
Improving Breadth-Wise Backpropagation in GNNs Helps Learning Long-Range Dependencies

A. Modified attention mechanism in
ResRGAT

The query and key vectors for each attention head h (of in
totalH heads), q(h)

v ∈ RD for node v and k
(h)
e ∈ RD for an

edge e = (u, v, r) ending in v, respectively, are computed
using head-specific linear transformations parameterized by
Q(h) ∈ RD/H×D and K(h) ∈ RD/H×2D:

q(h)
v = Q(h)hv , (6)

k(h)
e = K(h)[µ(hu, r);ar] , (7)

where [·; ·] denotes the (vertical) concatenation of two (col-
umn) vectors and ar is the same edge type-specific parame-
ter vector that is used in Eqs. 2-4. Note that Eq. 6 is slightly
different from a standard attention mechanism, which would
compute key vectors as K(h)µ(hu, r). We expect that in-
cluding the edge type vector ar directly in the keys will
make it easier to learn to place attention.

The attention score w(h)
e for an edge e and head h is com-

puted by a scaled dot product and then normalized to obtain
α(h) as usual:

w(h)
e =

q
(h)
v · k(h)

e√
D/H

(8)

and

α(h)
e =

exp(w
(h)
e )∑

e∗∈E(·,v) exp(w
(h)
e∗ )

. (9)

Unlike multi-head attention in transformers and previous
work (Veličković et al., 2018; Busbridge et al., 2019), we do
not use linear transformations to obtain the value vectors. In-
stead, the vector µ(hu, r) = µe = [µ

(1)
e , . . . ,µ

(H)
e ] is split

in H equally sized chunks and the h-th part µ(h)
e ∈ RD/H

is taken as value vector for the h-th head. The attention
scores α(h)

e and value vectors µ(h)
e are then used to compute

the neighbourhood aggregation vector h
(h)

v for head h as a
weighted sum. The full neighbourhood aggregation vector
hv is then given as a concatenation over all heads h:

h
(h)

v =
∑

e∈E(·,v)

α(h)
e µ(h)

e , (10)

hv = [h
(1)

v ; . . . ;h
(H)

v ] . (11)

This change reduces the number of trainable parameters,
and improves breadth-wise backpropagation.

B. Symmetrically Gated Recurrent Unit
As elaborated above, depth-wise residual update functions
and GRUs as used in the GGNN improve depth-wise back-
propagation towards lower-level features of the same node.
To also improve the breadth-wise backpropagation, we pro-
pose to use an adapted version of the GRU. We call the

hv
(k)

hv
(k-1)

hv
(k-1) ZR

R ⨯

⨯

+

Figure 3. SGRU.

proposed update function, which is described by the fol-
lowing equations, a Symmetrically Gated Recurrent Unit
(SGRU):

r
(k)
h = σ(Wrhh

(k−1)
v + Urhh

(k−1)
v + brh) (12)

r(k)x = σ(Wrxh
(k−1)
v + Urxh

(k−1)
v + brx) (13)

z(k)x =Wzxh
(k−1)
v + Uzxh

(k−1)
v + bzx (14)

z
(k)
h =Wzhh

(k−1)
v + Uzhh

(k−1)
v + bzh (15)

z(k)u =Wzuh
(k−1)
v + Uzuh

(k−1)
v + bzu (16)

ẑ
(k)
x,i ,ẑ

(k)
h,i , ẑ

(k)
u,i = softmax([z

(k)
x,i , z

(k)
h,i , z

(k)
u,i ]) (17)

ĥ(k)
v = tanh(W (h

(k−1)
v � r(k)x ) + U(h(k−1)

v � r
(k)
h ))

(18)

h(k)
v = ẑ(k)x � h

(k−1)
v + ẑ

(k)
h � h(k−1)

v + ẑ(k)u � ĥ(k)
v .

