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A. Proofs of Theoretical Results

In this section, we give proofs of propositions in the main
paper.

Proof of Proposition 2. For a given g € G,,, the first step is
to find the supremum of the binned estimator ECE B(gof)
across all binning schemes B € B. Let B = {I1, -+ , I},
then on the j-th bin I}, by Minkowski inequality, we have:
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where n; is the number of samples falling into I,
Y, f/”, 2” are the ¢-th label, the -th prediction and the -
th confidence score in the ¢-th bin respectively. This implies
that to maximize the binned estimator, I; can be further
divided into n; sub-partitions so that each sub-partition
contains exactly one sample. Let B* denotes this im-
plied binning scheme. Then we find the lower bound of
ECEg- (go f). Since g € G,, this imposes a constraint on
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For the i-th sample in I}, if Y; ; = Y} ;, we have:
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If Y ; # Y}, we have:

‘ﬂ(Ym‘ = Yj) = Zy| > 1/k.

Let n; 1 be the number of wrongly classified samples in I},
then:
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Since the above inequality holds for every bin, then:
sup ECEg(go f) = ECEg«(go f)
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where 7 is the empirical accuracy of f. O

Proof of Proposition 6. Using the construction rules de-
scribed in Proposition 3, for any B € B, we have:

ECEs(go f) = |(1 = Ro(9)) - 7o+ Ri(9) -

' - (1= Ro(6)) - 7
(1 — Ro(9)) - 7to + Ri(9) - 11
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kk
= Ri(¢)(1 ~ 7).

Since the above equality holds for VB € B, it also holds for
B*, which is defined in the proof of Proposition 2. [

Proof of Proposition 7. Under Assumption 1, from the def-
inition of the miscoverage rate in Definition 4, we have:

(LX) > 7)) [ ¥ = T) ~ Bern(Fy(9)),

where Fy(g) is the population miscoverage rate of g, v =
[(n1+1)(1— )], 7(y) is the v-th order statistic of {r;};%,.
Without loss of generality, we suppose the first m; inputs
have negative labels and the last my inputs have positive la-
bels, where m = mj +ms. Then the empirical miscoverage
rate is:
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Fo(g) = Zﬂ(h(mi) > 7))
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Thus mlﬁo(g) follows a Binomial distribution, that is,
m1Fo(g) ~ Binom(my, Fy(g)). For large m;, we can
approximate it by N (m1Fy(g), m1Fo(g)(1 — Fy(g))) us-
ing the central limit theorem. Let Ry be a random vari-
able following a Normal distribution N'(Fy(g), 02), where
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0% = Fy(g)(1 — Fy(g))/ma. Applying the Chernoff bound
for a Gaussian variable:

52
B(|Ro — Fo(g)] > 8) < 2exp (—20) .

Combining the above results finishes the proof of Proposi-
tion 7. O

Proof of Proposition 8. This follows directly from Proposi-
tion 2. O

Proof of Proposition 12. Under Assumptions 1 and 2, from
the definition of coverage accuracy in Definition 5
and Proposition 11, we have:

(n(y —Y) | h(X) < 171(5)) ~ Bern(f).

Without loss of generality, we suppose ranking scores of the
first m; < m inputs are smaller than [~*(3). The empirical
coverage accuracy is:

Filg) == > 1 = 30,
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Thus my Fy (g) follows a Binomial distribution and can be
approximated by a Gaussian distribution for large m;. The
remaining proof is similar to the proof of Proposition 7. [

B. A Trivial Construction

In this section, we show bounding ECEp (g o f) instead
of its supremum makes little sense by giving a trivial con-
struction. Suppose we are to evaluate the binned estima-
tor on 4 samples and their predicted confidence scores,
predictions, targets are {0.6,0.7,0.8,0.81}, {0,0,0,0},
{0,0,0, 1} respectively. Let the binning scheme be the
interval B = [0, 1], we can construct a accuracy-preserving
calibration map:

({09 . ifz=081
9T = = , otherwise.

The binned estimator using such a calibration map on this
data set is 0. Obviously, this calibration map is not practical.

C. Training Details

To train networks on CIFAR-10 and CIFAR-100, we use
stochastic gradient descent with momentum (0.9) using
mini-batches of 128 samples for 200 epochs. We also add
a L2-weight decay regularization term, which is set to be
0.0001. The start learning rate is set to be 0.1 and is de-
creased to 0.01 and 0.001 in the beginning of the 80-th
epoch and 150-th epoch respectively. Horizontal flipping
and cropping are used as data augmentation.



