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Abstract To achieve this objective, one can design models with in-

In many applications, it is desirable that a classi­
fier not only makes accurate predictions, but also 
outputs calibrated posterior probabilities. How­
ever, many existing classifiers, especially deep 
neural network classifiers, tend to be uncalibrated. 
Post-hoc calibration is a technique to recalibrate a 
model by learning a calibration map. Existing ap­
proaches mostly focus on constructing calibration 
maps with low calibration errors, however, this 
quality is inadequate for a calibrator being useful. 
In this paper, we introduce two constraints that 
are worth consideration in designing a calibration 
map for post-hoc calibration. Then we present 
Meta-Cal, which is built from a base calibrator 
and a ranking model. Under some mild assump­
tions, two high-probability bounds are given with 
respect to these constraints. Empirical results 
on CIFAR-10, CIFAR-100 and ImageNet and a 
range of popular network architectures show our 
proposed method significantly outperforms the 
current state of the art for post-hoc multi-class 
classification calibration. 

1. Introduction 
Recent advances in machine learning have resulted in very 
high accuracy in many classification tasks. In the context of 
computer vision, there has been a steady increase in top-1 
accuracy on ImageNet (Russakovsky et al., 2015) since 
AlexNet (Krizhevsky et al., 2012). While highly accurate 
models are desirable in general, in some applications, we 
want that the output of a classifier is a calibrated posterior 
probability. This is especially important in cost-sensitive 
classification tasks, such as medical diagnosis (Ma et al., 
2017) and autonomous driving (Chen et al., 2015). 

The goal of classification calibration is to obtain a prob­
abilistic model that has low calibration error. A formal 
definition of calibration error will be given in Section 3. 
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trinsically low calibration errors. These models (Wilson 
et al., 2016; Pereyra et al., 2017; Lakshminarayanan et al., 
2016; Malinin & Gales, 2018; Milios et al., 2018; Mad­
dox et al., 2019) are usually developed with a Bayesian 
nature and tend to be expensive to train and make infer­
ences. On the other end of the spectrum, a post-hoc calibra­
tion method transforms outputs of an existing classification 
model into well-calibrated predictions by learning a train­
able post-processing step. A lot of effort (Zhang et al., 2020; 
Guo et al., 2017; Ding et al., 2020; Patel et al., 2020; Wenger 
et al., 2020; Kull et al., 2019) has been done along this line 
given the design difficulties and computational burdens of 
the former approach. In this work, we focus on post-hoc 
multi-class calibration. 

Among the existing literature on post-hoc calibration, some 
methods (Zhang et al., 2020; Guo et al., 2017; Ding et al., 
2020; Patel et al., 2020) seek calibration maps that preserve 
classification accuracy, while some other works (Wenger 
et al., 2020; Kull et al., 2019) focus more on calibration 
error without explicitly enforcing accuracy-preservation. 
Compared with the latter, there is no potential accuracy 
drop in the former, but its family of calibration maps is 
less flexible. We will formalize the limitation of such a 
family by giving a lower bound of its calibration error in 
Proposition 2. In this work, we try to get the best of both 
worlds by combining an existing calibration model with a 
bipartite ranking model, and we call our proposed post-hoc 
calibration method Meta-Cal. 

Similar to previous works (Wenger et al., 2020; Kull et al., 
2019), Meta-Cal does not enforce the overall accuracy being 
kept. As we will show later in Section 4, such a calibrator 
can be of little importance even if its calibration error is low. 
Additional constraints should be taken into consideration. 
In this work, we introduce two constraints: (i) miscover­
age rate, (ii) coverage accuracy. In Section 4.1 and Sec­
tion 4.2, we show Meta-Cal has full control over these two 
constraints. An intuitive interpretation of the above two con­
straints is by considering a quality assurance (QA) system. 
In such a system, two desired properties are: (i) for products 
accepted by the QA system, their quality requirements are 
satisfied with high confidence, (ii) the QA system does not 
perform unnecessary rejection. The first point corresponds 
to the coverage accuracy of a calibration map and the sec­
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ond one corresponds to the miscoverage rate. Their formal 
definitions are given in Section 4. Our proposed Meta-Cal 
is constructed from a base calibrator and a ranking model. 
If this base calibration model is accuracy-preserving, it is 
guaranteed that Meta-Cal has an improved calibration error 
bound over it. 

The main contributions of this paper are: 

•	 A novel post-hoc calibration approach (Meta-Cal) for 
multi-class classification is proposed. Meta-Cal aug­
ments a base calibration model and obtains better cali­
bration performance. 

•	 Two practical constraints are investigated alongside 
Meta-Cal. We show how these constraints are incor­
porated in constructing our proposed calibrator. Theo­
retical results on high-probability bounds w.r.t. these 
constraints are presented. 

•	 We show the effectiveness of our proposed approach 
and validate our theoretical claims through a series of 
empirical experiments. 

In the next section, we briefly review post-hoc calibra­
tion methods for classification and bipartite ranking mod­
els. Necessary background, notation and assumptions that 
will be used throughout this paper are given in Section 3. 
Section 4 describes our proposed approach. Two practi­
cal constraints of Meta-Cal are discussed in Section 4.1 
and Section 4.2 respectively. Empirical results are presented 
in Section 5. Finally, we conclude in Section 6. 