(19)

The SGRU differs from the GRU used in the GGNN in (i)
introducing an additional reset gate r

(k)
x that is applied to

the aggregated neighbour states h
(k−1)
v and (ii) computing

the output state h
(k)
v as a three-way mixture between the

previous node state h(k−1)
v , the aggregated neighbour states

h
(k−1)
v , and the candidate state ĥ

(k)
v instead of a two-way

mixture between h
(k−1)
v and ĥ

(k)
v . The interpolation coeffi-

cients ẑ(k)x , ẑ
(k)
h , and ẑ

(k)
u are produced by an elementwise

softmax between the three vectors z(k)x , z
(k)
h , and z

(k)
u . See

also Figure 3 for an illustration.

The vanilla GRU as applied to sequences has two inputs:
the input vector xt at a certain timestep t and the state
vector h. While it implements additive gated updates on
h, it applies linear transformations and nonlinearities on
xt before merging it into h. In the SGRU, both inputs are
gated similarly, which lets the xt input benefit from the
same additive gradient behavior as h and gave rise to the
name "symmetrically gated". This is crucial for improving
horizontal information flow during the training of GNN
since the xt input of the SGRU receives the aggregated
neighbourhood vector.



Improving Breadth-Wise Backpropagation in GNNs Helps Learning Long-Range Dependencies

C. Baselines
C.1. A note on memory-efficiency of the baselines

When experimenting with the baselines (RGCN, GGNN,
and RGAT), we quickly ran out of memory for larger hidden
dimensions of the GNNs and larger numbers of layers. This
was caused by the relation matrices, which have O(n2)
parameters for every relation. In the implementations we
used, the relations were indexed from a tensor and have to
be retained in memory for every edge. While more memory-
efficient implementations are possible, the existing ones
sacrifice execution time, which can increase significantly
with a large number of different relations.

Gradient accumulation significantly slows down training.
As a simple fix to maintain reasonable training speed for
our experiments, we replace µMM(·) in our RGCN and
GGNN with µMM−red(hu) =WBW

∗
rWAhu, whereW ∗r is

an edge type specific square matrix of lower dimensionality
than Wr and WA and WB are matrices projecting into and
out ofW ∗r ’s dimensionality that are shared for all edge types.
Note that we did this only for the Tree Max experiments.

C.2. RGAT Baseline

Like in the work of Busbridge et al. (2019), we use relation-
specific transformation matrices W(r) and relation and
head-specific query and key matrices Q(r,h) and K(r,h).
First, we define relation-dependent representations for a
node, which is computed based on its current state z(k−1):

g
(r)
i = W(r)z

(k−1)
i . (20)

Subsequently, for every head h, we define the relation-
specific query, key and value projections as:

q
(h,r)
i = Q(h,r)g

(r)
i (21)

k
(h,r)
i = K(h,r)g

(r)
i (22)

v
(h,r)
i = V(h,r)z

(k−1)
i (23)

We compute attention between messages µx, where x in-
dexes over all edges in the input graph. First, we compute
the attention score for a message as Vaswani et al. (2017)

s(h)µx
= q

(h,r)
i · k(h,r)

j , (24)

where µx is the message sent along an edge j → i labeled
by the relation r. Please note that a node i may receive
multiple messages from a node j, and that those messages
could contain the same relation.

The scores are normalized over all messages that node i
receives:

α(h)
µx

=
s
(h)
µx∑

µ
x
′ s

(h)
µ

x
′

. (25)

The normalized scores are used to compute a summary:

z
(h,k)
i =

∑
µx

v
(h,r)
j α(h)

µx
, (26)

where r is the relation of µx and j is the source node id and
i is the target node id of message µx.

The updated representation for node i is then the concate-
nation over all heads, fed through the activation function
σ:

z
(k)
i = σ([z

(0,k)
i , . . . , z

(H,k)
i ]) . (27)

We experiment with a ReLU, as well as with a linear σ.

D. Notes on relation-aware message functions
Many different message function implementations are pos-
sible that take into account the relation connecting a node
to a neighbour. The default message function used in earlier
literature is simply a matrix multiplication:

µMM(hu, r) = Wrhu (28)

This can easily lead to overparameterization and leads to dif-
ficulties implementing the GNNs in a both memory-efficient
and computationally efficient way.

