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Abstract

We study the problem of zero-shot coordination
(ZSC), where agents must independently produce
strategies for a collaborative game that are com-
patible with novel partners not seen during train-
ing. Our first contribution is to consider the need
for diversity in generating such agents. Because
self-play (SP) agents control their own trajectory
distribution during training, each policy typically
only performs well on this exact distribution. As
a result, they achieve low scores in ZSC, since
playing with another agent is likely to put them
in situations they have not encountered during
training. To address this issue, we train a com-
mon best response (BR) to a population of agents,
which we regulate to be diverse. To this end, we
introduce Trajectory Diversity (TrajeDi) — a differ-
entiable objective for generating diverse reinforce-
ment learning policies. We derive TrajeDi as a
generalization of the Jensen-Shannon divergence
between policies and motivate it experimentally
in two simple settings. We then focus on the col-
laborative card game Hanabi, demonstrating the
scalability of our method and improving upon the
cross-play scores of both independently trained
SP agents and BRs to unregularized populations.

1. Introduction

In this paper, we use policy diversity as a tool to improve
cross-play (XP) scores in zero-shot coordination (ZSC).

Introduced by Hu et al., ZSC is the problem of indepen-
dently training two or more agents in a cooperative game
such that their strategies are compatible and achieve high
return when they are paired together at test time. Since it is
impossible to exactly agree on an arbitrary strategy with all
humans ahead of time, solving ZSC is required for Al agents
that can cooperate with humans , such as rescue robots or
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Figure 1: The corridor coordination task admits three opti-
mal SP policies, only one of which is suitable for ZSC.

self-driving cars.

The challenge of the ZSC framework arises from the fact that
many collaborative settings admit multiple joint-strategies
that are optimal under self-play (SP) (Tesauro, 1994) yet
incompatible. Thus, if we naively train two independent
agents in SP, there is no guarantee that they will converge to
compatible policies.

For instance, consider the task of two robots coordinating
in a corridor presented in Figure 1. At each step, robot A
moves first, then robot B does the same after observing A’s
action. The robots can occupy the same cell and receive
a positive reward only if they both reach the same end of
the corridor. In pure SP, robots can form conventions, and
so an optimal solution is for both to agree to always go in
one direction (left or right). However, another pair of robots
can reach the opposite convention, in which case pairing the
two in XP would result in robots A and B going in separate
directions, failing to solve the task. Instead, to be optimal
under ZSC, robot B must learn to follow A, regardless of
the direction in which A moves.

Hu et al. address the problem of ZSC by proposing Other-
Play (OP), a method of preventing those conventions (e.g.
agreeing on a given direction in the corridor) that rely on
arbitrarily breaking the symmetries of the setting. However,
OP reduces to SP if the symmetries are not known a priori
or if they are absent from the game. In the corridor task, this
occurs if the transition probabilities in each direction are
slightly different or if the rewards at the end have different
variances — all while maintaining the same expected return.

Instead, we propose a complementary approach that relies
on the best response (BR) relationships of the optimal SP
policies. In particular, if we have access to the entire so-
lution space (e.g. robot A either going left or right in the
corridor), we can train an agent to be the common BR to
the largest possible subset of that space. The resulting agent
would then be robust to the maximum number of potential



partners, making it a prime candidate for ZSC. In the corri-
dor setting, this BR as robot B is precisely the policy that
follows A in either direction.

This approach allows to train good policies for ZSC without
additional domain knowledge, but requires access to a di-
verse pool of optimal policies to serve as the training set for
the BR. We introduce Trajectory Diversity (TrajeDi), our
differentiable objective that generalises the Jensen-Shannon
divergence between the different policies and, unlike other
methods, is especially designed to produce diverse policies
in partially observable multi-agent settings.

For the rest of the paper, we first situate our work in the
literature in section 2, then establish the setting and formal-
ism in section 3. In section 4, we begin by detailing how
diversity can be used jointly with reward-based training
and a common BR for the purpose of ZSC. Then, we intro-
duce the TrajeDi objective for producing diversity, justify it
theoretically and show that it naturally captures the notion
of diversity that we seek. We also derive an approximate
policy gradient estimator and discuss the associated trade-
offs. Next, in section 5, we evaluate TrajeDi experimentally.
Thanks to two MDPs and a matrix game, we provide empir-
ical insights into the shortcomings of standard approaches
and show the suitability of TrajeDi in discovering multiple
optimal solutions. Afterwards, we proceed to demonstrate
that TrajeDi scales well to arbitrarily complex settings by
using it to improve ZSC scores in the collaborative partially
observable card game Hanabi. Finally, we summarize and
conclude with future research directions in section 6.