2. Related Work 
Post-hoc Calibration of Classifiers: Platt scaling (Platt, 
1999; Lin et al., 2007) is proposed to learn a calibration trans­
formation to map the outputs of a binary SVM into posterior 
probabilities. Extensions of Platt scaling for multi-class 
calibration include temperature scaling (Guo et al., 2017), 
ensemble temperature scaling (Zhang et al., 2020) and local 
temperature scaling (Ding et al., 2020). Different from the 
parametric approach adopted by Platt scaling, histogram 
binning (Zadrozny & Elkan, 2001) is a non-parametric post-
hoc calibration method in binary settings. Two popular 
refinements of histogram binning are isotonic regression 
(Zadrozny & Elkan, 2002) and Bayesian binning into quan­
tiles (Naeini et al., 2015). Platt scaling assumes scores of 
each class are Gaussian distributed, however, this assump­
tion is hardly satisfied for many probabilistic classifiers. Mo­
tivated by this assumption violation, Beta calibration (Kull 
et al., 2017) is proposed and it assumes Beta distribution 
of scores within each class. For multi-class classification, 
Dirichlet calibration (Kull et al., 2019) is proposed as an 
extension of Beta calibration. More recently, a Gaussian 

Process based calibration method is presented in Wenger 
et al. (2020). 

Bipartite Ranking: The problem of bipartite ranking has 
been studied for a long time. In bipartite ranking, one wants 
to compare or rank two different objects and decide which 
one is better. Burges et al. (2005) uses a neural network 
to model a ranking function and trains this network by gra­
dient decent methods. Cl´ ¸on et al. (2008) defines a emenc
statistical framework for such ranking problems and pro­
vides several consistency results. Narasimhan & Agarwal 
(2013) investigates the relationship between binary classi­
fication and bipartite ranking. Our work is closely related 
to Narasimhan & Agarwal (2013) and we rely on the the­
oretical results presented there to construct a binary class 
probability estimation (CPE) model from a ranking model. 

Selective Classification: Selective classification is a tech­
nique that augments a classifier with a reject option. The 
essence of selective classification is the trade-off between 
coverage and accuracy. El-Yaniv & Wiener (2010) lays the 
foundation for selective classification by characterizing the 
theoretical and practical boundaries of risk-coverage trade­
offs. Geifman & El-Yaniv (2017) applies selective classi­
fication to deep neural networks. While the starting point 
of our work is to make improvements in post-hoc classifica­
tion calibration under several practical constraints, it turns 
out that techniques present in this work can also be used in 
selective classification. Geifman & El-Yaniv (2017) gives a 
one-sided and tight high-probability risk bound, while we 
present two high probability bounds for miscoverage rate 
and coverage accuracy. It should be noted that definitions of 
risk and coverage in our setting are different from these two 
metrics defined in the context of selective classification (El-
Yaniv & Wiener, 2010; Geifman & El-Yaniv, 2017), thus 
these bounds are not directly comparable. 

3. Problem Formulation 
In this section, we summarize some necessary background, 
notation and assumptions that will be used throughout this 
paper. Let X be the input space and Y = [k] := {1, · · · , k}
be the label space in multi-class classification. We de­
note the (k − 1)-simplex by Δk := {(p1, · · · , pk) | 

i∈[k] pi = 1, pi ∈ [0, 1]}. Suppose a probabilistic clas­
sifier f : X → Δk is given and this classifier is trained 
on an i.i.d. data set following a joint distribution P(X, Y ) 
on X × Y . Let the random variable X take values in in­
put space X , Z = (Z1, · · · , Zk) be the output of f ap­
plied to X , Ẑ = maxi∈[k] Zi be the confidence score and 
Ŷ = arg maxi∈[k] Zi be the prediction of X . Whenever 
there is a tie, it is broken uniformly at random. To measure 
the level of calibration, following Naeini et al. (2015); Ku­
mar et al. (2019); Wenger et al. (2020), the calibration error 
is defined in Definition 1. 
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Definition 1 (Calibration error). The Lp calibration error Assumption 1. Denote the marginal distribution of X tak­
of f with p ≥ 1 is: ing values in X by P(X). The induced distribution of h(X) 

is continuous, where h is a ranking model. 
p�1/p 

E =1(Y Ŷ ) | Ẑ − Ẑ Assumption 2. Let h : X → [a, b] (where a, b ∈ R, a < b)CEp(f) = E (1), 
be any bounded-range ranking model. ηh(s) = P(� = 1 |
h(x) = s) is square-integrable w.r.t. the induced density of 
h(X). 

where the expectation is taken with respect to P(X, Y ). 

