Learning Stochastic Behaviour from Aggregate Data

A. Supplementary Experiments

A.1. RNA-sequence
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Figure 1: The performance comparisions among different models on D2 and D7 of Tdh and Gsn.

Table 1: The Wasserstein error of different models on Supplementary RNA-sequence data sets.

Data Task | Dimension | NN LEGEND Ours
D2 10 16.28 5.75 2.15
RNA-Tdh D7 10 28.19 2249 1.03
D2 10 34.94 10.77 3.31
RNA-Gsn |57 10 1574 1042 2.07

A.2. Daily Trading Volume
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Figure 2: (a) to (d): TSLA stock. (e) to (h): GOOGL stock. We predictions of traded volume in next 100 days, RM(yellow)
fails to capture the regularities of traded volume in time series, kalman filter based model(green) fails to capture noise
information and make reasonable predictions, our model(blue) is able to seize the movements of traded volume and yield
better predictions.
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Table 2: The Mean absolute percentage error(MAPE) of different models on Daily Trading Volume data sets.

Stock Time | RM KF Ours

14:3510.52 0.28 0.01
15:1510.54 0.36 0.04
15:350.51 0.42 0.06
16:15(0.52 049 0.12
14:3510.53 0.31 0.02
15:1510.55 0.36 0.03
15:35|0.53 0.39 0.08
16:15(0.52 0.38 0.14
14:35|0.49 035 0.01
15:15|0.51 0.38 0.03
15:3510.53 0.44 0.05
16:15|0.51 042 0.11
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B. Definition of G in Synthetic-2

Synthetic-2 (Nonlinear, converging to mixed-Gaussian):

530 ~ N(O, Eo>, i:tJrAt = Zit — GAt + oV AtN(O, 1)
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C. Error Analysis

In this section, we provide an error analysis of our model. Suppose the hidden dynamics is driven by g,.(x), the dynamics
that we learn from data is g¢ (), then original Itd process, Euler processes computed by true g, and estimated g are:

dX = g(X)dt + odW
Ty ny =Xy + gr(x)) At + o VAIN(0,1)
wf;m = w{ + gf(w{)At + oVAIN(0,1)

where X is the ground truth, " is computed by true g, and =/ is computed by estimated g . Estimating the error between
original It6 process and its Euler form can be very complex, hence we cite the conclusion from (Milstein & Tretyakov, 2013)
and focus more on the error between original form and our model.

Lemma 2. With the same initial X, = T+, = Ty, if there is a global Lipschitz constant K which satisfies:

lg(x,t) — g(y,t)| < K|z -y

then after n steps, the expectation error between It6 process xy, and Euler forward process T is:

1/2
E|x:, — :c,’;n| < K(l + IEX0|2> At
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Lemma 2 illustrates that the expectation error between original Itd process and its Euler form is not related to total steps n
but time step At.

Proposition 3. With the same initial xo, suppose the generalization error of neural network g is € and existence of global
Lipschitz constant K:

lg(z) — g9(y)| < K|z — y|

then after n steps with step size At = T'/n, the expectation error between It6 process x;,, and approximated forward process
:L'f: is bounded by:
€
Elz, — @] | < ("7 — 1)+ K(1+Elaol*)'/?At 0

Proposition 3 implies that besides time step size At, our expectation error interacts with three factors, generalization error,
Lipschitz constant of g and total time length. In our experiments, we find the best way to decrease the expectation error is
reducing the value of K and n.

D. Proofs

D.1. Proof of Proposition 1

Proof. Suppose :ch ) and 33,5 ) are our observed samples at ¢,,, and ¢,,,_1 respectively, then expectations could be approxi-

mated by:

1 N
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z;]k f(@ (k) /f /t

m—1

Then for the second term I above, it is difficult to calculate directly, but we can use integration by parts to rewrite [ as:
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To approximate the integral from ¢,,,_; to ¢,,, we adopt trapezoid rule, then we could rewrite the expectation in Equation (3)
as:

1 o a0 1 (o 30 3k - 20
k k k 2 k
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k k k
+ =D Zgw <,,3 F@E + 5 22 2f< )
N &=\~ 2 o
N A _
NZ W)+ 5 [Fr&ma) + Fr ()] 5)
k=
We subtract (2) by (5) to finish the proof. O

D.2. Proof of Proposition 2

Proof. Given initial &;,, we generate ;,, ,, Tty ... Ty, sequentially by Euler-Maruyama scheme. Then the expectations
can be rewritten as:

1 N
Buptoan [f@)] = [ f@)p(a,ta)de ~ Y 1Y) ©

1 g N2 8
~(k i
Eamsoan /@)~ 1 S 1G@0) + [ £ lzgwww) 2 fa®) 22 el >] ar
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which is:
N
1 . At N - At - -
Eaniean /@)~ v > F@0) + 5 [Fr(Ko) + Fr(&n)| + 5 [Fr(R) + Fr(Xa)] +
k=1
At - -
+ 5 [Fr&amn) + Fr(%)] ®)
Finally it comes to:
1 N . A _ n—1 5
Eamp(aen /@) & 5 Y f(@1) + (ff<Xo> +Fp(Xn)+2) ff(Xs)> ©)
k=1 s=1
We subtract (6) by (9) to finish the proof. O

D.3. Proof of Error Analysis

Proof. The proof process of Lemma 2 is quite long and out of the scope of this paper, for more details please see first two
chapters in reference book (Milstein & Tretyakov, 2013). While for the proof of Proposition 3, with initial X and first
one-step iteration:

T, =x
{ Py 10y

CCtO = $t0

; 0 11
[ =, + sl At + VAN (0, 1) a

xr

{w; = @, + g,(a},) At + o /AEN(0,1)
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Then we have:
E|x} — :Bt0| = E|x;, — act0| =0 (12)
Elxy, — mt1| = Elz;, — wto + gr(y,) At — gf(wtO)At + UFN(O 1) - UFN(O D]
< E‘mto $t0| + Elg, (mto) Qf(wto)|At
= Elg.(x},) — g7 (@},) + g5 (@},) — g5 (@], )| At
< Elg,(27,) - gs(xf, )| At + Elgy(x7,) — g5(], )| At
< eAt +Elgy(aj,) — g5 (@], )| At

= eAt + Elgj (a5, ) (), — af,)|At (x5, € [}, )
< eAt+ KE|x}, — a:t0|At
N (13)

Follow the pattern we have:

wt2 _xtl +g7‘( )At+OV N( ) (14)
xf, = o] +gp(@] ) At + o VAIN(0,1)
x, =  +g(x] )At+oVAIN(0,1) (15)
of =z 4ol )At+oVAIN(,1)
Which leads to:
Elz}, — x] | = Elz}, — x] + g.(x})At — gp (] ) At + aVAIN(0,1) — oVAIN (0, 1))
< IE|3:t1 act1| +]E|gr(act1) gf(:cfl )| At
< Elzf, — a:tl| + At + KE|x}, — a:fl |At
< (1+ KAt)eAt + eAt (16)
n—1
Elo; —af | <eAt) (1+ KAty (17)
=0
Now let S = >"""", ' (1 + KAt)?, then consider followings:
S(KAt)=S(1+ KAt)— S
n n—1 )
=> (1+ KAty Z(1+KAt)l
i=1 =0
= (1+ KAt)"
T
=(1+K=)"-1
(1+K-)
<efT 1 (18)
Finally we have:
Elz; —af | < %(eKT ~1) (19)
Ela,, —f | < (X7 — 1) + K(1 + Elzo[?)/2At (20)
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