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8. Appendix

Proof of Theorem 1
Theorem. If the dynamics are control affine (Equation 5),
the reward is separable w.r.t. to state and action (Equation 6)
and the action cost 62 is positive definite and strictly convex,
the continuous time optimal policy c: w.r.t. + : is described
by

c: (x) = ∇6̃2
(
B(x)) ∇G+ :

)
(12)

with the convex conjugate 6̃ of 6 and the Jacobian of + w.r.t.
the system state ∇G+ .

Proof. This proof follows the derivation of Lutter et. al.
(2019). This prior work derived the optimal policy c∗ using
the Hamilton Jacobi Bellman differential equation (HJB)
and generalized the special case described by Doya (2000).
The value iteration update (Equation 8) is defined as

+tar (xC ) = max
u

A (xC ,u) + W+ ( 5 (xC ,u); k: ).

Substituting the assumptions and using the Taylor expansion
of the Value function, i.e.,

+ ( 5 (xC ,u)) = + (xC ) + ∇G+) 52 (xC ,u) ΔC + O(ΔC,xC ,u) ΔC,

this update can be rewritten - omitting all functional depen-
dencies for brevity - as

+tar = max
u

A + W+ + W∇G+) 52ΔC + WOΔC

= max
u

[
W∇G+) (a +Bu) + W O − 62

]
ΔC + W+ + @2 ΔC

with the higher order Terms O(ΔC,xC ,u). Therefore, the
optimal action is defined as

u∗C = argmax
u

W∇G+) (a +Bu) + W O(ΔC,xC ,u) − 62 (u).

In the continuous time limit, the higher order
terms O(ΔC,xC ,u) disappear as these depend on ΔC, i.e.,
i.e., limΔC→0 O(ΔC,xC ,u) = 0. The action is also indepen-
dent of the discounting as limΔC→0 W = 1. Therefore, the
continuous time optimal action is defined as

u∗C = argmax
u

∇G+)B(x)uC − 62 (u).

This optimization can be solved analytically as 62 is strictly
convex and hence ∇62 (u) = w is invertible, i.e., u =

[∇62]−1 (w) B ∇6̃2 (w) with the convex conjugate 6̃. The
optimal action is described by

B(x)) ∇G+∗ − ∇62 (u) B 0 ⇒ u∗ = ∇6̃2
(
B(x)) ∇G+ :

)
.

Therefore, the value function update can be rewritten by
substituting the optimal action, i.e.,

+tar (xC ) = A
(
xC ,∇6̃

(
B(xC )) ∇G+ :

))
+ W+ : (xC+1; k: )

with xC+1 = 5

(
xC ,∇6̃(B(xC )) ∇G+ : )

)
.

�

Experimental Setup
Systems The performance of the algorithms is evaluated us-
ing the swing-up the torque-limited pendulum, cartpole
and Furuta pendulum. The physical cartpole (Figure
4) and Furuta pendulum (Figure 3) are manufactured by
Quanser (2018). For simulation, we use the equations of mo-
tion and physical parameters of the supplier. Both systems
have very different characteristics. The Furuta pendulum
consists of a small and light pendulum (24g, 12.9cm) with
a strong direct-drive motor. Even minor differences in the
action cause large changes in acceleration due to the large
amplification of the mass-matrix inverse. Therefore, the
main source of uncertainty for this system is the uncertainty
of the model parameters. The cartpole has a longer and
heavier pendulum (127g, 33.6cm). The cart is actuated
by a geared cogwheel drive. Due to the larger masses the
cartpole is not so sensitive to the model parameters. The
main source of uncertainty for this system is the friction
and the backlash of the linear actuator. The systems are
simulated and observed with 500Hz. The control frequency
varies between algorithm and is treated as hyperparameter.

Baselines The control performance is compared to Deep De-
terministic Policy Gradients (DDPG) (Lillicrap et al., 2015),
Soft Actor Critic (SAC) (Haarnoja et al., 2018) and Proximal
Policy Optimization (PPO) (Schulman et al., 2017). The
baselines are augmented with uniform domain randomiza-
tion (UDR) (Muratore et al., 2018). For the experiments the
open-source implementations of MushroomRL (D’Eramo
et al., 2020) are used. We compare two different initial
state distributions (`). First, the initial pendulum angle
\0 is sampled uniformly, i.e. \0 ∼ U(−c, +c). Second,
the initial angle is sampled from a Gaussian distribution
with the pendulum facing downwards, i.e., \0 ∼ N(±c, f).
The uniform sampling avoids the exploration problem and
generates a larger state distribution of the optimal policy.