If the calibration error of a model f is zero, we say f is per­
fectly calibrated. In practice, CEp(·) is unobservable since 
it depends on the unknown joint distribution P(X, Y ). To 
empirically estimate the calibration error based on a finite 
data set, prior works apply a fixed binning scheme B ∈ B, 
where B is the family of binning schemes, on values of Ẑ
and calculate the difference between the accuracy and the 
average of confidence scores in every bin. An example fam­
ily for a binning scheme is a partition of the interval [0, 1]. 
When p = 1, the calibration error is also known as expected 
calibration error (ECE) (Guo et al., 2017) and an empirical 
estimator based on B is denoted by � Although it ECEB . 
is known that �ECEB is a biased estimation (Kumar et al., 
2019; Zhang et al., 2020) of ECE and its magnitude can be 
hard to interpret, in this work, we use this binned estimator 
to measure the level of calibration due to its simplicity and 
popularity. 

In the post-hoc calibration problem, one wants to find a 
function that transforms the outputs of f to make the final 
model better calibrated. Formally, a calibration map is a 
function g : Δk → Δk . The goal is to learn a mapping 
g ∈ G on a finite calibration data set {(xi, yi)}n that is i=1 
drawn i.i.d. from the joint distribution P(X, Y ) so that the 
composition g ◦ f has a small calibration error, where G is 
the calibration family. 

In the problem of bipartite ranking, we want to find a rank­
ing model h : X → R that ranks positive examples and 
negative ones so that the positive examples have higher 
scores with a high probability. Formally, one wants to mini­
mize the following ranking risk (Narasimhan & Agarwal, 
2013; Clémençon et al., 2008): 

L(f) = P((� − ��) · (h(X) − h(X �))), 

where (X, �), (X �, ��) are i.i.d. pairs taking values in X × 
{−1, +1}. The ranking risk is the probability that h ranks 
two randomly drawn pairs incorrectly (Cl´ ¸on et al.,emenc
2008). In this paper, if not stated otherwise, the random 
variable � is a sign variable used to indicate whether X is 
correctly classified or not by f , that is, � = �2 · 1(Y = 
Ŷ ) − 1. In general, a bipartite ranking model is learnt using 
a consistent pairwise surrogate loss, such as exponential 
loss or logistic loss (Gao & Zhou, 2014). 

In the following, we list some assumptions that will be used 
in Section 4. 

The first assumption simply means for two independent 
samples from P(X), the probability of their ranking scores 
being equal vanishes. The second assumption is required 
by Narasimhan & Agarwal (2013) as we rely on their results. 

4. Meta-Cal 
In this section, we start by showing that the family of 
accuracy-preserving calibration maps has an inherent lim­
itation (Proposition 2) and this motivates us to combine a 
bipartite ranking model with an existing calibration model. 
Then we demonstrate that models with low calibration errors 
alone do not necessarily indicate they are practical. Post-
hoc calibration should be considered together with other 
factors. In this work, we investigate two useful constraints 
in Section 4.1 and Section 4.2, respectively: Miscoverage 
rate control and coverage accuracy control. 

Proposition 2 (Lower bound of ECE). Define Ga as the 
family of accuracy-preserving calibration maps, that is, 

Ga = {g ∈ G : arg max f(X)i = arg max g(f(X))i}. 
i∈[k] i∈[k] 

Then for all g ∈ Ga 

1 − π̂0 
sup ECEB (g ◦ f) > (2) 
B∈B k 

where � π0 is the ECEB is estimated on a finite data set and ˆ
empirical accuracy of f on the same data set. Further we 
can show ∀B ∈ B, ∀g ∈ G, 

ECE(g ◦ f) ≥ � (3)ECEB (g ◦ f). 

All proofs are provided in Supplement A and we only de­
scribe a sketch of the proof here. The first step is to find the 
supremum of the binned estimator �ECEB (g ◦ f) across all 
calibration maps g ∈ Ga and all binning schemes B ∈ B. 
This is achieved using Minkowski’s inequality. The sec­
ond step is showing this supremum is lower bounded by 
(1 − π̂0)/k. Unless f is perfectly accurate, (1 − π̂0)/k 
will be strictly positive. The last step is already given in 
Kumar et al. (2019) by applying Jensen’s inequality. We 
note bounding �ECEB (g ◦f) instead of its supremum makes 
little sense here since it is easy to construct a trivial g ∈ Ga 

and a binning scheme B such that �ECEB (g ◦ f) is exactly 
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zero. In Supplement B, we give such a trivial construction. 
Proposition 2 makes it clear that an accuracy-preserving 
calibration has an inherent limitation. Such a calibration 
map cannot perfectly calibrate a classifier even if it is given 
the label information. To avoid potential confusion, we em­
phasize here the empirical estimator of ECE measures the 
top-label calibration error instead of the calibration error 
w.r.t. a fixed class. 

In the following proposition, we show if a post-hoc calibra­
tion map is allowed to change the accuracy of the original 
classifier, it can achieve perfect calibration with the aid of a 
binary classifier. 
Proposition 3 (Optimal calibration map). Suppose realiza­

ˆtions of X | Y � Y with positive labels and realizations =
 
ˆ
of X | Y = Y with negative labels are separable and we 

are given a perfect binary classifier φ∗ : X → {−1, +1}
that is able to classify these two sets. For a new observation 

∗ x ∼ X , an optimal calibration map g ∈ G that minimizes 
supB∈B,g∈G ECEB (g ◦ f) can be constructed using the 
following rules: 

• if φ∗(x) = −1, we let maxi∈[k] g ∗(x)i = 1 

1• if φ∗(x) = +1, we let maxi∈[k] g ∗(x)i = k 

∗Proof. The optimality of g follows directly from the proof 
steps of Proposition 2. 