Overall, our contributions are three-fold. First, we highlight
the role of diversity in training robust policies for ZSC and
leverage it within a population-based approach. Secondly,
we introduce TrajeDi, a general and differentiable informa-
tion theoretic objective for training a diverse population of
optimal policies. Finally, we demonstrate empirically the
merit of our method, both in small, interpretable settings
and in the large-scale coordination task of Hanabi.

2. Related Work

There is a growing corpus of works featuring diversity maxi-
mization in reinforcement learning, many of which leverage
it as a means of exploration. For instance, Hong et al. (2018)
maximize the KL divergence between the current policy and
the distribution of past experiences, effectively driving the
agent towards new state-action pairs. Instead, Gangwani
et al. minimize the difference between the policy and the
high reward transitions of the replay buffer, but train a di-
verse set of policies for populating that buffer. Relatedly,
Cohen et al. deploy diverse conjugate policies in the local
policy space and Parker-Holder et al. encourage diversity
through action-based embeddings, again in the scope of

driving exploration. In multi-agent reinforcement learning
(MARL), there has been some success in using reward ran-
domization to drive diversity (Tang et al., 2021). However,
this requires the reward function to be factored into different
contributions, making this method ill-defined in settings
with a single reward source (e.g. the score in Hanabi).

Diversity has also been used in hierarchical reinforcement
learning (HRL) to learn useful options by preventing re-
dundancies. This can be done in multiple ways, such as
through entropy maximization (Haarnoja et al., 2018) or by
employing a supervised deep learning (DL) approach (Song
et al., 2019; Florensa et al., 2017). DL methods are how-
ever not restricted to HRL. For instance, Eysenbach et al.
focus on learning multiple skills that are distinguishable by
a classifier based on state distributions. Crucially, they do
so without any reward function, as a method of pre-training.

Regardless of the application, past works tend to formulate
diversity either at the action level (m(als)) (Hong et al.,
2018; Cohen et al., 2019; Parker-Holder et al., 2020), as a
function of state distributions (P(s|7)) (Song et al., 2019;
Eysenbach et al., 2018; Florensa et al., 2017; Kumar et al.,
2020) or of state-action distributions (IP(s, a|7)) (Gangwani
et al., 2018). Unfortunately, these formulations are inad-
equate for MARL, where dynamics are non-Markovian,
requiring agents to condition their actions on their entire
observation history. Since multi-agent settings are our main
concern, we formulate TrajeDi accordingly, making it the
first trajectory-based (P(7|7)) diversity objective, to the
best of our knowledge.

A related field to diversity is that of imitation learning. Al-
though the goal is strikingly different — to train a policy to
closely match the behaviour of another — the methods often
rely on a measure of dissimilarity between policies, with the
main distinction being that it is being minimized rather than
maximized. In particular, works such as Gangwani et al.
(2018); Guo et al. (2018) and Ho & Ermon (2016) base their
objective on the same statistical measure we do — the Jensen-
Shannon divergence. Another notable example is POWER
(Kober & Peters, 2009), which performs imitation learning
with a trajectory-based KL divergence objective, although
weighted in a way that makes it unusable for diversity.

Our method also shares similarities with Fictitious Self-
Play (FSP), which computes a BR to a mix of snapshots
of the policy’s own past behaviour (Heinrich et al., 2015).
While we also compute a BR, we instead do so to the most
recent version of an explicit population of other policies. We
additionally train each policy in SP. Also, FSP is designed
exclusively for zero-sum games, whereas we are concerned
only with fully cooperative games.

Our work addresses directly the challenges of the ZSC
framework introduced by Hu et al., which we summarize



in section 3. For this setting, Hu et al. propose a suitable
training method called “Other-Play” that leverages domain
knowledge of the game symmetries to find unambiguous so-
lutions that perform well. Since symmetries are not always
present or known, we instead rely on the structure of the
policy space to find such solutions.

Finally, our method incorporates a population of policies
within which we maximize diversity. As a result, it is a
natural instance of population based training (PBT) and,
when used with deep reinforcement learning (DRL) models,
falls loosely in the legacy of Jaderberg et al. (2017).

3. Setting and Background

Throughout this paper, we assume a decentralized
partially observable Markov decision process (Dec-
POMDP). The Dec-POMDP M is defined by a tuple
(k,S, A, P,r,0,v:m,T), where k is the number of agents,
S is the joint-state space, A = x ?ZlAj is the joint-action
space, and P and O are respectively the transition and ob-
servation functions. Finally, r is the reward function, vy is
the reward discount factor and 7" is the horizon.