In CompGCN, Vashishth et al. (2020) propose the following
function:

µCompGCN(hu, r) = Wλ(r)φ(hu,ar) , (29)

where Wλ(r) is one of the three matrices: one for forward re-
lations, one for reverse and one for self-edges, and φ(hu,ar)
is a composition function that combines the neighbour state
and relation vector. For the composition function, the au-
thors explore functions inspired by knowledge graph em-
bedding literature: subtraction (hu − ar), multiplication or
circular-correlation.

While this provides an alternative solution to over-
parameterizing relations, and enables more efficient imple-
mentation, it does not improve gradient behavior since the
backpropagation paths to the lower node features as well
as to distant nodes still contain linear transformation and
non-linearities.

To improve backpropagation, we can make use of (gated or
residual) skip connections. The residual version would have
the following general form:

µRes(hu, r) = µX(hu, r) + hu , (30)

where µX is some function. Similarly to transformers and
ResNets, we choose to use a two-layer MLP, which is more
expressive than µMM, and unlike the composition-based
message functions in Vashishth et al. (2020), can effortlessly
incorporate additional edge features that are not based on
the relation embeddings.



Improving Breadth-Wise Backpropagation in GNNs Helps Learning Long-Range Dependencies

D.1. A note on interchangeability of relations

Note that the simple choice of adding a relation vector,
similarly to CompGCN’s subtraction version, might pose
problems since it loses information about which relation
was associated with which neighbour:

(hu+ ar)+ (hw + ar) = (hw + ar)+ (hu+ ar) . (31)

This is undesireable since it limits the expressive power of
the network when using a sum aggregator. It is not clear
to us how much this would affect models using attention-
based aggregation, however, we prefer to avoid this since
the attention-based aggregator may behave like a uniform
sum, especially throughout the early stages of training.

This leads to the following condition that we impose on the
message function: The message function µ must be chosen
such that

µ(a, b) + µ(c, d) 6= µ(a, d) + µ(c, b) (32)

iff a 6= c and b 6= d. The gated message function µGCM

proposed earlier in our work satisfies this condition.

E. Backpropagation to distant nodes in Gated
Graph Neural Networks

The GGNN (Li et al., 2015) implements the update function
φ(·) based on GRUs:

r(k) = σ(Wrh
(k−1)
v + Urh

(k−1)
v + br) , (33)

z(k) = σ(Wzh
(k−1)
v + Uzh

(k−1)
v + bz) , (34)

ĥ(k)
v = tanh(Wh

(k−1)
v + U(h(k−1)

v � r(k))) , (35)

h(k)
v = (1− z(k))� h(k−1)

v + z(k) � ĥ(k)
v , (36)

where h
(k−1)
v = γ({µ(h(k−1)

u , r)}(u,v,r)∈E(·,v)) is the vec-
tor representing the aggregated neighbourhood of node v.

Consider a node classification task, where the top-level state
h
(K)
v of node v is fed into a classifier that produces a lossLv .

To compute the gradient ∇wLv =
∂Lv
∂w

, where w are the
parameters of the model, the chain rule is applied as follows
(where we only take into account node v’s contribution to
the gradient, and ignore the contribution of other nodes):

∇wLv =
∂Lv
∂w

=

K∑
k=0

∂Lv
∂h

(k)
v

∂h
(k)
v

∂w
, (37)

with

∂Lv
∂h

(k)
v

=
∂Lv
∂h

(K)
v

K∏
j=k+1

∂h
(k)
v

∂h
(k−1)
v

. (38)

Given the gated update equations of the GRU, the partial

derivatives
∂h

(k)
v

∂h
(k−1)
v

of the updated node representation w.r.t.

the previous node representation are:

∂h
(k)
v

∂h
(k−1)
v

= (1− z)� I+ z� ∂ĥ
(k)
v

∂h
(k−1)
v

+
∂(−z)
∂h

(k−1)
v

� h(k−1)
v +

∂z

∂h
(k−1)
v

� ĥ(k)
v .

(39)

The closer z is to the zero vector, the closer the partial

derivatives across layers
∂h

(k)
v

∂h
(k−1)
v

get to the identity matrix

I and the more accurate the following approximation gets:

∂Lv
∂h

(k)
v

≈ ∂Lv
∂h

(K)
v

, (40)

which has the effect that all the GGNN layers are skipped. In
practice, the gate z will take on different values throughout
training, but the additive update still allows to retain some

contribution of the original gradient
∂Lv
∂h

(K)
v

deeper into the

network.