∗We note g �∈ Ga, since the used tie-breaking strategy is 
∗random at uniform, thus g does not preserve the accuracy 

after the above calibration. It is straightforward to check the 
∗constructed g in Proposition 3 has zero calibration error, 

that is ECE(g ∗ ◦ f) = supB∈B ECEB (g ∗ ◦ f) = 0. 

However, it is unlikely that a perfect binary classifier can 
be obtained in practice and classification errors will occur 
when φ(X) � · 1(Y � Ŷ ) − 1. We denote the population = 2 = 
Type I error (false positive error) and Type II error (false 
negative error) of φ by R0(φ) and R1(φ) respectively. In 
the following, we define the miscoverage rate and coverage 
accuracy of a calibration map g constructed using the rules 
in Proposition 3. These two constraints will be used to 
construct the final calibration map. 
Definition 4 (Miscoverage rate). The miscoverage rate 
F0(g) of g constructed using the rules in Proposition 3 
is defined to be the Type I error of the binary classifier φ 
associated with g. 
Definition 5 (Coverage accuracy). The coverage accuracy 
F1(g) of g constructed using the rules in Proposition 3 is de­
fined to be the precision of the binary classifier φ associated 
with g. 

The rational behind the above definitions will be illustrated 
by two examples later in this section. To be brief, these two 

constraints are necessary for a calibrator to be useful, if this 
calibrator cannot preserve the accuracy. The miscoverage 
rate of g is the proportion of instances whose predictions 
are no longer correct after the calibration to instances whose 
predictions are originally correct before the calibration. The 
coverage accuracy of g is the accuracy among covered in­
stances (i.e. those instances classified as negative by the 
binary classifier) after the calibration. The correspondence 
between the Type I error (precision) of a binary classifier 
and the miscoverage rate (coverage accuracy) of a calibra­
tion map is due to the construction rules in Proposition 3. 

Proposition 6. Using the construction rules in Proposi­
tion 3, we can estimate the expected calibration error of g 
on a finite data set: 

sup ECEB (g ◦ f) = R̂1(φ) · (1 − π̂0), 
B∈B 

where R̂1(φ) is the empirical Type II error of φ which is 
trained following Proposition 3, g is constructed using the 
rules in Proposition 3 and π̂0 is the empirical accuracy of f 
on this finite data set. 

The following two trivial calibration maps are used to illus­
trate the necessity of the above two constraints. These two 
calibrators have low calibration errors, but they are hardly 
useful. 

High miscoverage rate: Based on the results in Proposi­
tion 6, to obtain a low calibration error, we could build a 
binary classifier with a low Type II error. This classifier has 
a potentially high Type I error, thus the miscoverage rate is 
potentially high as well. For example, we can select a small 
portion of negative instances and relabel the remaining in­
stances as positive. Then a 1-nearest neighbor classifier is 
such a classifier. 

Low coverage accuracy: Regardless of the input, we let 
the output of a calibration map to be the marginal class 
distribution. The calibration error of this calibration map is 
equal to 0, but its coverage accuracy is low and equal to the 
proportion of the largest class. 

Obviously, the above two constructions are of little conse­
quence in practice. Another motivating example demon­
strating the usefulness these two constraints is an automated 
decision model with human-in-the-loop (HIL). In such a 
model, on one hand, it is desirable that human interaction is 
as minimal as possible (low miscoverage rate). On the other 
hand, we hope this model can make accurate and reliable 
decisions (high coverage accuracy). We now describe how 
to construct a calibration map with a controlled miscoverage 
rate or a controlled coverage accuracy.1 

1Code is available at https://github.com/maxc01/ 
metacal 

https://github.com/maxc01/metacal
https://github.com/maxc01/metacal
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4.1. Miscoverage Rate Control 

To control the miscoverage rate of our proposed calibra­
tion method, we need to construct a suitable binary clas­
sifier with a controlled Type I error. Such a classifier can 
be built using the following steps. Given a finite calibra­
tion data set {(xi, yi)}n that is drawn i.i.d. from the joint i=1 
distribution P(X, Y ) on X × Y , we first create a binary 
classification data set {(xi, 2 · 1(yi � ˆ , where = yi) − 1)}n 

i=1

ŷi = arg maxi∈[k] f(xi) and f is a multi-class classifier to 
be calibrated. Without loss of generality, we suppose the 
first n1 inputs have negative labels and the last n2 = n − n1 

inputs have positive labels. Then we compute ranking scores 
on first n1 inputs using a ranking model h and denote these 
ranking scores as {ri}n1 , where ri = h(xi). Given a mis­i=1

coverage rate tolerance α, the desired binary classifier is 
constructed: 

φ̂(x) = 2 · 1(h(x) > r(v)) − 1, 

where v = �(n1 + 1)(1 − α)�, r(v) is the v-th order statistic 
of {ri}n1 , that is, r(1) ≤ · · · ≤ r(n1). We note under i=1

Assumption 1, the ranking model h is continuous, thus 
P(ri = rj ) = 0, ∀i, j ∈ [n1] and the strict inequalities hold 
r(1) < · · · < r(n1). In the following Proposition 7, we show 
the miscoverage rate of our calibrator is well-controlled 
by proving that the Type I error of this constructed binary 
classifier is well-controlled. 

