
GraphDF: A Discrete Flow Model for Molecular Graph Generation

A. Generation Algorithm

Algorithm 1 Generation Algorithm of GraphDF
1: Input: GraphDF model, latent distribution pZa , pZb ,

maximum number of nodes n, number of node types k,
number of edge types c

2:
3: Initialize empty graph G0

4: for i = 1 to n do
5: zi ∼ pZa
6: z0i = zi
7: HL = R-GCN(Gi−1)
8: h = sum(HL)
9: for d = 1 to D do

10: µdi = argmaxMLPda(h)
11: zdi = (zd−1i + µdi ) mod k
12: end for
13: ai = zDi
14: Add a new node with type ai to Gi−1 and set the

updated graph as Gi−1,1
15: for j = 1 to i− 1 do
16: repeat
17: zij ∼ pZb
18: z0ij = zij
19: HL = R-GCN(Gi−1,j)
20: h = sum(HL)
21: for d = 1 to D do
22: µdij = argmaxMLPdb

(
Con(h,HL

i , H
L
j )
)

23: zdij = (zd−1ij + µdij) mod (c+ 1)
24: end for
25: bij = zDij
26: until check valency(Gi−1,j , bij) is true
27: Add a new edge with type bij connecting the node

i and j to Gi−1,j and set the updated graph as
Gi−1,j+1

28: end for
29: if Gi−1,i is not connected then
30: Delete the i-th node from Gi−1,i and set it as Gi
31: Output Gi
32: end if
33: Gi = Gi−1,i
34: end for
35: Output Gn

B. Training Algorithm

Algorithm 2 Generation Algorithm of GraphDF
1: Input: Molecular graph datasetM, GraphDF model

with trainable parameter θ, latent distribution pZa , pZb ,
number of node types k, number of edge types c, learn-
ing rate α, batch size B

2:
3: repeat
4: Sample a batch of B molecular graphs G fromM
5: L = 0
6: for G ∈ G do
7: Set n as the number of nodes in G
8: Find SG = (a1, a2, b21, a3, . . . ) by BFS on G
9: for i = 1 to n do

10: zDi = ai
11: Set Gi−1 as the graph formed by all elements

previous to ai in SG, or an empty graph if i = 1
12: HL = R-GCN(Gi−1)
13: h = sum(HL)
14: for d = D to 1 do
15: µdi = argmaxMLPda(h)
16: zd−1i = (zdi − µdi ) mod k
17: end for
18: zi = z0i
19: L = L− log pZa(zi)
20: for j = 1 to i− 1 do
21: zDij = bij
22: Set Gi−1,j as the graph formed by all ele-

ments previous to bij in SG
23: HL = R-GCN(Gi−1,j)
24: h = sum(HL)
25: for d = D to 1 do
26: µdij = argmaxMLPdb

(
Con(h,HL

i , H
L
j )
)

27: zd−1ij = (zdij − µdij) mod (c+ 1)
28: end for
29: zij = z0ij
30: L = L− log pZb(zij)
31: end for
32: end for
33: end for
34: L = L

B
35: θ = θ − α∇θL
36: until θ is converged
37: Output GraphDF model with parameter θ



GraphDF: A Discrete Flow Model for Molecular Graph Generation

C. Data Information
Molecule datasets. For random generation of molecular
graphs, we use three datasets ZINC250K (Irwin et al.,
2012), QM9 (Ramakrishnan et al., 2014), and MOSES
(Polykovskiy et al., 2020). ZINC250K contains around
250K drug-like molecules selected from ZINC, which is a
free public chemical library for drug discovery. The maxi-
mum number of nodes among all molecules in ZINC250K
is 38, and all nodes belong to 9 different types of heavy
atoms. QM9 collects around 130K molecules with up to 9
heavy atoms for quantum chemistry research. MOSES pro-
vides a benchmarking platform particularly for evaluating
molecule generation models, containing 1.9M molecules
in total. The information about three molecule datasets
are summarized below in Table 8. All molecules are trans-
formed to kekulized form before training, that is, removing
hydrogen atoms and replacing aromatic bonds by double
bonds. Hence, there are three edge types in total, corre-
sponding to single bonds, double bonds and triple bonds in
molecules.

Table 8. Information of molecule datasets.

Dataset Number of
molecules

Maximum num-
ber of nodes

Number of
node types

ZINC250K 249,455 38 9
QM9 133,885 9 4
MOSES 1,936,962 30 7

COMMUNITY-SMALL and EGO-SMALL. Following
GNF (Liu et al., 2019), we evaluate GraphDF on two
generic graph datasets, COMMUNITY-SMALL and EGO-
SMALL. COMMUNITY-SMALL contains 100 synthetic
2-community graphs, and EGO-SMALL has 200 graphs
which are small sub-graphs of Citeseer network dataset (Sen
et al., 2008). We calculate the MMD under two cases. One
is calculating MMD between the graphs in the dataset and
the set of generated 1024 graph. The other is evaluating on
selected graphs from generated 1024 graphs with node dis-
tribution matching. If there are N graphs in the dataset, the
node distribution matching is done by first computing the
distribution over node numbers in the dataset, then select-
ing N graphs from all generated graphs that closely match
this distribution. We use the open source code of You et al.
(2018b) to do evaluation.

D. Experiment Details
Random generation. On ZINC250K, QM9 and MOSES,
the GraphDF model is trained with Adam optimizer for 10
epochs, where the fixed learning rate is 0.001 and the batch
size is 32. On COMMUNITY-SMALL and EGO-SMALL,
the GraphDF model is trained with Adam optimizer for

1000 epochs, where the fixed learning rate is 0.001 and the
batch size is 16. As for generation, a widely used strategy
for improving generation quality is to apply temperature
parameters in prior distribution. For instance, GraphAF
(Shi* et al., 2020) and MoFlow (Zang & Wang, 2020) both
generate graphs by sampling from a spherical multivariate
Gaussian distribution whose standard deviation is multiplied
by a tunable temperature parameter t. We adopt the similar
strategy in our discrete prior distribution. Specifically, for
pZa with parameters (α0, . . . , αk−1) and pZb with parame-
ters (β0, . . . , βc), we will sample discrete latent variables
as

pZa(zi = s) =
exp (t1αs)∑k−1
t=0 exp (t1αt)

,

pZb(zij = s) =
exp (βs/t2)∑c
t=0 exp (βt/t2)

,

(16)

where t1, t2 are tunable temperature parameters. Note that
there is only one node type in COMMUNITY-SMALL and
EGO-SMALL, so only t2 is needed. The temperature pa-
rameters used for each dataset are listed below in Table 9.

Table 9. Temperature parameters for each dataset.

Dataset t1 t2

ZINC250K 0.35 0.2
QM9 0.35 0.23
MOSES 0.3 0.3
COMMUNITY-SMALL n/a 0.65
EGO-SMALL n/a 0.5

Property optimization. The model is first pretrained on
ZINC250K dataset with the same setting of random gener-
ation task for 1000 epochs. Then we apply reinforcement
learning to fine-tune it for 200 iterations with a learning
rate of 0.0001 and a batch size of 8 using Adam optimizer.
During generation, we set the temperature parameters of
prior distribution as t1 = 0.8, t2 = 0.1.

Constrained optimization. Same as property optimization,
GraphDF model is first pretrained on ZINC250K dataset
for 1000 epochs and fine-tuned for 200 iteration. We fine-
tune the model with a learning rate of 0.0001 and a batch
size of 16 using Adam optimizer. During optimization,
we set the temperature parameters of prior distribution as
t1 = 1.0, t2 = 1.0. Each molecule is optimized for 200
times.