On the other hand, consider a (K-1)-layer GGNN applied to
a graph representing a sequence of length K. The sequence
is represented as a graph according to the same rules as
described in Section 5.1: the nodes are connected using
only next-edges. Thus, only left-to-right propagation in
the graph can be performed, and every node has only one
incoming message, except the first, which has none. This
is the setup that maximizes the ratio of graph diameter per
number of nodes and edges.

When a (K-1)-layer GGNN is applied to such a graph of K
nodes, there is only one backpropagation path from node K

to node 0:
∂h

(K)
K

∂h
(0)
0

, which is also the longest backpropaga-

tion path possible in this graph:

∂h
(K)
K

∂h
(0)
0

=

K∏
k=1

∂h
(k)
k

∂h
(k−1)
k−1

(41)

5 Ignoring the used message function µMM and consider-
ing every node has only one neighbour, the neighbourhood
aggregation vector is simply the neighbour node vector:
h
(k−1)
v = h

(k−1)
k−1 .



Improving Breadth-Wise Backpropagation in GNNs Helps Learning Long-Range Dependencies

Plugging this into the GGNN equations (Eqs. 33-36) gives:

∂h
(k)
k

∂h
(k−1)
k−1

=
∂z(k)tanh(Wh

(k−1)
k−1 )

∂h
(k−1)
k−1

= tanh(Wh
(k−1)
k−1 )

∂z(k)

∂h
(k−1)
k−1

+ z(k)
∂tanh(Wh

(k−1)
k−1 )

∂h
(k−1)
k−1

= tanh(Wh
(k−1)
k−1 )

∂σ(Wzh
(k−1)
k−1 )

∂h
(k−1)
k−1

+ z(k)
∂tanh(Wh

(k−1)
k−1 )

∂h
(k−1)
k−1

(42)

Both terms contain a partial derivative of the form
∂σ(Wh

(k−1)
k−1 )

∂h
(k−1)
k−1

, which is essentially identical to the terms

found in the backpropagation equations for a vanilla RNN.

As in vanilla RNNs (without any gating like in GRUs and
LSTMs), these terms can cause vanishing gradients due to
repeated multiplication with the derivative of a σ or tanh
nonlinearity and vanishing or exploding gradients depending
on the values of W (which also change throughout training
and thus could potentially reach unstable values).

In addition to the gradient-based argument outlined above,
residual networks (as well as GRUs and LSTMs), benefit
from better generalization abilities due to effects which were
not formalized or deeply studied in the literature known to
us. Intuitively, the argument for residual networks (He et al.,
2016) is that the individual residual blocks can easily learn
to not contribute if necessary, which enables to learn very
deep architectures, and otherwise, they only need to model
the function that models the residual error computed from
the output of the previous layer. In addition, we believe that
adding such skip connections enables more effective weight
sharing across layers and nodes.

F. Conditional Recall Experimental Details
In our experiments for this task, we randomly explore hy-
perparameter values from the following ranges for the com-
pared models: (1) dimensionality of node feature vectors
in [100, 150, 200, 300] (larger values can cause memory is-
sues with the baselines), (2) dropout in [0., 0.1, 0.25, 0.5],
(3) we usually set the dropout of embedding vectors to
0.1 (4) learning rate in [0.001, 0.0005, 0.0001]. We train
for at most 200 epochs and use early stopping using val-
idation accuracy. Throughout all of the experiments, we
use the Adam (Kingma & Ba, 2015) optimizer. We also
use label smoothing with a factor 0.1 everywhere. For our

a 8
next

c
next

D
next

e
next

Figure 4. Example of input graph for the Conditional Recall task.
The top-level state of the blue node is used for prediction. The red
node specifies the desired output.

experiments with task length 15, we usually use the best
hyperparameters found for length 10 for all methods and
also experiment with smaller dropout values.

For the final reported accuracies, we trained with the best hy-
perparameters and loaded the model with the best validation
error and evaluated on the test set. This was repeated with
three different seeds that were shared between the tested
methods.