Proposition 7 (Miscoverage rate control). Under Assump­
tion 1, given a finite test data set of size m that is i.i.d. 
drawn from P(X, Y ), the empirical miscoverage rate F̂0(g) 
of g on D is well-controlled: 

where F0(g) is the population miscoverage rate of g, the ran­
dom variable R0 has a Normal distribution N (F0(g), σ

2), 
σ2 = F0(g)(1 − F0(g))/m1, m1 ≤ m is the number of 
samples whose predictions are correct. 

Further, we have (Tong et al., 2018): 

n1

where v = �(n1 + 1)(1 − α)�. 

Equation (5) is given in Tong et al. (2018) and we adapt it 
here for our purpose. Essentially it means the population 
miscoverage rate is smaller than the predefined miscoverage 
rate tolerance with a high probability. A rough estimation of 
the miscoverage rate of g is �(1 + n)α�/(1 + n1) ≤ α. 

Although the miscoverage rate of our constructed cali­
bration map can be well-controlled using the above con­
structed binary classifier, there is no such a guarantee that 
the Type II error of φ̂ is also well-controlled. Combining 
the results shown in Proposition 6, it can be seen that the 
empirical ECE depends solely on R̂1(φ), since π̂0 is a con­
stant given a finite data set. Thus we cannot make sure the 
empirical calibration error is small if we keep using the 
construction rules shown in Proposition 3. 

A simple refinement to the above issue is to utilize a 
separate calibration model gm ∈ G and the updated 
construction rules for a calibration map are listed in the 
following: 

• if φ̂(x) = −1, we let g(x) = gm(x), 

1• if φ̂(x) = +1, we let maxi∈[k] g(x)i = .k 

Now it is clear why we call our post-hoc calibration ap­
proach Meta-Cal, since our calibrator is built from a base 
calibration map. The rationality of the above updated rules 
is shown in Proposition 8. 

Proposition 8 (Lower bound of Meta-Cal). Suppose the 
base calibration map gm ∈ Ga and g is constructed using 
the above updated rules, then: 

1 − π̂0 
sup ECEB (g ◦ f) > w , (6)

kB∈B 

where w = (1 − R̂0(φ̂))π̂0 + R̂1(φ̂)(1 − π̂0) < 1, R̂0(φ̂) 
and R̂1(φ̂) are empirical Type I error and Type II error of 
φ̂ respectively, π̂0 is the empirical accuracy of f on a finite 

F̂0(g) − F0(g)P ≈ P (|R0 − F0(g)| ≥ δ) 

δ2 

(4)≥ δ 

data set. ≤ 2 exp − ,
2σ2 

The result in Proposition 8 should be compared to the lower 
bound shown in Proposition 2. It can be seen that the cal­
ibration map constructed by Meta-Cal has an improved 
calibration error lower bound, compared with its accuracy-
preserving base calibrator. Proposition 8 should also be 
compared with Proposition 6. From Equation (6), using 

w (1−R̂0(φ̂))π̂0 R̂1(φ̂)(1−π̂0)=the decomposition + , we k k k 
see the influence of the Type II error has been effectively n1 

(1 − α)j αn1−jP(F0(g) > α) = , (5) diluted. This is desirable since we only have control over j 
the Type II error of φ̂.j=v 

At the same time, the miscoverage rate of our constructed 
calibrator is well-controlled. In Section 5, we empirically 
show that Meta-Cal outperforms other competing methods 
in terms of the empirical estimation of ECE. Algorithm 1 
sketches the construction of Meta-Cal under a miscoverage 
rate constraint. For details of this construction, please see 
the first paragraph of Section 4.1. 
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Algorithm 1 Meta-Cal (miscoverage control) 

1:	 Input: Training data set {(xi, yi)}n , miscoverage i=1

rate tolerance α, base calibration model gm, ranking 
model h. 

2:	 Output: Binary classifier φ̂, Meta-Cal calibration 
model g. 

3:	 Partition the training data set randomly into two parts. 
The first part has only negative ( Ŷ = Y ) samples. The 
second part contains both negative and positive samples 
(Ŷ =� Y ). 

4:	 Compute ranking scores on the first part using the rank­
∗ing model h. Compute threshold r based on α. 

∗5:	 Construct a binary classifier φ̂ based on r . 
6:	 Train a base calibration model gm using samples whose 

∗scores are smaller than r among the second part. 

In some applications, we are more interested in controlling 
the coverage accuracy of a calibration map instead of its 
miscoverage rate. To construct a calibration map with a 
controlled coverage accuracy, similar to Section 4.1, we 
need to build a suitable binary classifier. It will be conve­
nient to introduce the concept of a calibrated binary CPE 
model (Narasimhan & Agarwal, 2013). 

