obtained by performing Louvain clustering (Blon-
del et al., 2008) and annotating each cluster on the basis
of differentially expressed marker genes. As shown in Fig-
ure 3A and Appendix Figure A.2, ACE’s k-means clustering
successfully recovers the reported cell types based upon the
10-dimensional embedding learned by SAUCIE.

We first aimed to quantify the discriminative power of the
top-ranked genes identified by ACE in comparison to the
six baseline methods. To do this, we applied all the six
baseline methods to the PBMC dataset using the groups
identified by the k-means clustering based on the SAUCIE
embedding. For each group of cells, we extracted the top-
k group-specific genes reported by each method, where k
ranges from 1%, 2%, · · · , 100% among all genes. Given
the selected gene subset, we then trained a support vector
machine (SVM) classifier with a radial basis function kernel
to separate the target group from the remaining groups. The
SVM training involves two hyperparameters, the regular-
ization coefficient C and the bandwidth parameter σ. The
σ parameter is adaptively chosen so that the training data
is Z-score normalized, using the default settings in Scikit-
learn (Pedregosa et al., 2011). The C parameter is selected
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Figure 3. Comparing ACE to baseline methods on PBMC dataset. (A) UMAP embedding of PBMC cells labelled by ACE’s k-means
clustering assignment. (B) Classification performance of each method, as measured by AUROC, as a function of the number of genes in
the set. Error bars correspond to the standard error of the mean of AUROC scores from each test split across different target groups. (C)
Redundancy among the top k genes, as measured by Pearson correlation, as a function of k. Error bars correspond to the standard error of
the mean calculated from the group-specific correlations. (D) The figure plots overlaps among the top 18 genes (corresponding to 1% of
1838 genes) identified by all seven methods with respect to the CD4 T cell cluster.

by grid search from {5−5, 5−4, · · · , 50, · · · , 54, 55} . The
classification performance, in terms of area under the receiv-
er operating characteristic curve (AUROC), is evaluated by
3-fold stratified cross-validation, and an additional 3-fold
cross-validation is applied within each training split to de-
termine the optimal C hyperparameter. Finally, AUROC
scores from each test split across different target groups are
aggregated and reported, in terms of the mean and the stan-
dard error of the mean. Two cell types—megakaryocytes
and dendritic cells—are excluded due to insufficient sample
size (< 50). As shown in Figure 3B, the top-ranked genes
reported by ACE are among the most discriminative across
all methods, particularly when the inclusion size is small
(≤ 3%). The only method that yields superior performance
is DESeq2.

We next tested the redundancy of top-ranked genes, as it
is desirable to identify diverse explanatory gene sets with
minimum redundancy. Specifically, for each target group of
cells, we calculate the Pearson correlations between all gene
pairs within top k genes, for varying values of k. The mean
and standard error of the mean of these correlations are
computed within each group and then averaged across dif-
ferent target groups. The results of this analysis (Figure 3C)
suggest that the top-ranked genes reported by ACE are a-
mong the least redundant across all methods. Other methods
that exhibit low redundancy include GRS and the two meth-
ods that use the same SAUCIE model (i.e., SmoothGrad
and SHAP). In conjunction with the discriminative power
analysis in Figure 3B, we conclude that ACE achieves a
powerful combination of high discriminative power and low
redundancy.

Finally, to better understand how these methods differ from
one another, we investigated the consistency among the top-
ranked genes reported by each method. For this analysis, we
focused on one particular group, CD4 T cells. We discover
strong disagreement among the methods (Figure 3D). Sur-

prisingly, no single gene is selected among the top 1% by all
methods. Among all methods, ACE covers the most that are
reported by at least one other method (14 out of 18 genes).
The four genes that ACE uniquely identifies (red bar in Fig-
ure 3D)—CCL5, GZMK, SPOCD1, and SNRNP27—are
depleted rather than enriched relative to other cell types. It is
worth mentioning that both CCL5 and GZMK are enriched
in CD8 T cells (Thul et al., 2017), the closest cell type to
CD4 T cell (Figure 3A). This observation suggests ACE
identifies cells that exhibit highly discriminative changes
in expression between two closely related cell types. In-
deed, among ACE’s 18-gene panel, 15 genes are depleted
rather than enriched, suggesting that much of CD4’s cell
identity may be due to inhibition rather than activation of
specific genes. In summary, ACE is able to move away from
the notion of a “marker gene” to instead identify a highly
discriminative, nonredundant gene panel.