At time ¢, the Dec-POMDP is in state s; € S and pro-
duces a stochastic joint observation o; = (o}, ...,0F) ~
O(+|s¢), which is appended to the action-observation tra-
jectory 7 = (o0g,ap, " ,0t—1,a1—1,0¢). Individually,
every agent j € {1,---,k} updates its own trajectory
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11 = (0},a}, -+ ,0{_1,a]_;,07) and samples an action

al € A7 using a stochastic policy of the form 77 (af|77).
7 represents agent j’s component of the decentralized joint-
policy 7 and so the decision process is equivalent to select-
ing a joint-action a; = (aj, ...,a¥) € A with probability
m(a|rt). The environment then transitions to the state s;1
with unknown transition probability P(s:11]s¢, a:), upon
which all agents receive a common reward (s, a;). Fi-
nally, taking into account the discount v € [0, 1], we let

R(r) = ZZ;O Y447 (s¢, ar) be the discounted return.

At the core of our objective formulation is the tree T
of all possible trajectories. The probability of a tra-
jectory 7 = (o9, ag,...,ar—1,07) under a joint-policy
m is given by P(r|r) = e(r)n(r), where (1) =
P(s0) Hf:_ol P(s¢41]at, s¢) summarizes the environment
dynamics and 7(7) = HtT;()l 7(a|T¢) wraps the joint-
action probabilities. The behaviour of a joint-policy is
therefore characterized by the distribution it produces over
trajectories and it is optimal if it maximizes the expected
return J(7) = E, . {R(7)}.

3.1. Policy Populations

When training n different joint-policies on the same task,
we can write the average trajectory probability as P(7|7) =

e(r)#(7), where #(7) == Y7 | L1m;(7) is the trajectory-
wise average policy'. Similarly, we let 7 be the action-
wise average policy, such that for all pairs (74, a) we have
7(alr) == Y1, =mi(alr). Although the two definitions
are similar, we insist on the fact that generally #(7) does
not equal H;‘F;Ol 7 (a¢|7¢), and we use different notation (hat

and tilde) as a reminder.

3.2. Zero-Shot Coordination

In the zero-shot coordination (ZSC) framework (Hu et al.,
2020), two players must each independently train a joint-
policy for a collaborative game, using a pre-agreed training
algorithm of their choosing. After training, they are paired
together and evaluated in cross-play (XP) by taking individ-
ual components from each joint-policy. If 7; and 7o are the
joint-policies produced independently by the two players,
their ZSC performance is the average cross-play (XP) return
obtained when matching individual components from each
joint-policy. This objective is formally given by

1
pr(m,wz):i(J( Lm3) + J(my,m1)). (D)

Crucially, players do not have access to each other’s joint-
policy during training and must therefore employ a training
procedure that will produce compatible policies when run
separately. In particular, they cannot rely on arbitrary con-
ventions, unlike in SP.

The procedure proposed by Hu et al., Other-Play, takes a
step towards this by exploiting the known symmetries of
the game. Given those symmetries, OP performs a form of
asymmetric domain randomization during training by pre-
senting each agent with a different permutation ¢(S, O, .A)
of the environment at every episode. For instance, in the
corridor game, what robot A sees as “left” is perceived as
“right” by B. These random permutations prevent coordi-
nated symmetry breaking to form conventions, thus making
the learned policies more robust for ZSC.

Because OP and our method address different facets of ZSC,
they are fully compatible and so we use them jointly in our
Hanabi experiments.

The ZSC framework, OP and our method can be applied to
collaborative games with any number of players, but the set
of possible XP teams grows exponentially in size and careful
consideration has to be given to duplicate agents (e.g. 3
agents playing 71, 2 agents playing 79 in a five player game).
For ease of exposition, we therefore restrict ourselves to two-
player games throughout the paper. We also omit the “joint-"
qualifier in writing, for the same reason. Indeed, the method

"We use superscript (77) to denote individual components of
the same joint-policy and subscript (7;) to denote different joint-
policies within a population.



we present in section 4 is agnostic as to whether the actions
are produced by a single policy or multiple decentralized
ones.

4. Method
4.1. Population Based Training Setup

The core objective of this paper is applying diversity to the
ZSC setting and deriving a method for training a maximally
diverse population of policies with a common BR.

To do so, we first assume a population (71, ...,7,) of n
policies, which we train in SP, but also regularize to be as
diverse as possible. Additionally, we have a (n+1)-th policy
denoted BR, which we train to be a common BR to every
population member. As a result, we must also optimize for
the XP performance between each policy in the population
and the BR. The resulting loss is

n
LBR, 71, ..., ) = — | Y (Jxp(BR,m;) + J ()
i=1

+ J(BR) + aDiversity(my, ..., m) |, (2)

where Jxp is the objective defined in eq. 1, Diversity
is some measure of population diversity (for which we
will substitute TrajeDi in later sections) and « is a tunable
weight.