Definition 9 (Calibrated binary CPE model (Narasimhan 
& Agarwal, 2013)). A binary class probability estimation 
(CPE) model η̂ : X → [0, 1] is said to be calibrated w.r.t. a 
probability P(X, �) on X × {−1, +1} if: 

P(� = 1 | η̂(x) = u) = u, ∀u ∈ range(η) 

where range(η̂) denotes the range of η̂. 

We note a calibrated binary CPE model is different from 
a perfectly calibrated model (Definition 1) in the binary 
setting. Before we state our bound for the coverage accuracy, 
we present two existence propositions. 

Proof. The existence of such a monotonically increasing 
CPE transformation directly follows by combining the re­
sults of Narasimhan & Agarwal (2013, Lemma 13) and 
Narasimhan & Agarwal (2013, Definition 12). 

Proposition 11 (Existence of a monotonically decreasing 
coverage accuracy transformation). Under Assumptions 1 

and 2, let h : X → [a, b] (where a, b ∈ R, a < b) be any 
bounded-range ranking model. There exists a monotonically 
decreasing function l : R → [0, 1] such that l(s) is the cov­
erage accuracy of a calibration map g which is constructed 
using the binary classifier φ̂(x) = 2 · 1(h(x) > s) − 1. 

Proof. From Proposition 10, there exists a monotonically 
increasing t such that t ◦ h is a calibrated binary CPE model. 
Let Eh(s) = P(� = 1 | h(x) < s), since t is monotonically 
increasing, we have: 

Eh(s) = P(� = 1 | t(h(x)) < t(s)). 

Because t ◦ h is a calibrated binary CPE model, using Defi­
nition 9, we further have: 

7: Construct the final calibration map g using updated 
t(s) 1rules. 

4.2. Coverage Accuracy Control 

t(s)2 − constantEh(s) = udu = 
2c 

where c is a constant. 

From Definition 5, the desired coverage accuracy transfor­
mation is: 

l(s) = 1 − Eh(s) = constant − 
1 
t(s)2 . 

2 

Since t(s) ≥ 0, ∀s ∈ R and t(·) is a monotonically 
increasing function, it is obvious that l is a monotoni­
cally decreasing function. From the definition of Eh(s), 
the binary classifier that is used to construct g is exactly 
φ̂(x) = 2 · 1(h(x) > s) − 1. 

Based on the above two existence propositions, we describe 
a bound for the empirical coverage accuracy in Proposi­
tion 12. 

Proposition 12 (Coverage accuracy control). Under As­
sumptions 1 and 2, the empirical coverage accuracy F̂1(g) 
of g on a finite test data set of size m that is drawn i.i.d. 
from P(X, Y ) is well-controlled: 

Proposition 10 (Existence of a monotonically increasing �
F̂1(g) − β ≥ δCPE transformation). Under Assumptions 1 and 2, let P ≈ P (|R1 − β| ≥ δ) 

m1δ
2 

h : X → [a, b] (where a, b ∈ R, a < b) be any bounded-
range ranking model. There exists a monotonically increas­
ing function t : R → [0, 1] such that t ◦ h resulting from 

, (7)≤ 2 exp − 
2β(1 − β) 

composing t and h is a calibrated binary CPE model. 
where β is the desired coverage accuracy, the random vari­

β(1−β)able R1 has a Normal distributon N β, , and m1 

m1 ≤ m is the number of samples whose ranking scores 
are smaller than l−1(β) in the test data set. 

Further, the desired binary classifier is: 

φ̂(x) = 2 · 1(h(x) > l−1(β)) − 1. (8) 
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Table 1. ECE comparison. Uncal, TS, ETS, GPC, MetaMis, MetaAcc denote no-calibration, temperature scaling, ensemble temperature 
scaling, Gaussian Process calibration, Meta-Cal under miscoverage rate constraint and Meta-Cal under coverage accuracy constraint 
respectively. Reported values are the average of 40 independent runs. All standard errors are less than 5e − 4. 

Dataset Network Acc Uncal TS ETS GPC MetaMis MetaAcc 

DenseNet40 0.9242 0.05105 0.00510 0.00567 0.00634 0.00434 0.00355 

ResNet110 0.9356 0.04475 0.00781 0.00809 0.00684 0.00391 0.00441 

CIFAR10 ResNet110SD 0.9404 0.04022 0.00439 0.00509 0.00364 0.00350 0.00315 

WideResNet32 0.9393 0.04396 0.00706 0.00712 0.00684 0.00485 0.00532 

DenseNet40 0.7000 0.21107 0.01067 0.01104 0.01298 0.01093 0.00793 

ResNet110 0.7148 0.18182 0.02037 0.02130 0.01348 0.01815 0.01441 

CIFAR100 ResNet110SD 0.7283 0.15496 0.01043 0.01057 0.01265 0.01109 0.00733 

WideResNet32 0.7382 0.18425 0.01332 0.01351 0.00993 0.01332 0.01189 

DenseNet161 0.7705 0.05531 0.02053 0.02064 NA 0.01388 0.01248 
ImageNet ResNet152 0.7620 0.06290 0.02023 0.02004 NA 0.01360 0.01138 

Algorithm 2 Meta-Cal (coverage accuracy control) 

1:	 Input: Training data set {(xi, yi)}n , desired cover­i=1

age accuracy β, base calibration model gm, ranking 
model h. 