Reward Function The desired state for all tasks is the
upward pointing pendulum at xdes = 0. The state re-
ward is described by @2 (x) = −(z − zdes))Q(z − zdes)
with the positive definite matrix Q and the transformed
state z. For continuous joints the joint state is trans-
formed to I8 = c2 sin(G8). The action cost is described
by 62 (u) = −2 β umax/c log cos(c u/(2 umax)) with the
actuation limitumax and the positive constantβ. This barrier
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n = 4 / λ = 0.10
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Figure 8. The learning curves averaged over 5 seeds for the =-step value function target. The shaded area displays the min/max range
between seeds. The step count is selected such that _= B 10−4. Increasing the horizon of the value function target increases the
convergence rate to the optimal value function. For very long horizons the learning diverges as it over fits to the current value function
approximation. Furthermore, the performance of the optimal policy also increases with roll out length.
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Figure 9. The learning curves averaged over 5 seeds for the different model architectures. The shaded area displays the min/max range
between seeds. All network architectures are capable of learning the value function and policy for most of the tasks. The locally quadratic
network architecture increases learning speed compared to the baselines. The structured architecture acts as an inductive bias that shapes
the exploration. The global maximum of the locally quadratic value function is guaranteed at xdes and hence the initial policy performs
hill-climbing towards this point.

shaped cost bounds the optimal actions. The corresponding
policy is shaped by ∇6̃(w) = 2 umax/c tan−1 (w/β). For
the experiments, the reward parameters are

Pendulum: Qdiag = [01.0, 0.1] , V = 0.5

Cartpole: Qdiag = [25.0, 1.0, 0.5, 0.1] , V = 0.1

Furuta Pendulum: Qdiag = [01.0, 5.0, 0.1, 0.1] , V = 0.1

Evaluation The rewards are evaluated using 100 roll outs
in simulation and 15 roll outs on the physical system. If not
noted otherwise, each roll out lasts 15B and starts with the
pendulum downward . This duration is much longer than
the required time to swing up. The pendulum is considered
balancing, if the pendulum angle is below ±5◦ degree for
every sample of the last second.

Extended Experimental Results
Ablation Study - #-step Value Targets

The learning curves for the ablation study highlighting the
importance are shown in Figure 8. This figure contains in
contrast to Figure 7 also RTDP cFVI. When increasing _,
which implicitly increases the =-step horizon (Section 3.3),
the convergence rate to the optimal value function increases.
This increased learning speed is expected as Equation 7
shows that the convergence rate depends on W= with W < 1.

While the learning speed measured in iterations increases
with _, the computational complexity also increases. Longer
horizons require to simulate = sequential steps increasing the
required wall-clock time. Therefore, the computation time
increases exponentially with increasing _. For example the
forward roll out in every iteration of the pendulum increases
exponentially from 0.4s (_ = 0.01) to 56.4s (_ = 0.99).
For the Furuta pendulum and the cartpole extremely long
horizons of 100+ steps start to diverge as the value function
target over fits to the untrained value function. For RTDP
cFVI, the horizonsmust smaller, i.e., 10 - 20 steps. For longer
horizons the predicted rollout overfits to the value function
outside of the current state distribution, which prevents
learning or leads to pre-mature convergence. This is very
surprising as even for the true model long time-horizons
can be counterproductive due to the local approximation of
the value function. Therefore, DP cFVI works bests with
_ ∈ [0.85, 0.95] and RTDP cFVI with _ ∈ [0.45 − 0.55].

Ablation Study - Model Architecture

To evaluate the impact of the locally quadratic architecture
described by

+ (x; k) = − (x − xdes)) L(x; k)L(x; k)) (x − xdes) ,

where L is a lower triangular matrix with positive diagonal,
we compare this architecture to a standard multi-layer percep-
tron with and without feature transformation. The learning
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Figure 10. The learning curves averaged over 5 seeds with different model ensemble sizes # . The shaded area displays the min/max range
between seeds. The performance of the optimal policy is not significantly affected by the model ensemble. For the cartpole and especially
the Furuta pendulum, the larger model ensembles stabilize the training and achieve faster learning and exhibit less variations between
seeds.

curves for the ablation study highlighting the importance of
the network architecture are shown in Figure 9. The reward
curves are averaged over 5 seeds and visualize the maxi-
mum range between seeds. For most systems all network
architecture are able to learn a good policy. The locally
quadratic value function is on average the best performing ar-
chitecture. The structure acts as a inductive bias that shapes
the exploration and leads to faster learning. The global
maximum is guaranteed to be at xdes as L(x; k)L(x; k))
is positive definite. Therefore, the initial policy directly
performs hill-climbing towards the balancing position. Only
for the cartpole the other network architectures fail. For this
system, these architectures learn a local optimal solution of
balancing the pendulum downwards. This local optima the
conservative solution as the cost associated with the cart
position is comparatively high to avoid the cart limits on
the physical system. Therefore, stabilizing the pendulum
downwards is better compared to swinging the pendulum up
and failing at the balancing. The locally quadratic network
with the feature transform, learns the optimal policy for the
cartpole. This architecture avoids the local solution as the
network structure guides the exploration to be optimistic and
the feature transform simplifies the value function learning
to learn a successful balancing.

Ablation Study - Model Ensemble

The learning curves for different model ensemble sizes
are shown in Figure 10. The model ensemble does not
significantly affect the performance of the final policy but
reduces the variance in learning speed between seeds. The
variance between seeds also increases. The reduced variance
for the model ensembles is caused by the smoothing of the
network initialization. The mean across different initial
weights lets the initialization be more conservative compared
to a single network. For the comparatively small value
function networks (i.e., 2-3 layers deep and 64 - 128 units
wide), we prefer the network ensembles as the computation
time does not increase when increasing the ensemble size.
If the individual networks are batched and evaluated on the
GPU the computation time does not increase. The network
ensembles could also be evaluated at 500Hz for the real-time
control experiments using an Intel i7 9900k.