The initial node states are initialized by embedding the node
type using a low-dimensional embedding matrix (dimension-
ality 20; for a vocabulary of 62 characters) and projecting
the low-dimensional embeddings to the node state dimen-
sion using a learned transformation.

An example of a graph used in this task is given in Figure 4.
The output in this example should be "8".

G. Tree Max Example
See Figure 5 on page 16.

1
10

6
6

10
10

8
8

7
10

3
3

9
9

4
4

5
10

2
4

→ :CHILD-3
← :CHILD-3-OF

→ :CHILD-2
← :CHILD-2-OF

→ :CHILD-1
← :CHILD-1-OF

→ :CHILD-2
← :CHILD-2-OF

Figure 5. Example of input graph for the Tree Max task. The
double-ended arrow between a node v and a node u represents
two edges: one going from v to u and the other from u to v. Not
every arrow is labeled for a clearer presentation. The labels on the
arrows indicate edge labels: the forward arrow→ corresponds to
the edge label for going from the parent to the child and← for
the reverse. The input labels are the black numbers and the output
labels are the blue numbers. Note that we use a semi-supervised
version of this task, where we erase the output labels of a large
portion of the nodes, i.e. ignore their output labels in training and
testing.



Improving Breadth-Wise Backpropagation in GNNs Helps Learning Long-Range Dependencies

H. Tree Max Experimental Details:
During data generation, we first randomly pick a tree depth
between five and fifteen. Then, we generate a tree, choosing
between 0, 2 or 3 children for each node until we reach the
chosen tree depth. The largest trees in our generated data
contained over 200 nodes. The generated dataset contained
800 examples; we used a 50/25/25 train/validation/test split.

Not every node in the dataset is annotated. For every ex-
ample, which consists of one graph with a maximum depth
of N , the label of all nodes which are at most N/2 away
from their “answer” node (i.e. the node which contains their
output label) are ignored (i.e. not used in training or testing).
Of the remaining nodes, which require to propagate informa-
tion along a paths containing at least N/2 edges to estimate
their label, foronly 50% the label is provided for training
and testing. This setup defines a semi-supervised node clas-
sification task. We use it instead a fully supervised version
providing all node labels, since the latter can be solved iter-
atively using immediate neighbour states only. This allows
all GNNs to reach high node classification accuracy. In the
semi-supervised version, the models have to learn what in-
formation to retain in unlabeled nodes, which are in between
labeled nodes and their corresponding “answer” nodes.

For every model tested, we perform a hyperparameter search
using all predefined seeds. For all models, we experiment
only with dimensionality of 150 to avoid memory issues
and ensure a fair comparison regarding representation di-
mensionality. Then we run the best hyperparameter setting
with three different random seeds and report the test results
in Table 2. Note that the same seeds are re-used for ex-
periments for all models, and that every seed results in a
different dataset being generated. We used early stopping
and reloaded the best model based on element-wise accu-
racy on the validation set. Patience was set to 10 epochs but
every experiment was run for a minimum of 50 epochs.

The models were evaluated using node-wise and graph-
wise accuracy. The graph-level accuracy is 100% for an
example only if all gold-labeled nodes in the graph have
been classified correctly, and is 0% otherwise.

In our experiments, we randomly explore different com-
binations of different hyperparameter settings: dropout is
selected from {0., 0.1, 0.25, 0.5}, dimensionality of node
vectors is fixed to 150 for all methods. Learning rate is
chosen from {0.001, 0.000333, 0.0001}. For all baselines,
the number of layers was chosen from 10, 17. Note however
that 10 layers is insufficient to perfectly solve the task.

I. Ablation without residual connection in the
message function.

See Table 5 for the results on the conditional recall task for
the ablation where the residual connection in the edge-wise
message function is removed.



Improving Breadth-Wise Backpropagation in GNNs Helps Learning Long-Range Dependencies

Table 5. Conditional recall results. Average accuracy on the test set is reported. N is sequence length. L is the number of layers.

N=5 N=10 N=15 N=5 (L=16)

ResRGAT, no. res. msg. 98.6± 1.4 95.1± 0.7 84.7± 6.7 88.4± 5.3