2:	 Output: Binary classifier φ̂, Meta-Cal calibration 
model g. 

3:	 Randomly split the training data set into two parts. 
4:	 Estimate the coverage accuracy transformation l̂ on the 

first part. 
5:	 Compute a threshold r ∗ = l̂−1(β) based on the esti­

mated l̂ and β. 
∗6:	 Construct a binary classifier φ̂ based on r . 

7:	 Train a base calibration model gm using samples among 
∗the second part whose scores are smaller than r . 

8:	 Construct the final calibration map g using updated 
rules. 

It should be noted that among all calibration maps whose 
coverage accuracy is higher than β, the calibration map con­
structed using the binary classifier in Equation (8) has the 
smallest miscoverage rate. In the following, we describe 
how to estimate the monotonically decreasing function l in 
practice. Given a finite calibration data set {(xi, yi)}n thati=1 
is drawn i.i.d. from the joint distribution P(X, Y ) on X ×Y : 
Firstly the ranking scores {ri}n , where ri = h(xi), are i=1

computed using our ranking model h. Then a set of bins 
{I1, · · · , Ib} to partition {ri}n is constructed through uni­i=1 
form mass binning (Zadrozny & Elkan, 2001). For a given 

(s) (a)
j ∈ {1, · · · , b}, let l and l denote the average of rank­j j 
ing scores on Ij and f ’s accuracy on {I1, · · · , Ij } respec­
tively. Finally a decreasing isotonic regression model is 

(s) (a)fitted on {(l , l )}b and the fitted model is an estima­j j j=1 
tion of l. Algorithm 2 sketches the construction of Meta-Cal 
under the coverage accuracy constraint. 

Several remarks are made to conclude this section. (i) The 
miscoverage rate bound holds for all base calibration maps. 
The coverage accuracy bound requires the base calibrator to 
preserve the accuracy. (ii) These two bounds do not depend 
on the metric used to evaluate the level of calibration, no 
matter whether it is top-label calibration error (which we 
use in this paper) or marginal calibration error (Kumar et al., 
2019; Kull et al., 2019). (iii) To ensure the independence as­
sumption, the training data of Meta-Cal should be different 
from the data set used to train the multi-class classifier. 

5. Experiments 
In this section, we present empirical results on a set of multi-
class classifiers. Firstly, we compare our our proposed Meta-
Cal described in Section 4 with several baselines. Then we 
validate the two constraints investigated in this work are 
well satisfied in Section 5.2. 

5.1. Calibrating Neural Networks 

In this section, we compare our approach with other meth­
ods of post-hoc multi-class calibration. Following previous 
works (Guo et al., 2017; Kull et al., 2019; Zhang et al., 2020; 
Wenger et al., 2020), we report calibration results on several 
neural network classifiers trained on CIFAR-10, CIFAR­
100 (Krizhevsky, 2009) and ImageNet (Deng et al., 2009). 
For CIFAR-10 and CIFAR-100, the following networks are 
used: DenseNet (Huang et al., 2016a), ResNet (He et al., 
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Figure 1. Empirical miscoverage rate. The error bars show ±2 standard deviation of 40 independent runs. The desired miscoverage rates 
for CIFAR-10, CIFAR-100 and ImageNet are all set to be 0.05. 
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Figure 2. Empirical coverage accuracy. The error bars show ±2 standard deviation of 40 independent runs. The desired coverage accuracy 
for CIFAR-10, CIFAR-100 and ImageNet are set to be 0.97, 0.87 and 0.85, respectively. 

2015), ResNet with stochastic depth (Huang et al., 2016b), 
WideResNet (Zagoruyko & Komodakis, 2016). 45000 out 
of 60000 images are used for training these classifiers. The 
remaining 15000 images are held out for training and evalu­
ating post-hoc calibration methods. The training details are 
given in Supplement C. These 15000 samples are randomly 
split into 5000/10000 samples to train and evaluate a post-
hoc calibration method. For ImageNet, we use pre-trained 
DenseNet-161 and ResNet-152 from PyTorch (Paszke et al., 
2019). 50000 images in the validation set are used for train­
ing and evaluating post-hoc calibration methods. To train 
and test a calibration map, we randomly split these samples 
into 25000/25000 images. 

The following post-hoc algorithms are used for comparison: 
temperature scaling (Guo et al., 2017), ensemble tempera­
ture scaling (Zhang et al., 2020), Gaussian Process calibra­
tion (Wenger et al., 2020). The Dirichlet calibration (Kull 
et al., 2019) is not included in our empirical comparison, 
since on the neural network classifiers we considered in 
this paper, its performance is consistently worse than other 
methods (Zhang et al., 2020). 

