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Abstract

We present deep learning methods for the design
of arrays and single instances of small antennas.
Each design instance is conditioned on a target
radiation pattern and is required to conform to
specific spatial dimensions and to include, as part
of its metallic structure, a set of predetermined
locations. The solution, in the case of a single an-
tenna, is based on a composite neural network that
combines a simulation network, a hypernetwork,
and a refinement network. In the design of the an-
tenna array, we add an additional design level and
employ a hypernetwork within a hypernetwork.
The learning objective is based on measuring the
similarity of the obtained radiation pattern to the
desired one. Our experiments demonstrate that
our approach is able to design novel antennas and
antenna arrays that are compliant with the design
requirements, considerably better than the base-
line methods. We compare the solutions obtained
by our method to existing designs and demon-
strate a high level of overlap. When designing the
antenna array of a cellular phone, the obtained
solution displays improved properties over the
existing one. We share our implementation here.

1. Introduction

Since electronic devices are getting smaller, the task of
designing suitable antennas is becoming increasingly impor-
tant (Anguera et al., 2013). However, the design of small
antennas, given a set of structural constraints and the de-
sired radiation pattern, is still an iterative and tedious task
(Miron & Miron, 2014). Moreover, to cope with an increas-
ing demand for higher data rates in dynamic communication
channels, almost all of the current consumer devices include
antenna arrays, which adds a dimension of complexity to
the design problem (Bogale & Le, 2016).
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Designing antennas is a challenging inverse problem: while
mapping the structure of the antenna to its radiation prop-
erties is possible (but inefficient) by numerically solving
Maxwell’s equations, the problem of obtaining a struc-
ture that produces the desired radiation pattern, subject
to structural constraints, can only be defined as an opti-
mization problem, with a large search space and various
trade-offs (Wheeler, 1975). Our novel approach for design-
ing a Printed Circuit Board (PCB) antenna that produces
the desired radiation pattern, resides in a 3D bounding box,
and includes a predefined set of metallic locations. We then
present a method for the design of an antenna array that
combines several such antennas.

The single antenna method first trains a simulation network
h that replaces the numerical solver, based on an initial
training set obtained using the solver. This network is used
to rapidly create a larger training set for solving the inverse
problem, and, more importantly, to define a loss term that
measures the fitting of the obtained radiation pattern to the
desired one. The design networks that solve the inverse
problem include a hypernetwork (Ha et al., 2016) f that is
trained to obtain an initial structure, which is defined by the
functional g. This structure is then refined by a network
t that incorporates the metallic locations and obtains the
final design. For the design of an antenna array, on top
of the parameters of each antenna, it is also necessary to
determine the number of antennas and their position. For
this task, we introduce the hyper-hypernetwork framework,
in which an outer hypernetwork ¢ determines the weights
of an inner hypernetwork f, which determines the weights
of the primary network g.

Our experiments demonstrate the success of the trained mod-
els in producing solutions that comply with the geometric
constraints and achieve the desired radiation pattern. We
demonstrate that both the hypernetwork f and the refine-
ment network ¢ are required for the design of a single an-
tenna and that the method outperforms the baseline methods.
In the case of multiple antennas, the hyperhypernetwork,
which consists of networks g, f, g, outperforms the baseline
methods on a realistic synthetic dataset. Furthermore, it is
able to predict the structure of real-world antenna designs
(Chen & Lin, 2018; Singh, 2016) and to suggest an alterna-
tive design that has improved array directivity for the iPhone
11 Pro Max.
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2. Related Work

Misilmani & Naous (2019) survey design methods for large
antennas, i.e., antennas the size of A\/2— \/4, where ) is the
corresponding wavelength of their center frequency. Most
of the works surveyed are either genetic algorithms (Liu
et al., 2014) or SVM based classifiers (Prado et al., 2018).
None of the surveyed methods incorporates geometrical
constraints, which are crucial for the design of the small
antennas we study, due to physical constraints.

A limited number of attempts were made in the automatic
design of small antennas, usually defined by a scale that
is smaller than A/10 (Bulus, 2014). Hornby et al. (2006);
Liu et al. (2014) employ genetic algorithms to obtain the
target gain. Santarelli et al. (2006) employ hierarchical
Bayesian optimization with genetic algorithms to design
an electrically small antenna and show that the design ob-
tained outperforms classical man-made antennas. None of
these methods employ geometric constraints, making them
unsuitable for real-world applications. They also require
running the antenna simulation over and over again during
the optimization process. Our method requires a one-time
investment in creating a training dataset, after which the
design process itself is very efficient.