Our approach is informed by two core intuitions. The first
is that we can consider the entire population as a training
set with the sole purpose of guiding the learning of the
BR. When evaluating ZSC, the BR will then be compatible
with a much larger set of possible XP partners, while also
hopefully generalizing to unseen ones.

The second intuition is what we call the BR classes hypothe-
sis. We consider that the space of good SP policies can be
partitioned into different BR classes, where two distinct poli-
cies m; and 7 belong to the same class if and only if they
share a common BR, 73, satisfying Jxp(m1,73) = J(m1)
and Jxp(ma,m3) = J(mz). Furthermore, we assume that
BR classes of large cardinality are much less frequent than
small ones. Indeed, many settings, like Hanabi, admit a
vast number of policies that are only compatible with them-
selves due to reliance on arbitrary conventions. Because
those policies are their own unique BR, they each form their
own BR class of size 1. In turn, general policies that can
respond well to multiple kind of behaviours are much rarer.
It follows that those policies represent natural equilibria on
which to coordinate for ZSC, and our method is designed to
find one of them, as we illustrate in section 5.2.

Note that in many settings, agents can only maximize SP
scores by becoming highly specialized and forming arbitrary

conventions (Hu et al., 2020). In such cases, the largest
BR class is not necessarily the best in terms of SP. Then,
minimizing the loss in eq. 2 may result in potentially lower
SP scores, but will generally improve XP performance of
the BR.

4.2. Trajectory Diversity

We now seek to make eq. 2 precise by specifying a
Diversity measure.

From a trajectory perspective, two policies 71 and w5 can
be said to differ if they induce different trajectory distribu-
tions — an intuition which can be made precise by the use
of a statistical divergence measure D (71 (), m2(7)). For a
number of reasons detailed below, our measure of choice in
this paper is the Jensen-Shannon divergence (JSD), as used
in GANs (Goodfellow et al., 2014). Formally, when applied
to trajectory distributions, the JSD takes the form

n

m) = HD =Y ~Hm), @)

i=1

JSD(?T]_, ceey

where (7, ..., m,) is a population of n policies, H is the
Shannon entropy and 7 is the trajectory average defined in
section 3.1. Alternatively, we can express eq. 3 as the aver-
age Kullback-Leibler divergence D, from the population
policies to 7:

JSD(’H‘l, ceey

M) = —— ZZP 7lm) [log ((?)}

=1 7
1 .
*ZDKL(MHW),
niZl

where the (7) factor cancels out inside the log. This latter
form is particularly amenable to deriving policy gradients,
which we do in section 4.4.

Some advantages of the JSD are immediately apparent. First,
unlike the Kullback-Leibler divergence, which is limited to
the pair-wise comparison of two distributions, the JSD natu-
rally generalizes to an arbitrary number of policies, making
it particularly relevant when seeking a population that is
globally diverse. Secondly, the JSD is defined everywhere
and symmetric over policies, which helps intuition and sim-
plifies the implementation. Thirdly, the square root of the
JSD is a metric when n = 2, in which cases maximizing
eq. 3 increases the distance between the policies in a proper
metric space (Endres & Schindelin, 2003).

Additionally, maximizing the JSD over a population of poli-
cies has an intuitive interpretation: the first term of eq. 3
encourages the population to cover a large subset of 7 by
maximizing its collective entropy. Meanwhile, the second
term drives each policy distribution to be contracted to as



few trajectories as possible. This balance results in the JSD
being in fact unaffected by the individual entropy of each
policy, differentiating it starkly from entropy maximization
techniques. Indeed, the only thing it depends on is the
degree of overlap between policies and so it is bounded
between 0 (when all policies induce identical distributions)
and log n (when the trajectory distributions are all disjoint).
In particular, this implies that the maximum value of the
JSD is independent of the number of possible trajectories.
In addition, the sampling procedure underlying the JSD
means that policies in any given pair are only required to act
differently along trajectories on which both have non-zero
probability mass. In other words, it captures the intuition
that it is meaningless to evaluate a policy in the parts of the
trajectory tree that it never visits naturally. As a result, the
JSD measures precisely the notion of diversity that we seek
to optimize.

