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Abstract

Local graph clustering is an important algorithmic
technique for analysing massive graphs, and has
been widely applied in many research fields of
data science. While the objective of most (local)
graph clustering algorithms is to find a vertex set
of low conductance, there has been a sequence of
recent studies that highlight the importance of the
inter-connection between clusters when analysing
real-world datasets. Following this line of re-
search, in this work we study local algorithms for
finding a pair of vertex sets defined with respect to
their inter-connection and their relationship with
the rest of the graph. The key to our analysis is a
new reduction technique that relates the structure
of multiple sets to a single vertex set in the re-
duced graph. Among many potential applications,
we show that our algorithms successfully recover
densely connected clusters in the Interstate Dis-
putes Dataset and the US Migration Dataset.

1. Introduction
Given an arbitrary vertex u of a graph G = (V,E) as
input, a local graph clustering algorithm finds some low-
conductance set S ⊂ V containing u, while the algorithm
runs in time proportional to the size of the target cluster
and independent of the size of the graph G. Because of
the increasing size of available datasets, which makes cen-
tralised computation too expensive, local graph clustering
has become an important learning technique for analysing a
number of large-scale graphs and has been applied to solve
many other learning and combinatorial optimisation prob-
lems (Andersen, 2010; Andersen et al., 2016; Wang et al.,
2017; Yin et al., 2017; Takai et al., 2020; Fountoulakis et al.,
2020; Liu & Gleich, 2020; Zhu et al., 2013).
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1.1. Our Contribution

We study local graph clustering for learning the structure
of clusters that are defined by their inter-connections, and
present two local algorithms to achieve this objective in both
undirected graphs and directed ones.

Our first result is a local algorithm for finding densely con-
nected clusters in an undirected graph G = (V,E): given
any seed vertex u, our algorithm is designed to find two clus-
ters L,R around u, which are densely connected to each
other and are loosely connected to V \ (L∪R). The design
of our algorithm is based on a new reduction that allows
us to relate the connections between L,R and V \ (L ∪R)
to a single cluster in the resulting graph H , and a gener-
alised analysis of Pagerank-based algorithms for local graph
clustering. The significance of our designed algorithm is
demonstrated by our experimental results on the Interstate
Dispute Network from 1816 to 2010. By connecting two
vertices (countries) with an undirected edge weighted ac-
cording to the severity of their military disputes and using
the USA as the seed vertex, our algorithm recovers two
groups of countries that tend to have conflicts with each
other, and shows how the two groups evolve over time. In
particular, as shown in Figures 1(a)-(d), our algorithm not
only identifies the changing roles of Russia, Japan, and east-
ern Europe in line with 20th century geopolitics, but also
the reunification of east and west Germany around 1990.

We further study densely connected clusters in a directed
graph (digraph). Specifically, given any vertex u in a di-
graph G = (V,E) as input, our second local algorithm
outputs two disjoint vertex sets L and R, such that (i) there
are many edges from L to R, and (ii) L ∪R is loosely con-
nected to V \ (L∪R). The design of our algorithm is based
on the following two techniques: (1) a new reduction that
allows us to relate the edge weight from L to R, as well
as the edge connections between L ∪ R and V \ (L ∪ R),
to a single vertex set in the resulting undirected graph H;
(2) a refined analysis of the ESP-based algorithm for local
graph clustering. We show that our local algorithm is able
to recover densely connected clusters in the US migration
dataset, in which two vertex sets L,R defined as above
could represent a higher-order migration trend. In particular,
as shown in Figures 1(e)–(h), by using different counties as
starting vertices, our algorithm uncovers refined and more
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(a) 1816-1900 (b) 1900-1950 (c) 1950-1990 (d) 1990-2010

(e) Ohio Seed (f) New York Seed (g) California Seed (h) Florida Seed

Figure 1. (a)-(d) Clusters found by LocBipartDC on the Interstate Dispute Network, using the USA as the seed vertex. In each
case, countries in the yellow cluster tend to enter conflicts with countries in the blue cluster and vice versa. (e)-(h) Clusters found by
EvoCutDirected in the US migration network. There is a significant migration trend from the red counties to the green counties.

localised migration patterns than the previous work on the
same dataset (Cucuringu et al., 2020). To the best of our
knowledge, our work represents the first local clustering
algorithm that achieves a similar goal.

1.2. Related Work

Li and Peng (2013) study the same problem for undirected
graphs, and present a random walk based algorithm. Ander-
sen (2010) studies a similar problem for undirected graphs
under a different objective function, and our algorithm’s
runtime significantly improves the one in (Andersen, 2010).
There is some recent work on local clustering for hyper-
graphs (Takai et al., 2020), and algorithms for finding higher-
order structures of graphs based on network motifs both
centrally (Benson et al., 2015; 2016) and locally (Yin et al.,
2017). These algorithms are designed to find different types
of clusters, and cannot be directly compared with ours. Our
problem is related to the problem of finding clusters in disas-
sortative networks studied in (Moore et al., 2011; Pei et al.,
2019; Zhu et al., 2020), although these works consider semi-
supervised, global methods while ours is unsupervised and
local. There are also recent studies which find clusters with
a specific structure in the non-local setting (Cucuringu et al.,
2020; Laenen & Sun, 2020). Our current work shows that
such clusters can be learned locally via our presented new
techniques.