A hypernetwork scheme (Ha et al., 2016) is often used
to learn dynamic networks that can adjust to the in-
put (Bertinetto et al., 2016; von Oswald et al., 2020) through
multiplicative interactions (Jayakumar et al., 2020). It con-
tains two networks, the hypernetwork f, and the primary
network g. The weights 6, of g are generated by f based on
f’s input. We use a hypernetwork to recover the structure
of the antenna in 3D. Hypernetworks were recently used to
obtain state of the art results in 3D reconstruction from a
single image (Littwin & Wolf, 2019).

We present multiple innovations when applying hypernet-
works. First, we are the first, as far as we can ascertain,
to apply hypernetworks to complex manufacturing design
problems. Second, we present the concept of a hyperhyper-
network, in which a hypernetwork provides the weights of
another hypernetwork. Third, we present a proper way to
initialize hyperhypernetworks, as well as a heuristic for se-
lecting which network weights should be learned as conven-
tional parameters and which as part of the dynamic scheme
offered by hypernetworks.

3. Single Antenna Design

Given the geometry of an antenna, i.e. the metal structure,
one can use a Finite Difference Time Domain (FDTD) soft-
ware, such as OpenEMS FDTD engine (Liebig, 2010), to
obtain the antenna’s radiation pattern in spherical coordi-
nates (6, ¢). Applying such software to this problem, under
the setting we study, has a runtime of 30 minutes per sam-

ple, making it too slow to support an efficient search for a
geometry given the desired radiation pattern, i.e., solve the
inverse problem. Additionally, since it is non-differentiable,
its usage for optimizing the geometry is limited.

Therefore, although our goal is to solve the inverse problem,
we first build a simulation network h. This network is used
to support a loss term that validates the obtained geometry,
and to propagate gradients through this loss. The simulation
network h is given two inputs (i) the scale in terms of wave-
length S and (ii) a 3D voxel-based description of the spatial
structure of the metals V. & returns a 2D map U describing
the far-field radiation pattern, i.e., U = h(S, V).

Specifically, S € R? specifies the arena limits. This is
given as the size of the bounding box of the metal structure,
in units of the wavelength A corresponding to the center
frequency. V' is a voxel grid of size 64 x 64 x 16, which is
sampled within the 3D bounding box dimensions provided
by S. In other words, it represents a uniform sampling on
a grid with cells of size [S1/64, S2/64, S5/16]. The lower
resolution along the z axis stems from the reduced depth of
many mobile devices. Each voxel contains a binary value:
0 for nonmetallic materials, 1 for conducting metal. The
output tensor is a 2D “image” U (6, ¢), sampled on a grid
of size 64 x 64, each covering a region of 7/64 x 27 /64
squared arc lengths. The value in each grid point denotes
the radiation power in this direction.

The directivity gain D = N (U) is a normalized version of
U:

U, ¢)
;ZO feTr:o U(6, ¢)sin(0) do d¢

D(6,¢) = (1)

The design network solves the inverse problem, i.e., map
from the required antenna’s directivity gain D to a repre-
sentation of the 3D volume V. We employ a hypernetwork
scheme, in which an hypernetwork f receives the design pa-
rameters D and S and returns the weights of an occupancy
network g. g : [0,1]% — [0, 1] is a multi-layered perceptron
(MLP) that maps a point p in 3D, given in a coordinate
system in which each dimension of the bounding box S is
between zero and one, into the probability o of a metallic
material at point p.

0, = f(D,S), o=g(p;by,) (2)

The weights of the hypernetwork f are learned, while the
weights of the primary network g are obtained as the output
of f. Therefore g, which encodes a 3D shape, is dynamic
and changes based on the input to f.

To obtain an initial antenna design in voxel space, we sample
the structure defined by the functional g along a grid of
size 64 x 64 x 16 and obtain a 3D tensor O. However,
this output was obtained without considering an additional
design constraint that specifies unmovable metal regions.
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To address this constraint, we introduce network t. We
denote the fixed metallic regions by the tensor M €
R64x64x16 " ywhich resides in the same voxel space as V.
t acts on M, O and returns the desired metallic structure v,
ie,V =t(M,O).