4.3. Action Discounting

Next, consider complex settings with long horizons or many
degrees of freedom in the possible solutions. For instance,
suppose that along every possible trajectory, there is a
nullspace — a small subset of states where two or more
actions are equally optimal, but have little or no effect on
the perceived behaviour of the agent. For instance, this
could be an inconsequential action such as a robot choosing
which arm to use for pressing a button, or a permutation of
several actions, when order is irrelevant to the final outcome.
In such settings, the JSD objective is too sensitive, as it is
possible to produce a vast number of near-identical policies
that nonetheless maximize the objective due to acting dif-
ferently in the nullspace. This problem can theoretically
be solved if the policy population is sufficiently large so as
to “saturate” the nullspace, for example by having enough
policies to cover all possible action permutations. In prac-
tice, however, this can require a combinatorial number of
policies, which is infeasible in all but the simplest settings.

To address this issue, we introduce a generalization of the
JSD objective defined in eq. 3. For a policy m; unrolled on
trajectory T, let the local action kernel be defined as

T ’
0i4(7) := H [ﬂ'i(at/|7't/)}7‘t - , 4)
/=0

where + is a discounting factor in [0, 1]. Furthermore, simi-
larly to what we did before, let 8,(7) := 31| 248, ,(7) be
the average local action kernel. Then, replacing 7; by J;
and 7 by 6, in the logarithms of the JSD and averaging over
time steps, we obtain

n T
, ) = f% ZZP(TW) Z % log ;t((T))
i=1 7 t=0 it\T

s

ISD, (1, ...

which is the final TrajeDi objective.

We can better understand eq. 5 by looking at the special
cases covered by it. Setting v = 1 yields 6; (1) = m;(7)
and 6,(7) = #(7) for all ¢, and we retrieve the initial JSD
objective over trajectory distributions, making TrajeDi a
strict generalization. Consequently, we will refer to eq. 3
as JSD; from now on. At the other extreme, v = 0 makes
8;+(1) = m;(as|m) and &, (1) = 7 (ay|7;), and so maximiz-
ing JSDg produces policies that differ in their action choices
at every state. In the appendix, we show that this is equiv-
alent to the KL divergence from the mean at the level of
individual actions.

For two deterministic policies 7 and 7/, the innermost term
of ISDy can only take a value of 0 (if 7(a|r) = 7'(a|r) =
1) or 1 (if w(a|) = 1 and 7’(a|m) = 0). In that case,
JSDg measures the expected number of times 7 and 7/ will
“disagree” by selecting different actions.

In summary, JSD; is a very responsive trajectory-level ob-
jective that is best suited for “tight” settings with few de-
grees of freedom in optimal solutions. Its counterpart, JSDy),
is a much more stringent action-level measure of diversity,
which can be used to push policies to differ at every state.
Then, by tuning ~y in eq. 5, TrajeDi allows us to smoothly
interpolate between the two extremes. This can be done
through a hyperparameter search, using prior knowledge, or
in a dynamic fashion by reducing its value during training.
Thus, given our intuitions and the results from section 5.3,
we emit the following conjecture:

Conjecture 4.1. Let v1,7v2 € [0,1], with v1 > 7o and let
(m1, ..., ) be a population of policies, each inducing a
distribution of trajectory set T. Then, it holds that:

logn > JSD,, (71, ..., ) > JSD, (71, ..., ™) > 0.

Finally, we use a fixed horizon only for simplicity. Since ev-
ery comparison is done trajectory-wise, it suffices to change
T to T'(7) in eq. 5 to accommodate for trajectories of differ-
ent length. In fact, given that 7(a|r;) > 0 for all 7, 7 and
a, TrajeDi with v < 1 can be approximated locally even in
tasks with infinite horizons.

4.4. Objective Gradient

Due to the TrajeDi objective operating directly on policy
probabilities, it lends itself particularly well to being incor-
porated in policy gradient algorithms. Here, we provide
an approximate policy gradient and show the main steps to
build intuition.

Evaluating the TrajeDi objective, even when sampling only
a subset of trajectories, carries a computational cost that is
quadratic in the size of the population. This is because the
sum in the logarithm requires that each policy be unrolled



on the trajectories generated by all of the other policies. The
exact gradient, which we provide in the appendix, suffers
from the same issue, which can make it prohibitively expen-
sive in many cases. In theory, sampling very few trajectories
is sufficient to keep computations manageable, but it causes
high variance and is at odds with batch methods in DRL,
which for large models can require the processing of a large
number of trajectories for a single policy update.

To bypass the issue, we first expand eq. 5 and approximate
the log (nSt(T)) term in the sum by its tangent to obtain
JSNDW, with J SND7 < JSD,. Then, assuming each policy m;
has a parametrization 6;, we can take the gradient of this ap-

proximate objective with respect to 8;. After an application
of the product rule, the resulting gradient estimator is

T
- 1 (1)
Vo,JSD, = —E.r, { T ; () 6i,t(T) Ve, log 6i¢(7)

+ (St(T) - %log 5i,t(7)) Ve, log m-,(T)}, (6)

where 7 (7) and b4 (7) are both expectations and can be sam-
pled. Because the outermost expectation is over trajectories
sampled from 7;, policies do not receive gradients from
trajectories generated by other policies. This is necessary
in some distributed implementations of population based
training, such as the one we use for Hanabi in section 5, but
comes at the cost of higher variance due to the the impor-
tance sampling ratio in the first term. We provide a different
variant of the gradient estimator, along with a full derivation,
in the appendix.