To construct a calibration map using our proposed Meta-
Cal, firstly we need to decide which base calibrator to 
use. Throughout the experimental part of this paper, we 
use temperature scaling since: (i) it is the most computa­
tionally efficient approach among the above baselines, and 
(ii) it can be seen from Proposition 8 that Meta-Cal aug­
ments the performance of temperature scaling, since it is an 

accuracy-preserving calibration map. Secondly a ranking 
model is required to construct a desired binary classifier 
based on different constraints. In this paper, we define the 
ranking model as the entropy of the output of an uncali­
brated probabilistic classifier, that is, given X ∈ X , we 
define h(X) = − f(X)i log f(X)i. An alternative i∈[k] 
way is to learn a ranking model using a consistent ranking 
algorithm (Cl´ ¸on et al., 2008) on a separate data set. emenc
A potential advantage of this approach is the constructed 
binary classifier has a lower Type II error, thus from Propo­
sition 6, the worst-case estimation of expected calibration 
error can be improved. A disadvantage of this approach 
is a separate data set is required to learn a ranking model 
and this effectively means we have less samples to train a 
calibration model. 

The experimental configurations specific to our proposed ap­
proach are as follows. For Meta-Cal under the miscoverage 
rate constraint, we set the miscoverage rate tolerance to be 
0.05 for all neural network classifiers and all data sets used 
in the experiments. For Meta-Cal under the coverage accu­
racy constraint, we set the desired coverage accuracy to be 
0.97, 0.87, 0.85 for CIFAR-10, CIFAR-100 and ImageNet, 
respectively. For reference, the original accuracy for each 
configuration is shown in the third column in Table 1. In 
both settings, we randomly select 1/10 samples (up to 500 
samples) from the calibration data set to construct a binary 
classifier or estimate the coverage accuracy transformation 
function. 
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Table 2. Time comparison (s). Reported values are the average of 40 independent runs. 

Dataset Network Uncal TS ETS GPC MetaMis MetaAcc 

DenseNet40 0.004 0.074 0.143 4.722 0.102 0.094 

ResNet110 0.004 0.066 0.050 5.255 0.127 0.084 

CIFAR10 ResNet110SD 0.004 0.075 0.148 5.401 0.101 0.090 

WideResNet32 0.004 0.078 0.133 5.116 0.105 0.093 

DenseNet40 0.014 0.492 0.492 40.218 0.470 0.336 

ResNet110 0.026 0.426 1.404 42.118 0.408 0.299 

CIFAR100 ResNet110SD 0.015 0.357 0.931 40.867 0.421 0.327 

WideResNet32 0.014 0.431 0.708 44.882 0.467 0.353 

DenseNet161 0.304 12.707 99.488 NA 13.573 9.903 
ImageNet ResNet152 0.309 15.624 111.589 NA 12.581 8.426 

The comparison results of different calibration methods are 
shown in Table 1. The empirical ECE are esitmated with 
15 equal-width bins and ECE values reported in Table 1 are 
the average of 40 independent runs. Since GPC does not 
converge on ImageNet, its results on ImageNet are marked 
as NA in Table 1. We note CE loss instead of MSE in 
optimizing ETS. 

From Table 1, it can be seen that our proposed method 
Meta-Cal performs much better w.r.t. the empirical ECE in 
almost all configurations. It should be noted that Table 1 
should be interpreted in a careful way, since our proposed 
method works in a novel setting, that is, post-hoc calibration 
under constraints. Essentially, we can interpret the improved 
calibration is due to the miscoverage price we pay. It is 
worth noting that after calibration, GPC has an around 0.2% 
accuracy drop in ResNet110 and ResNet110SD on CIFAR­
10 data set. It is possible that GPC is trading off accuracy 
for calibration in an implicit and uncontrolled way. Table 2 
shows the running time of different calibration methods. 
It can be seen Meta-Cal has little overhead over its base 
calibrator (TS in our case). Sometimes Meta-Cal takes less 
than time than TS because its base calibrator is optimized 
on a subset of the whole calibration data set. 

5.2. Verifying Constraints 

In this section, we empirically verify whether constraints of 
miscoverage rate and coverage accuracy are satisfied. The 
purpose of this section is to support our theoretical claims 
in Section 4.1 and Section 4.2. 

The error bar plot in Figure 1 depicts ±2 standard deviations 
of the empirical miscoverage rate over 40 independent runs. 
It can be seen from Figure 1 that the miscoverage rate is 
well-controlled given a miscoverage rate tolerance equal to 

0.05. In Figure 2, the ±2 standard deviation of the empirical 
coverage accuracy is illustrated. Given the desired coverage 
accuracies are set to be 0.97, 0.87 and 0.85 for CIFAR-10, 
CIFAR-100 and ImageNet, respectively, it can be seen that 
the coverage accuracy is well-controlled. 

6. Conclusion 
In this work, we propose Meta-Cal: a post-hoc calibration 
method for multi-class classification under practical con­
straints, including miscoverage rate and coverage accuracy. 
Our proposed approach can augment an accuracy-preserving 
calibration map and improve its calibration performance. 
Contrary to post-hoc calibration methods that cannot pre­
serve accuracy, our approach has full control over coverage 
accuracy. A series of theoretical results are given to show 
the validity of Meta-Cal. Empirical results on a range of neu­
ral network classifiers on several popular computer vision 
data sets show our approach is able to improve an existing 
calibration method. 
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