Learning Objectives For each network, a different loss
function is derived according to its nature. Since the direc-
tivity gain map is smooth with regions of peaks and nulls,
the multiscale SSIM (Zhou Wang & Bovik, 2003) (with a
window size of three) is used to define the loss of h. Let
U™ be the ground truth radiation pattern, which is a 2D
image, with one value for every angle 6, ¢. The loss of the
simulation network is given by

Ly, = —msSSIM(U*, h(S, V) 3)

The simulation network h is trained first before the other
networks are trained.

The loss of the hypernetwork f is defined only through the
output of network g and it backpropagates to f.

L, = CrossEntropy(g(p, f(D, S)), yp) “4)

where y,, is the target metal structure at point p. This loss is
accumulated for all samples on a dense grid of points p.

For ¢, the multitask paradigm (Kendall et al., 2018) is used,

in which the balancing weights «; are optimized as part of

the learning process.
multiloss([ly...1,)7) = Z exp(—ey) - li+a; (5

i€[1,n]

where [; are individual loss terms and o € R™ is a vector of
learned parameters. Specifically, ¢ is trained with the loss
Ly = multiloss(Lopcg, Lmsssim) for

1

Lopce = A
P

S M, logV,) (6

pe{]\/jp}
Limsssiva = —msSSIM(N (h(S,V)),D).  (7)

The first loss Lopck is the binary cross entropy loss that
considers only the regions that are marked by the metallic
constraint mask M as regions that must contain metal. The
second loss L,,,sssras 1S the SSIM of the radiation patterns
(N is the normalization operator of Eq. 1).

4. Antenna Array

Antenna arrays are used in the current design of consumer
communication devices (and elsewhere) to enable complex
radiation patterns that are challenging to achieve by a single
antenna. For example, a single cellular device needs to
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Figure 1. The architecture of the hyperhypernetwork g, the hyper-
network f, and the primary network g used in the antenna array
design. In the case of the single antenna design, only f,q are
used. The hyperhypernetwork g is given the constraint plane C'
and outputs the parameters 6 of network f. The hypernetwork f,
given the bounding box S and target directivity D or array gain
AG, produces the weights 6, of network g. The primary network
g maps a point p in 3D into the probability of metal occupancy at
that point. The simulation network h used to compute the loss and
the refinement network ¢ are not shown in the diagram.
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Figure 2. The two variants of network f. (a) The ResNet variant.
(b) The Transformer variant.

transmit and receive radio frequencies with multiple wifi
and cellular antennas (Bogale & Le, 2016).

We present a method for designing antenna arrays that is
based on a new type of hypernetwork. For practical reasons,
we focus on up to N, = 6 antennas. See appendix for the
reasoning behind this maximal number.

While a single antenna is designed based on a target direc-
tivity D, an array is defined based on a target array gain
AG. Assuming, without loss of generality, that we consider
a beamforming direction of zero, AG is defined, for the
observation angle ¢, 0 as

AG(0,6) = > Uant(0, ) exp(—jkrans)  (8)

ant

where Uy,: (6, ¢) € R is the real valued radiation pattern of
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single element in the array, k is the wave vector, defined as
k =2m /) x [sin(0)cos(¢), sin(8)sin(p), cos()] (9)

and 7qnt = [rz,7y,7.] € R3 is the element center phase
position in 3D coordinates.

In addition to the array gain pattern AG and the global 3D
bounding box S, antenna arrays adhere to physical design
constraints. For example, for mobile devices, multiple ar-
eas exists where antenna elements can not be fitted, due to
electromagnetic interference, product design, and regula-
tions (Federal Communications Commission, 2015).

Unlike the single antenna case, which is embedded in a 3D
electrical board, which is captured by the constraint tensor
M , multiple antennas are mostly placed outside such boards.
We, therefore, assume that the constraints are independent
of the z and formulate these as a binary matrix C'.

_J1, if(z,y) € AP
Clay) = {O, otherwise (10)

Where AP is the subset of positions in the XY plane in
which one is allowed to position metal objects.

Hyperhypernetworks We introduce a hyperhypernet-
work scheme, which given high-level constraints on the
design output, determines the parameters of an inner hyper-
network that, in return, outputs those of a primary network.