5.3. Image analysis

Although we developed ACE for application to scRNA-seq
data, we hypothesized that the method would be useful in do-
mains beyond biology. Explanation methods are potentially
useful, for example, in the analysis of biomedical images,
where the explanations can identify regions of the image
responsible for assignment of the image to a particular phe-
notypic category. As a proof of principle for this general
domain, we applied ACE to the MNIST handwritten digits
dataset (LeCun, 1998), with the aim of studying whether
ACE can identify which pixels in a given image explain why
the image was assigned to one digit versus another. Specif-
ically, we solve the optimization problem for each input
image in Equation 7, seeking an image-specific set of pixel
modifications, subject to the constraint that the perturbed
image pixel values are restricted to lie in the range [0, 1].
Note that this task is somewhat different from the scRNA-
seq case: in the MNIST case, ACE finds a different set of
explanatory pixels for each image, whereas in the scRNA-
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Figure 4. Applying ACE to the MNIST dataset. ACE is able to explain 20 types of digit transitions in a pixel-wise manner. These digit
transitions are chosen such that each digit category is covered at least once in both directions.

seq case, ACE seeks a single set of genes that explains label
differences across all cells in the dataset.

ACE was applied to this dataset as follows. We used a sim-
ple convolution neural network architecture containing two
convolution layers, each with a modest filter size (5, 5), a
modest number of filters (32) and ReLU activation, followed
by a max pooling layer with a pool size (2, 2), a fully con-
nected layer, and a softmax layer. The model was trained
on the MNIST training set (60,000 examples) for 10 epochs,
using Adam (Kingma & Ba, 2015) with an initial learning
rate of 0.001. The network achieves 98.7% classification
accuracy on the test test of 10,000 images. We observe that
the embedding representation in the last pooling layer ex-
hibits well-separated cluster patterns (Appendix Figure A.3).
Since our goal is not to learn the cluster structure per se, for
simplicity, we fixed the number of groups to be the number
of digit categories (i.e., 10) and calculated the group cen-
troid used in Equation 3 by averaging the data points of the
corresponding category. The embedding layer together with
the group centroids are then used to build the neuralized
clustering model (Equation 6.)

The results of this analysis show that ACE does a good job
of identifying sets of pixels that accurately explain differ-
ences between pairs of digits. We examined the pixel-wise
explanations of 20 pairs of digits, randomly selected to cov-
er each digit category at least once in both directions (Fig. 4).
For example, to convert “8” to “5,” ACE disconnects the
top right and bottom left of “8,” as expected. Similarly, to
convert “8” to “3,” ACE disconnects the top left and bottom
left of “8.” It is worth noting that the modifications intro-
duced by ACE are inherently symmetric. For example, to
convert “1” to “7” and back again, ACE suggests adding
and removing the same part of “7.”

6. Discussion and conclusion
In this work, we have proposed a deep learning-based
scRNA-seq analysis pipeline, ACE, that projects scRNA-
seq data to a latent space, clusters the cells in that space,
and identifies sets of genes that succinctly explain the d-
ifferences among the discovered clusters. Compared to
existing state-of-the-art methods, ACE jointly takes into
consideration both the nonlinear embedding of cells to a
low-dimensional representation and the intrinsic dependen-
cies among genes. As such, the method moves away from
the notion of a “marker gene” to instead identify a panel
of genes. This panel may include genes that are not only
enriched but also depleted relative to other cell types, as
well as genes that exhibit important differences between
closely related cell types. Our experiments demonstrate that
ACE identifies gene panels that are highly discriminative
sets and exhibit low redundancy. We also provide results
suggesting that ACE’s approach may be useful in domains
beyond biology, such as image recognition.

This work points to several promising directions for future
research. In principle, ACE can be used in conjunction
with any off-the-shelf scRNA-seq embedding method. Thus,
empirical investigation of the utility of generalizing ACE
to use embedders other than SAUCIE would be interest-
ing. Another possible extension is to apply neuralization to
alternative clustering algorithms. For example, in the con-
text of scRNA-seq analysis the Louvain algorithm (Blondel
et al., 2008) is commonly used and may be a good candidate
for neuralization. A promising direction for future work is
to provide confidence estimation for the top-ranked group-
specific genes, in terms of q-values (Storey, 2003), with the
help of the recently proposed knockoffs framework (Barber
& Candès, 2015; Lu et al., 2018).
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Figure A.3. The embedding representation in the last pooling layer
of the convolutional neural network exhibits well-separated cluster
patterns among 10 digits on the MNIST dataset.
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Figure A.1. The embedding representation learned by SAUCIE exhibits well-separated cluster patterns on both (A) clean and (B) complex
simulated scRNA-seq datasets.

Figure A.2. The embedding representation learned by SAUCIE exhibits similar cluster patterns by using either (A) the Louvain algorithm
or (B) k-means clustering on the PBMC dataset.