In the appendix, we also show how eq. 6 can be modified
for use in off-policy training, and in particular batch RL
methods.

4.5. TrajeDi for Zero-Shot Coordination

We can now substitute the arbitrary diversity measure from
eq. 2 by TrajeDi, obtaining a fully differentiable PBT loss:

n

.,7Tn) = — Z (JXP(BR, 771') + J(ﬂ'l))

i=1

L(BR, Ty --

+ J(BR) + aJSD. (71, .., ) | . (7)

Then, using the gradient estimator from eq. 6, the gradient
for each policy can be computed using only data from its
own replay buffer, which we find necessary for large scale
asynchronous PBT setups, such as our Hanabi experiments.

We present the full TrajeDi PDT procedure for ZSC in
algorithm 1.

Algorithm 1 TrajeDi PBT with Common Best Response
Parameters: n, v, o, T', A
P +— (mpR, 1, ...y ), parametrized by (pg, 61, -
SPB;, XPB,; «— SP and XP replay buffers for 7;
SPBggr, XPBgr +— SP and XP buffers for mgg
while policies have not converged do
foralli € {BR,1,...,n} do
T <— GetEpisodeRollout(m;, ;)
SPB; «— SPB; | J 7
if i # BR then
T +— GetEpisodeRollout(m;, Tpr)
XPBl — XPB, U 7; XPBgr +— XPBggr UT
end if
end for
foralli € {1,...,n} do
Sample batch B ~ SPB; and estimate J(7;, 7;)
Sample batch B’ ~ XPB; and estimate .J(7;, TR )
V(j,t,7) € {1:n} x{0: T} x B compute §; .(7)
Estimate Vg,iJSNDV based on the §; +’s (eq. 6)
91' — 0,’ + )\V&E(BR, 71, ...,ﬂ'n)
end for
HBR — 0BR + )\VQBR,C(BR7 T1y.en
end while

o 0)

) Tn)

5. Experiments
5.1. Diversity of Solutions

We first provide a proof of principle result, showing that
TrajeDi can be used to find diverse solutions.

To do so, we use the two tree-like environments shown in
Figure 2. Both environments are deterministic and fully
observable MDPs with vy = 1. In either of them, the
agent starts at state sq (the root) and makes its way to one of
the terminal states, corresponding to the leaves of the tree.
The agent then receives a reward of 1.0 if it reached one of
the green shaded states and 0.1 otherwise.

In both trees, the high reward states are those for which the
index is a power of 2. In the complete tree, this creates a
higher concentration of reward on the left half of the tree,
but leaves every trajectory equally likely under a random
policy. In the incomplete tree, this makes each solution ex-
ponentially harder to reach. However, because the return is
not discounted, every green terminal state remains optimal.

We implement simple policy-gradient policies and train 10
populations of n agents, where we let n be the number of
different solutions. We train these populations both with
and without the TrajeDi objective and, for each option, we
test two different ways of initializing policies. The first is
the random parameter initialization that is standard in RL.
The second is what we call “entropic initialization”. That
is, we initialize each policy such that P(7|r) = ﬁ for all
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Figure 2: Two MDPs used to test the hypothesis that TrajeDi
training produces diverse solutions. Both environments are
fully observable, deterministic and undiscounted (y,q = 1).
The reward for reaching a terminal state (numbered) is 1.0
for green shaded states and 0.1 otherwise. In the complete
tree (top), the agent can move left or right. In the
incomplete tree (bottom), the actions are down and right.

7, thus maximizing its entropy 7. Finally, in the TrajeDi
objective, we use v = 1.

We present our results in Figure 3 by plotting the trajectory
distributions (7 (7)) that each type of population converges
to on average. In Figure 3a, we see that the baseline policies
preferentially converge towards the left-most solutions of
the complete tree, with the effect being significantly more
pronounced when using entropic initialization. Meanwhile,
the randomly initialized TrajeDi population still suffers from
some variance, but outperforms both baselines. Finally,
when paired with entropic initialization, TrajeDi reliably
finds every solution and so maximizes diversity on all runs.