Let q be the hyperhypernetwork, and let ¢5 be the indices of
the subset of the parameters ¢ of network f. g returns this
subset of weights 9}5, based on the constraint matrix C":

07 =q(C;0,) (11)

where 0, are learned parameters. Below, 7. indexes parame-
ters of f and is complementary to i,. The associated weights
9;;3 are learned conventionally and are independent of C.

Network f gets as input AG, S (defined in Eq. 8 and Sec. 3,
respectively). The former is given in the form of a 2D tensor
sampled on a grid of size 64 x 64, each covering a region of
7/64 x 27 /64 squared arc lengths, and the latter is in R3.
The output of f are the weights of network g, 6.

0y = f(AG, S; 0% ,07) (12)

The output of the primary network g given a 3D coordinate
vector p € R3 is a tuple O = g(p; 0,), where O = [Pr(p €
Metal), Pr(p € ValidAntenna)] is concatenation of two
probabilities, the probability of 3D point p being classified
as metal voxel or a dielectric voxel, and the probability of
this point belongs to a valid antenna structure. The high-
level architecture, including the networks g, f, g is depicted
in Fig. 1 and the specific architectures are given in Sec. 5.

Unlike the single antenna case, where the metallic con-
straints are tighter, for the antenna array, we do not employ
a refinement network ¢. The training loss is integrated along
points p in 3D and is a multiloss (Eq. 5) of a structural and
a constraint loss, similar to the single antenna. The struc-
tural loss is given by Ly = > CrossEntropy(Oi[pl, yp),
where y,, is the target metal structure at point p and Oy
is the kth element of O. The constraint loss is Lo =
—m Ypeic,y Cp - 1og(1 — Ogyy)), where (p,p,) are
the X and Y coordinates of the input point p.

Initialization Hypernetworks present challenges with re-
gards to the number of learned parameters and are also
challenging to initialize (Littwin & Wolf, 2019; Chang et al.,
2020). Below, we (i) generalize the initialization scheme of
(Chang et al., 2020) to the hyperhypernetwork, and (ii) pro-
pose a way to select which subset of parameters 75 would be
determined by the network ¢, and which would be learned
conventionally as fixed parameters that do not depend on
the input.

Define the hypernwetwork f = f, o...0 fo o f; asa
composition of n layers. Similarly we define the hyperhy-
pernetwork ¢ = ¢, o ... 0 g2 © g1 as a composition of n
layers, and define wj(.c) = gj o...0q(c), where c is the

hyperhypernetwork input.

We assume that 7, the set of parameters that are determined
by ¢ contains complete layers, which we denote as js C [n].
The computation of f; on the embedding e,

£0) = {fj(_e), L i

13
(@ x w e, j € Ja (13

Where x denotes tensor multiplication along the relevant
dimension and ¢/ is the portion of the hyperhypernetwork
last layer corresponds the j-th layer of f.

For f; where j & j, we use (Chang et al., 2020) results for
initialization. We initialize ¢, —1, ..., q; using the Xavier
fan in assumption, obtaining Var(wj(c)) = Var(c). The
variance of the output of the primary network, denoted y,
given primary network input x, hypernetwork input e, and

hyperhypernetwork input c is

Var(y) =Y > Var(fulj, k) Var(fi(e))Var(z;)
ik
=> " Var(fulj, k) Var(fu(e))Var(;)

J k€js

+ Z Z (Var(g,[k,m]) Var(wgc) [m])Var(e)

k€js m

Var(fulj, K)Var(z;)))
(14)

where we use brackets to index matrix or vector elements.
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We propose to initialize elements k of the last layer of ¢ as
Var(qulk]) = (dnVar(c)) ™" (15)

where d,,, is the fan-in of the last hyperhypernetwork layer
qn. This way we obtain the desired

dr, — Q 1
Var(y) = Var(z;) ——+ E Var(z;)
i J:k€js,m didmd,;
dn —
= Var(z,) ) + QVar(xj) =Var(z;) (16)
dy, dy;

where () = |is| is the number of parameters that vary dy-
namically as the output of the hyperhypernetwork.

Block selection  Since the size of network ¢ scales with
the number @) of parameters in f it determines, we limit, in
most experiments, ) < 10, 000. This way, we maintain the
batch size we use despite the limits of memory size. The set
of parameters i, is selected heuristically as detailed below.