2. Preliminaries
Notation. For any undirected and unweighted graph G =
(VG, EG) with n vertices and m edges, the degree of any
vertex v is denoted by degG(v), and the set of neighbours
of v is NG(v). For any S ⊆ V , its volume is

volG(S) ,
∑
v∈S

deg(v),

its boundary is ∂G(S) , {(u, v) ∈ E : u ∈ S and v 6∈ S},
and its conductance is

ΦG(S) ,
|∂G(S)|

min{volG(S), volG(V \ S)}
.

For disjoint S1, S2 ⊂ VG, e(S1, S2) is the number of edges
between S1 and S2. When G = (VG, EG) is a digraph, for
any u ∈ VG we use degout(u) and degin(u) to express the
number of edges with u as the tail or the head, respectively.
For any S ⊂ VG, we define volout(S) =

∑
u∈S degout(u),

and volin(S) =
∑
u∈S degin(u).

For undirected graphs, we use DG to denote the n × n
diagonal matrix with (DG)v,v = degG(v) for any vertex
v ∈ V , and we use AG to represent the adjacency matrix of
G defined by (AG)u,v = 1 if {u, v} ∈ EG, and (AG)u,v =
0 otherwise. The lazy random walk matrix of G is WG =
(1/2) · (I + D−1G AG). For any set S ⊂ VG, χS is the
indicator vector of S, i.e., χS(v) = 1 if v ∈ S, and χS(v) =
0 otherwise. If the set consists of a single vertex v, we write
χv instead of χ{v}. Sometimes we drop the subscript G
when the underlying graph is clear from the context. For
any vectors x, y ∈ Rn, we write x � y if it holds for any v
that x(v) ≤ y(v). For any operators f, g : Rn → Rn, we
define f◦g : Rn → Rn by f◦g(v) , f(g(v)) for any v. For
any vector p, we define the support of p to be supp(p) =
{u : p(u) 6= 0}. The sweep sets of p are defined by (1)
ordering all the vertices such that p(v1)

deg(v1)
≥ p(v2)

deg(v2)
≥

. . . ≥ p(vn)
deg(vn)

, and (2) constructing Spj = {v1, . . . , vj} for
1 ≤ j ≤ n. Throughout this paper, we will consider vectors
to be row vectors, so the random walk update step for a
distribution p is written as pW . For ease of presentation
we consider only unweighted graphs; however, our analysis
can be easily generalised to the weighted case. All the
omitted and technical details can be found in the full version
(arXiv:2106.05245).

https://arxiv.org/abs/2106.05245
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Pagerank. Given an underlying graph G with the lazy
random walk matrix W , the personalised Pagerank vector
pr(α, s) is defined to be the unique solution of the equation

pr(α, s) = αs+ (1− α)pr(α, s)W, (1)

where s ∈ Rn≥0 is a starting vector and α ∈ (0, 1] is called
the teleport probability. Andersen et al. (2006) show that the
personalised Pagerank vector can be written as pr(α, s) =
α
∑∞
t=0(1 − α)tsW t. Therefore, we could study pr(α, s)

through the following random process: pick some integer
t ∈ Z≥0 with probability α(1− α)t, and perform a t-step
lazy random walk, where the starting vertex of the random
walk is picked according to s. Then, pr(α, s) describes the
probability of reaching each vertex in this process.

Computing an exact Pagerank vector pr(α, χv) is equivalent
to computing the stationary distribution of a Markov chain
on the vertex set V which has a time complexity of Ω(n).
However, since the probability mass of a personalised Pager-
ank vector is concentrated around some starting vertex, it is
possible to compute a good approximation of the Pagerank
vector in a local way. Andersen et al. (2006) introduce the
approximate Pagerank, which will be used in our analysis.
Definition 1. A vector p = apr(α, s, r) is an approximate
Pagerank vector if p+ pr(α, r) = pr(α, s). The vector r is
called the residual vector.

The evolving set process. The evolving set process (ESP)
is a Markov chain whose states are sets of vertices Si ⊆ V .
Given a state Si, the next state Si+1 is determined by the fol-
lowing process: (1) choose t ∈ [0, 1] uniformly at random;
(2) let Si+1 = {v ∈ V |χvWχᵀ

Si
≥ t}. The volume-biased

ESP is a variant used to ensure that the Markov chain ab-
sorbs in the state V rather than ∅. Andersen and Peres (2009)
give a local algorithm for undirected graph clustering using
the volume-biased ESP. In particular, they give an algo-
rithm GenerateSample(u, T ) which samples the T -th
element from the volume-biased ESP with S0 = {u}.

