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A. Proofs of Theoretical Results
In this section, we give proofs of propositions in the main
paper.

Proof of Proposition 2. For a given g ∈ Ga, the first step is
to find the supremum of the binned estimator ÊCEB(g ◦ f)
across all binning schemes B ∈ B. Let B = {I1, · · · , Ib},
then on the j-th bin Ij , by Minkowski inequality, we have:∣∣∣∣∣ 1nj
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where nj is the number of samples falling into Ij ,
Yj,i, Ŷj,i, Ẑj,i are the i-th label, the i-th prediction and the i-
th confidence score in the i-th bin respectively. This implies
that to maximize the binned estimator, Ij can be further
divided into nj sub-partitions so that each sub-partition
contains exactly one sample. Let B∗ denotes this im-
plied binning scheme. Then we find the lower bound of
ÊCEB∗(g ◦ f). Since g ∈ Ga, this imposes a constraint on
Ẑj,i:

1 > Ẑj,i >
1

k
.

For the i-th sample in Ij , if Yj,i = Ŷj,i, we have:
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If Yj,i 6= Ŷj,i, we have:∣∣∣1(Yj,i = Ŷj,i)− Ẑj,i

∣∣∣ > 1/k.

Let nj,1 be the number of wrongly classified samples in Ij ,
then:
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Since the above inequality holds for every bin, then:
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where π̂0 is the empirical accuracy of f .

Proof of Proposition 6. Using the construction rules de-
scribed in Proposition 3, for any B ∈ B, we have:

ÊCEB(g ◦ f) =
[
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Since the above equality holds for ∀B ∈ B, it also holds for
B∗, which is defined in the proof of Proposition 2.

Proof of Proposition 7. Under Assumption 1, from the def-
inition of the miscoverage rate in Definition 4, we have:(

1(h(X) > r(v)) | Y = Ŷ
)
∼ Bern(F0(g)),

where F0(g) is the population miscoverage rate of g, v =
d(n1+1)(1−α)e, r(v) is the v-th order statistic of {ri}n1

i=1.
Without loss of generality, we suppose the first m1 inputs
have negative labels and the last m2 inputs have positive la-
bels, wherem = m1+m2. Then the empirical miscoverage
rate is:

F̂0(g) =
1

m1

m1∑
i=1

1(h(xi) > r(v)).

Thus m1F̂0(g) follows a Binomial distribution, that is,
m1F̂0(g) ∼ Binom(m1, F0(g)). For large m1, we can
approximate it by N (m1F0(g),m1F0(g)(1 − F0(g))) us-
ing the central limit theorem. Let R0 be a random vari-
able following a Normal distribution N (F0(g), σ

2), where
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σ2 = F0(g)(1−F0(g))/m1. Applying the Chernoff bound
for a Gaussian variable:

P (|R0 − F0(g)| ≥ δ) ≤ 2 exp

(
− δ2

2σ2

)
.

Combining the above results finishes the proof of Proposi-
tion 7.

Proof of Proposition 8. This follows directly from Proposi-
tion 2.

Proof of Proposition 12. Under Assumptions 1 and 2, from
the definition of coverage accuracy in Definition 5
and Proposition 11, we have:(

1(Y = Ŷ ) | h(X) < l−1(β)
)
∼ Bern(β).

Without loss of generality, we suppose ranking scores of the
first m1 ≤ m inputs are smaller than l−1(β). The empirical
coverage accuracy is:

F̂1(g) =
1

m1

m1∑
i=1

1(yi = ŷi).

Thus m1F̂1(g) follows a Binomial distribution and can be
approximated by a Gaussian distribution for large m1. The
remaining proof is similar to the proof of Proposition 7.

B. A Trivial Construction
In this section, we show bounding ÊCEB(g ◦ f) instead
of its supremum makes little sense by giving a trivial con-
struction. Suppose we are to evaluate the binned estima-
tor on 4 samples and their predicted confidence scores,
predictions, targets are {0.6, 0.7, 0.8, 0.81}, {0, 0, 0, 0},
{0, 0, 0, 1} respectively. Let the binning scheme be the
interval B = [0, 1], we can construct a accuracy-preserving
calibration map:

g(x) =

{
0.9 , if x = 0.81
x , otherwise.

The binned estimator using such a calibration map on this
data set is 0. Obviously, this calibration map is not practical.

C. Training Details
To train networks on CIFAR-10 and CIFAR-100, we use
stochastic gradient descent with momentum (0.9) using
mini-batches of 128 samples for 200 epochs. We also add
a L2-weight decay regularization term, which is set to be
0.0001. The start learning rate is set to be 0.1 and is de-
creased to 0.01 and 0.001 in the beginning of the 80-th
epoch and 150-th epoch respectively. Horizontal flipping
and cropping are used as data augmentation.