Let n be the number of layers in network f. We arrange the
parameter vector 6 by layer, where 9; denotes the weights
of a single layer 6y = [053, ey 0?‘1] and |9}\ is the number
of parameters in layer j of f. The layers are ordered by the
relative contribution of each parameter, which is estimated
heuristically per-layer as a score H;

H; is computed based on the distribution of losses on the
training set that is obtained when fixing all layers, except
for layer j, to random initialization values, and re-sampling
the random weights of layer j multiple times. This process
is repeated 10, 000 times and the obtained loss values are
aggregated into 1, 000 equally spaced bins. The entropy of
the resulting 1, 000 values of this histogram is taken as the
value H;. Since random weights are used, this process is
efficient, despite the high number of repetitions.

The method selects, using the Knapsack algorithm (Dantzig,
1955), a subset of the layers with the highest sum of H;
values such that the total number of parameters (the sum of
|9}| over j,) is less than the total quota of parameters ().

5. Architecture

The network h, which is used to generate additional training
data and to backpropagate the loss, consists of a CNN (3 x 3
kernels) applied to V, followed by three ResNet Blocks,
a concatenation of S, and a fully connected layer. ELU
activations (Clevert et al., 2015) are used.

The primary network g is a four layer MLP, each with 64
hidden neurons and ELU activations, except for the last
activation, which is a sigmoid (to produce a value between
zero and one). The MLP parametrization, similarly to (Lit-
twin & Wolf, 2019), is given by separating the weights
and the scales, where each layer j with input  performs

(7607) - 0 + 6, where 0], € R¥*% 9] ¢ R and
Hg € R?% are the weight-, scale- and bias-parameters of
each layer, respectively, and - is the element-wise multi-
plication. The dimensions are d; = 3 for the first layer,
dy = 64 for the rest, and do = 64 for all layers, except the
last one, where it is one.

For the hypernetwork f, we experiment with two designs,
as shown in Fig. 2. Architecture (a) is based on a ResNet
and architecture (b) has a Transformer encoder (Vaswani
et al., 2017) at its core. Design (a) f has four ResNet
blocks, and two fully connected (FC) layers. D propagates
through the ResNet blocks and flattened into a vector. S
is concatenated to this vector, and the result propagates
through two FC layers. The weights of the last Linear unit
in f are initialized, according to (Chang et al., 2020), to
mitigate vanishing gradients.

Design (b) of the hypernetwork f consists of three parts:
(1) a CNN layer that is applied to AG, with a kernel size of
3 x 3. (2) a Transformer-encoder that is applied to the vector
of activations that the CNN layer outputs, consisting of
four layers each containing: (i) multiheaded self-attention,
(ii) a fully connected layer. The self attention head was
supplemented with fixed sine positional encoding (Parmar
et al., 2018). (3) two fully connected (FC) layers, with
an ELU activation in-between. The bounding box S is
concatenated to the embedding provided by the transformer-
encoder, before it is passed to the FC layers.

The hyperhypernetwork ¢ is a CNN consisting of four layers,
with ELU as activations and a fully connected layer on top.
The input for ¢ is the constraint image C, of size 192 x 128,
divided to a grid of 2 x 3 cells (64 x 64 regions), denoting the
possible position of the individual antennas. The network ¢
outputs are the selected weights 0;5 of f.

The network ¢, which is used to address the metallic con-
straints in the single antenna case, consists of three ResNets
m1, Mo, m3 and a vector w € R? of learned parameters.
It mixes, using the weights w, the initial label O and the
one obtained from the sub-networks: 77 = mq (M), Ty =
mo(0),T5 = mg([Tl,TQ]),V = w10 + wyT3, where
Ty, Ty, Ty € RO4X64X16 "and [Ty, Ty] stands for the con-
catenation of two tensors, along the third dimension. Both
my, meo are ResNets with three blocks of 16 channels. mg
is a single block ResNet with 32 channels.

6. Experiments

We present results on both synthetic datasets and on real
antenna designs. In addition we describe a sample of manu-
factured antenna array and its’ performance in the appendix.
Training, in all cases, is done on synthetic data. For all
networks, the Adam optimizer (Kingma & Ba, 2014) is used
with a learning rate of 10~* and a decay factor of 0.98 every
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Table 1. The performance obtained by our method, as well as the baseline methods and ablation variants. See text for details.