In the incomplete tree, each solution is exponentially harder
to find than than the previous one, and so the difference
between baseline and TrajeDi populations is more dramatic.
Indeed, Figure 3b demonstrates that without a diversity ob-
jective, the baseline population collapses almost exclusively
to the most accessible solution. Entropic initialization helps
somewhat, but the effect is insufficient as even then the
baseline puts over 85% of the probability mass on 7, while
never reaching 73 and 7y4. The randomly initialized TrajeDi
populations again outperform both baselines in terms of di-
versity, although this time it is at the cost of some optimality.
The reason is that we put a high weight on the TrajeDi loss
term (o = 4 in eq. 7). As a result, when the population fails
to find the higher index solutions altogether, some policies
are pushed towards suboptimal trajectories. This effect is
naturally mitigated with lower «, a smaller population size,
or when using entropic initialization. In the latter case, we
again retrieve perfectly diverse populations over solutions,
as shown by the red bars in the plot.
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Figure 3: Average trajectory probabilities of the population
(7(7)) on a) the complete tree and b) the incomplete tree
environments of Figure 2. We compare baseline populations
against populations enhanced with the TrajeDi objective and
test both with random and entropic initialization. In both
settings, TrajeDi populations with entropic initialization
are by far the most reliable in finding all solutions. Values
averaged over 10 populations, with error bars representing
one standard deviation. Note that the y axis range is different
between the two graphs.

5.2. Zero-Shot Coordination

Next, we demonstrate that training a common BR as a regu-
larizer to a TrajeDi-enhanced population results in a robust
agent for ZSC?.

We run our experiments on the single-step collaborative
matrix game visualized in Figure 4a. In this game, player
1 must select a row while player 2 chooses a column inde-
pendently. Once done, the actions are revealed, and both
agents get the reward associated with the intersection of
their choices.

We train 50 independent TrajeDi populations of two agents,
each complete with a common BR, as given by eq. 7. We
evaluate the BRs and compare against common BRs to
unregularized populations, as well as to 50 individual agents
trained independently.

We plot the performance in both SP and XP in Figure 4b.
In SP, all schemes successfully achieve optimal return, but
the BRs to TrajeDi populations do so faster. This is likely
due to the TrajeDi objective providing a richer and more di-
rected reward signal, but also due to the advantage diversity
provides with exploration.

The code is available online and can be run in-browser: https:
//bit.ly/33NBw50
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Figure 4: a) Collaborative matrix game used to evaluate XP performance. b) Train and test performances on the matrix
game. Shown are the results for BRs to TrajeDi-enhanced populations, BRs to baseline populations, and individual agents.
TrajeDi allows faster learning in SP, and drives the BR to converge to the unique solution optimal in ZSC.

In XP, the TrajeDi curve is identical, demonstrating that BRs
trained on diverse populations have indeed learned the most
general solution (first or second row as the row player and
first column as the column player). Meanwhile, individual
agents and BRs to baseline populations perform only slightly
better than chance, as off-diagonal payoffs tend to make the
policies diverge from the optimal ZSC solution. Moreover,
there is no statistical difference between the XP scores of
the two baselines, supporting the hypothesis that PBT with
a common BR provides no benefit without diversity.

Note that, because this setting is not temporally extended,
the TrajeDi objective is the same regardless of the discount-
ing term . This is also the only case where TrajeDi is
equivalent to the diversity used in Gangwani et al. (2018).
Also, because the setting is state-less, methods that rely
on state distributions to define diversity (Song et al., 2019;
Eysenbach et al., 2018; Florensa et al., 2017) are unusable.

5.3. TrajeDi in Hanabi

Finally, we apply algorithm 1 to improve ZSC in Hanabi.
We chose this game because it was recently proposed as a
challenge in artificial intelligence (Bard et al., 2020), and
because it was studied by Hu et al. in the context of ZSC.

In short, a Hanabi deck is composed of 50 cards with ranks
ranging from 1 to 5, duplicated in five different colors. The
goal is for the players to stack the cards in five decks — one
for each color — in ascending rank order. The key mechanic
of the game is that each player can see the hands of other
players, but never their own. Players must therefore give
each other hints to provide enough information for a card to
be played, which uses one of the eight available hint tokens.
Those hints are regulated, and a player can only ever point
out all cards of the same rank or all cards of the same color
in another player’s hand®. Finally, a player can discard one

3E.g. “Your first and third cards are blue” or “your last card is

METHOD SP XP
oP 24.24 + 0.02 23.65£0.06
OP pooOL BR 24.17 +£0.04 23.66 £0.07

OP poOL BR + TRAJEDTI 24.22 +£0.01 24.09 £ 0.02

Table 1: SP and XP scores for OP agents in Hanabi, with the
last action hidden. Results reported on either 5 individual
agents (first row) or 4 BRs, each trained on their own pool
(second and third rows). Following the ZSC definition, XP
is only computed between agents trained with the same
method. Intervals correspond to one standard error.

of their card, which recovers one of the hint tokens. We refer
interested readers to Bard et al. (2020) for the full rules.