Radiation pattern 3D shape
Method MS-SSIM 1 SNR[dB] 1 10U 1 M-Recall 1
(i) Baseline nearest neighbor 0.88 +0.06 32.004+040 0.80+£0.11 0.05+0.03
(ii) Baseline nearest neighbor under metallic constraints 0.89 +0.09 32304030 0.79£0.13 0.89 +0.07
(ours ResNet variant) V = t_(M, 0) 0.96 £ 0.03 36.60£045 0.86+0.09 0.96+ 0.01
(ours Transformer variant) V' = t(M, O) 0.96 +0.04 36.62+052 0.88+0.12 0.95+0.02
(ili.a) No refinement ResNet variant V' = g(p,6p,s) 091 +0.05 32.804+041 0.84+0.08 0.06+0.03
(iii.b) No refinement Transformer variant V' = g(p,6p,s) 0.93+0.02 34.80+0.60 0.86+0.11 0.04 £0.02
(iv.a) No hypernetwork ResNet variant 078 £0.12 2290+£1.60 0.81£0.11 0.90 % 0.05
(iv.b) No hypernetwork Transformer variant 0.75+0.17 21.30£220 0.79+0.11 0.90 £+ 0.05
(v.a) ResNet variant,t is trained using a structure loss 0.92 +£0.07 33.00£0.55 0.84+0.09 0.91=+0.06
(v.b) Transformer variant, using a structure loss 0.94 +£0.04 33.70£0.55 0.87+0.04 0.96+ 0.04
—All Xavier 1 |

Figure 3. A typical test-set instance. (a) The ground truth structure
V', with the metallic constraint regions M marked in red. (b) The
output structure g(-, @p,s) of the hypernetwork. (c) The output ¥/
of the complete method. (d-f) The directivity gain of V, g(-,0p,s),
and V, respectively.

2 epochs for 2, 000 epochs, the batch size is 10 samples per
mini-batch .

Single Antenna The single antenna synthetic data is ob-
tained at the WiFi center frequency of 2.45GHz. The dielec-
tric slab size, permeability, and feeding geometry are fixed
during all the experiments. The dataset used in our experi-
ments consists of 3,000 randomly generated PCB antenna
structures, with a random metal polygons structure. The
OpenEMS FDTD engine (Liebig, 2010) was used to obtain
the far-field radiation pattern U. The dataset is then divided

—f: Transformer
—f: ResNet |

— HyperNetwork fan-in |

epochs ~1t

(a) (b)

Loss

8 1 12 14
Layer Index

% 18 M

Figure 4. (a) Loss per epochs for the different initialization scheme
of ¢ (ResNet f) ,Transformer in appendix. (b) The mean per-
layer score obtained for the entropy based selection heuristic. the
selected layers are [1,9,16] (ResNet) and [1,2,15] (Transformer).

into train/test sets with a 90%-10% division.

We train the simulation network A first, and then the de-
sign networks f,t. For the simulating network, an aver-
age of 0.95 Multiscale-SSIM score over the validation set
was achieved. Once h is trained on the initial dataset, an-
other 10* samples were generated and the radiation pattern
is inferred by h (more efficient than simulating). When
training the design networks, the weight parameters of the
multiloss L; are also learned. The values obtained are

amsssim ~ 10aopcE.

For the design problem, which is our main interest, we use
multiple evaluation metrics that span both the 3D space and
the domain of radiation patterns. To measure the success in
obtaining the correct geometries, we employ two metrics:
the IOU between the obtained geometry V" and the ground
truth one V, and the recall of the structure V when consid-
ering the ground truth metallic structure constraints M. The
latter is simply the ratio of the volume of the intersection of
M and the estimated V over the volume of M.
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Figure 5. (a) The probability of points belong to a valid antenna in
a synthetic test instance. The constraint plane is marked as black.
(b) Same sample, the regions correctly classified as antenna are
marked in brown, misclassified is marked in red. (c) The ground
truth of a slotted antenna array. (d) Our network design. See
appendix for ablations.

To evaluate the compliance of the resulting design to the
radiation specifications, we use either the MS-SSIM metric
between the desired radiation pattern D and the one ob-
tained for the inferred structure of each method, or the SNR
between the two.

We used the following baseline methods: (i) nearest neigh-
bor in the radiation space, i.e., the training sample that
maximizes the multiscale SSIM metric relative to the test
target D, and (ii) a nearest neighbor search using the SSIM
metric out of the samples that have an M-recall score of at
least 85%. In addition, we used the following ablations and
variants of our methods in order to emphasize the contribu-
tion of its components: (iii) the output of the hypernetwork,
before it is refined by network ¢, (iv) an alternative archi-
tecture, in which the hypernetwork f is replaced with a
ResNet/Transformer-based f’ of the same capacity as f,
which maps D, S to O directly O = f/(D, S), and (v) the
full architecture, where the loss L,, 5557 is replaced with
the cross entropy loss on V' with respect to the ground target
structure (similar to L4, Eq. 4). This last variant is to verify
the importance of applying a loss in the radiation domain.

The results are reported in Tab. 1. As can be seen, the
full method outperforms the baseline and ablation methods
in terms of multiscale SSIM, which is optimized by both
our method and the baseline methods. Our method also
leads with respect to the SNR of the radiation patterns, and
with respect to IOU. A clear advantage of the methods that
incorporate the metallic surface constraints over the method
that do not is apparent for the M -Recall score, where our

Table 2. The performance for designing antenna arrays. C-ratio is
the fraction of the antenna volume that complies with C'.

Method 10U 1 C-ratio 1

Nearest neighbor baseline 0.48 +£0.07 0.25 +0.08
(ours ResNet version, Q = 10%) 0.86 & 0.03 0.794 0.03
(ours ResNet version, @ = inf) 0.88 £ 0.05 0.80+ 0.04
(ours Transformer ver, Q = 10%) 0.93 + 0.01 1.0 £ 0.0
(ours Transformer ver, @ = inf) 0.93 +£0.02 1.0+ 0.01

0.75 £ 0.06 0.14+ 0.01

(i.a) Hypernet, ResNet f
(i.b) Hypernet, Transformer f  0.85 +0.01 0.18 4 0.04
(ii.a) ResNet w/o hypernet 0.70 £ 0.06 0.09 4 0.03
(ii.b) Transformer w/o hypernet 0.79 + 0.03 0.10 £ 0.02

Table 3. The performance obtained for two real-world antennas.
CR is the fraction of the antenna volume that complies with C.

Slotted Patch ~ Patch
Method IOU CR 10U CR
Nearest neighbor 0.57 0.70 0.81 0.80
(ours ResNet version) 0.85 091 0.89 0.96
(ours ResNet version ( = inf) 0.87 093  0.90 0.96
(ours Transformer ver) 089 093 090 1.0
(ours Transformer ver () = inf) 0.88  0.94  0.90 1.0
(i.a) Hypernet ResNet 0.82 0.83 0.87 0.94
(i.b) Hypernet Transformer 0.76  0.79 0.88 1.0
(ii.a) Transformer w/o hypernet 0.63  0.79  0.82 0.83
(ii.b) ResNet without hypernet 0.61  0.75  0.82 0.80

method is also ranked first.

The hypernetwork ablation (iii), which does not employ
t, performs well relative to the baselines (i,ii), and is out-
performed by the ablation variant (v) that incorporates a
refinement network ¢ that is trained with a similar loss to
that of f. The difference is small with respect to the radia-
tion metrics and IOU and is more significant, as expected,
for M-Recall, since the refinement network incorporates a
suitable loss term. Variant (iv) that replaces the hypernet-
work f with a ResNet/Transformer f is less competitive in
all metrics, except the IOU score, where it outperforms the
baselines but not the other variants of our method.

Comparing the two alternative architectures of f, the Trans-
former design outperforms the ResNet design in almost all
cases. A notable exception is when hypernets are not used.
However, in this case the overall performance is low.

Fig. 3 presents sample results for our method. As can be
seen, in the final solution, the metallic region constraints are
respected, and the final radiation pattern is more similar to
the requirement than the intermediate one obtained from the
hypernetwork before the refinement stage.
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Table 4. The performance for the iPhone 11 Pro Max design.