Hanabi is a highly complex game, even the two-player vari-
ant counts approximately 6.2 x 10'3 possible initial joint
states (Foerster et al., 2019) and between 10 and 20 legal
actions depending on whether there are hint tokens left. As-
suming players do nothing but discarding one of their five
cards each turn, the game ends after 42 actions, when the
deck is depleted. Ignoring all other possible actions, as
well as the specifics of the deck permutations, we can take
6.2 x 10 x 542 = 10*3 as a very loose lower bound on
the number of possible trajectories.

Besides the sheer size of the setting, this game presents
several challenges for successfully using TrajeDi. First,
the best performing methods of Hu et al. use off-policy
training which requires modifying our gradient estimator
accordingly. Secondly, the models are value-based, so we
first apply a softmax layer to propagate TrajeDi gradients
as for a policy-based method. Thirdly, the replay buffers
only track the observations of one agent at a time, hindering
our kernel computation in eq. 4. Finally, training is very
compute intensive, as it uses 2 GPUs per agent and takes
between 48 and 72 hours to converge, depending on the

of rank 4.7
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Figure 5: P(a;+1]a:) matrices for the 4 BR policies to TrajeDi-regularized pools. Shown is a quadrant of each matrix
corresponding to the probability of discarding and playing after a hint. D1-D5 and P1-P5 correspond to discarding and
playing each of the five cards in hand, while R1-R5 and C1-C5 indicate hinting for one of the five ranks or colors, respectively.
Conditional probabilities are computed empirically based on 1000 episodes of SP for each agent. Agents converge to very
similar policies, explaining their high XP score when playing together.

method. The computational cost is what limited our ability
to run additional seeds and baselines. For a rundown of our
implementation, we refer the reader to the appendix.

Taking advantage of these adaptations to the method de-
scribed in section 4, we train four independent pools of
TrajeDi-regularized policies of size 3, complete with their
own BRs. We compare against four BRs to unregularized
(but otherwise identical) pools as well as five independently
trained policies. Following the best approach of Hu et al.,
all our policies are trained with OP augmented with an auxil-
iary task consisting in predicting whether a card is playable,
discardable or unknown. In addition, we prevent agents
from seeing the last action used by the partner, since it can
be used as a signaling method (Hu et al., 2020). Because
ZSC does not allow players to coordinate on specific mod-
ifications to the observation space, hiding the last action
counts as a variation upon the game itself. However, it was
necessary to reduce the number of possible conventions and
therefore keep our pools small enough to be computationally
tractable. We also found that it substantially improved the
XP scores of the individual agents baseline. In the future,
we aim to forgo this modification by training larger pools.

We summarize our results in Table 1. BR policies to TrajeDi-
enhanced pools achieve significantly higher XP scores than
both BRs to standard pools and individual agents, showing
that TrajeDi can indeed help develop more robust strategies
for zero-shot coordination, even in such a complex setting.
This is done at the cost of a minor drop in SP scores, which
affect all BRs and is representative of the difficulty of having
four policies converging to the same convention as opposed
to a single one in SP. To the best of our knowledge this is the
first time that a diversity objective has been shown to help
in the ZSC framework and presents a step towards machines
that can coordinate well with humans.

Like Hu et al., we illustrate the behaviour of the BR policies
produced by our method by showing part of their conditional
action matrices in Figure 5. We see that the four policies

converge to a very similar behaviour focused around rank
hints and playing their fifth card.

6. Conclusion and Future Work

In this work, we first studied the role of diversity in training
robust policies for ZSC and leveraged it within a population-
based approach. Secondly, we generalized the Jensen-
Shannon Divergence over policies to derive TrajeDi, a dif-
ferentiable objective for training diverse policies. We also
derived a gradient estimator and argued that it is particularly
well suited for multi-agent settings. Finally, we showed
empirically the merit of our contributions in two simple set-
tings and demonstrated their scalability by improving ZSC
scores in the complex coordination game Hanabi.

A compelling extension of this work is the use of diversity
in competitive settings, where we hypothesize it could im-
prove robustness of a BR agent and mitigate the danger of
adversarial attacks against it (Gleave et al., 2019). Moreover,
due to the general formulation of the TrajeDi objective, we
believe it could have a range of other applications, from
HRL to pretraining skills or to exploration in sparse reward
settings. Finally, inspired by our results with entropic initial-
ization in section 5.1, we wish to study the impact of initial
parameters on the convergence behavior of RL policies.
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