Method Directivity[dBi]  C-ratio
(Apple’s original design) 3.1 1.0
Nearest neighbor 1.5 0.05
(ours ResNet ) 4.7 0.96
(ours ResNet () = inf) 4.7 0.97
(ours Transformer ) 5.2 1.0
(ours Transformer () = inf) 5.1 1.0
(i.a) Hypernet ResNet 2.1 0.68
(i.b) Hypernet Transformer 5.0 0.70
(ii.a) ResNet w/o hypernet 1.1 0.37
(ii.b) Transformer w/o hypernet 1.8 0.33

Antenna Arrays For the Antenna Arrays experiments,
the synthetic dataset used for the single antenna case was
repurposed by sampling multiple antennas. For each in-
stance, we selected (i) the number of elements in the array,
uniformly between 1 and 6, (ii) single antennas from the syn-
thetic dataset, and (iii) the position of each element. In order
to match the real-world design, we made sure no antenna is
selected more than once (the probability of such an event
is admittedly small). The array gain was computed based
on Eq. 8. All the ablations and our method were trained
only over the train set of the synthetic dataset. For testing,
we employed a similarly constructed syntehtic dataset, as
well as two different fabricated antennas (Chen & Lin, 2018;
Singh, 2016). In addition, in order to ensure that our sugges-
tion solves a real-world problem, we evaluate the network
suggestion for an alternative design of iPhone 11 Pro Max’s
antenna array. In this case, we do not know the ground
truth design. Therefore, we use a theoretic array response
of isotropic elements, simulate the suggested design with
openEMS (Liebig, 2010), and compare the result with the
same figure of merit from the FCC report of the device'.

We apply our method with both architectures of f, and with
@ = 10,000 or when ¢ determines all of the parameters of
f (Q = inf). In addition to the nearest neighbor baseline,
which performs retrieval from the training set by searching
for the closest example in terms of highest msSSTM metric
of the input’s AGppy+ and the sample’s AG,,,, . We also
consider the following baselines: (i) a baseline without
a hyperhypernetwork, consisting of f and g. (ii)) A no
hypernetwork variant that combines f and g to a single
network, by adding a linear layer to arrange the dimensions
of the embedding before the MLP classifier.

The results on the synthetic dataset are reported in Tab. 2.
As can be seen, the full method outperforms the baseline
and ablation methods. In addition, the Transformer based ar-
chitectures outperforms the ResNet variants. The additional

iPhone 11 Pro Max FCC report, fccid.io0/BCG-E3175A

gain in performance when predicting all of 0 (Q = inf),
if exists, is relatively small. We note that this increases the
training time from 2 (3) hours to 7 (10) hours for the ResNet
(Transformer) model.

Fig. 4(a) presents the training loss as a function of epoch for
the hyperhypernetwork that employs the Transformer hyper-
net () = 10%), with the different initialization techniques.
See appendix for the ResNet case and further details. The
hyperhypernetwork fan-in method shows better convergence
and a smaller loss than both hypernetwork-fan-in (Chang
et al., 2020) and Xavier.

Fig. 4(b) presents the score H that is being used to select
parameters that are predicted by ¢g. Evidently, there is a
considerable amount of variability between the layers in
both network architectures.

Fig. 5(a,b) presents sample results for our method. The
metallic structure probability O is shown in (a) in log scale,
and the constraint plane C' (Eq. 10) is marked in black.
As required, the probabilities are very small in the marked
regions. Panel (b) presents the hard decision based on O;.
Misclassified points (marked in red) are relatively rare.

Tab. 3 presents the reconstruction of two real-world anten-
nas: a slotted patch antenna (Chen & Lin, 2018), and a
generic patch antenna (Singh, 2016). The results clearly
show the advantage of our method upon the rest of the
baselines and ablations in reconstructing correctly the in-
ner structure of these examples, while preserving the con-
straint of localization of the array elements. Fig. 5(c,d) show
our method results for reconstructing real fabricated slotted
patch antenna. See appendix for the ablation results; our
results are much more similar to the ground truth design
than those of the ablations.

Tab. 4 presents our method’s result, designing an antenna
array that complies with the iPhone 11 Pro Max physical
constraints. The resulting array was simulated and com-
pared with the reported directivity (max of Eq. 1 over all di-
rections) in Apple’s certificate report. Our method achieved
very high scores on both directivity and compliance to the
physical assembly constraints.

7. Conclusions

We address the challenging tasks of designing antennas and
antenna arrays, under structural constraints and radiation
requirements. These are known to be challenging tasks,
and the current literature provides very limited solutions.
Our method employs a simulation network that enables a
semantic loss in the radiation domain and a hypernetwork.
For the design of antenna arrays, we introduce the hyperhy-
pernetwork concept and show how to initialize it and how to
select to which weights of the inner hypernetwork it applies.


fccid.io/BCG-E3175A
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Our results, on both simulated and real data samples, show
the ability to perform the required design, as well as the
advantage obtained by the novel methods.
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