3. The Algorithm for Undirected Graphs
Now we present a local algorithm for finding two clusters
in an undirected graph with a dense cut between them. To
formalise this notion, for any undirected graph G = (V,E)
and disjoint L,R ⊂ V , we follow Trevisan (2012) and
define the bipartiteness ratio as

β(L,R) , 1− 2e(L,R)

vol(L ∪R)
.

Notice that a low β(L,R) value means that there is a dense
cut betweenL andR, and there is a sparse cut betweenL∪R
and V \ (L ∪ R). In particular, β(L,R) = 0 implies that
(L,R) forms a bipartite and connected component ofG. We
will describe a local algorithm for finding almost-bipartite
sets L and R with a low value of β(L,R).

3.1. The Reduction by Double Cover

The design of most local algorithms for finding a target
set S ⊂ V of low conductance is based on analysing the
behaviour of random walks starting from vertices in S. In
particular, when the conductance ΦG(S) is low, a random
walk starting from most vertices in S will leave S with
low probability. However, for our setting, the target is a
pair of sets L,R with many connections between them. As
such, a random walk starting in either L or R is very likely
to leave the starting set. To address this, we introduce a
novel technique based on the double cover of G to reduce
the problem of finding two sets of high conductance to the
problem of finding one of low conductance.

Formally, for any undirected graph G = (VG, EG), its dou-
ble cover is the bipartite graph H = (VH , EH) defined as
follows: (1) every vertex v ∈ VG has two corresponding
vertices v1, v2 ∈ VH ; (2) for every edge {u, v} ∈ EG, there
are edges {u1, v2} and {u2, v1} in EH . See Figure 2 for an
illustration.

a1 b1

a2 b2

c1 d1

d2c2

a b

c d

=⇒

Figure 2. An example of the construction of the double cover.

Now we present a tight connection between the value of
β(L,R) for any disjoint sets L,R ⊂ VG and the conduc-
tance of a single set in the double cover of G. To this end,
for any S ⊂ VG, we define S1 ⊂ VH and S2 ⊂ VH by
S1 , {v1 | v ∈ S} and S2 , {v2 | v ∈ S}. We formalise
the connection in the following lemma.
Lemma 1. Let G be an undirected graph, S ⊂ V with
partitioning (L,R), and H be the double cover of G. Then,
it holds that ΦH(L1 ∪R2) = βG(L,R).

Next we look at the other direction of this correspondence.
Specifically, given any S ⊂ VH in the double cover of a
graph G, we would like to find two disjoint sets L ⊂ VG
and R ⊂ VG such that βG(L,R) = ΦH(S). However, such
a connection does not hold in general. To overcome this, we
restrict our attention to those subsets of VH which can be
unambiguously interpreted as two disjoint sets in VG.
Definition 2. We call S ⊂ VH simple if |{v1, v2} ∩ S| ≤ 1
holds for all v ∈ VG.
Lemma 2. For any simple set S ⊂ VH , let L = {u : u1 ∈
S} and R = {u : u2 ∈ S}. Then, βG(L,R) = ΦH(S).

3.2. Design of the Algorithm

So far we have shown that the problem of finding densely
connected sets L,R ⊂ VG can be reduced to finding S ⊂
VH of low conductance in the double cover H , and this
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reduction raises the natural question of whether existing
local algorithms can be directly employed to find L and
R in G. However, this is not the case: even though a set
S ⊂ VH returned by most local algorithms is guaranteed to
have low conductance, vertices of G could be included in
S twice, and as such S will not necessarily give us disjoint
sets L,R ⊂ VG with low value of β(L,R). See Figure 3
for an illustration.

· · · a1

S

b1 c1 d1 e1 f1 · · ·

· · · a2 b2 c2 d2 e2 f2 · · ·

Figure 3. The indicated vertex set S ⊂ VH has low conductance.
However, since S contains many pairs of vertices which correspond
to the same vertex in G, S gives us little information for finding
disjoint L,R ⊂ VG with a low β(L,R) value.

The simplify operator. To take the example shown in
Figure 3 into account, our objective is to design a local
algorithm for finding some set S ⊂ VH of low conductance
which is also simple. To ensure this, we introduce the
simplify operator, and analyse its properties.

Definition 3 (Simplify operator). LetH be the double cover
of G, where the two corresponding vertices of any u ∈ VG
are defined as u1, u2 ∈ VH . Then, for any p ∈ R2n

≥0, the
simplify operator is a function σ : R2n

≥0 → R2n
≥0 defined by

(σ ◦ p)(u1) , max(0, p(u1)− p(u2)),

(σ ◦ p)(u2) , max(0, p(u2)− p(u1))

for every u ∈ VG.

Notice that, for any vector p and any u ∈ VG, at most one of
u1 and u2 is in the support of σ◦p; hence, the support of σ◦p
is always simple. To explain the meaning of σ, for a vector
p one could view p(u1) as our “confidence” that u ∈ L,
and p(u2) as our “confidence” that u ∈ R. Hence, when
p(u1) ≈ p(u2), both (σ ◦ p)(u1) and (σ ◦ p)(u2) are small
which captures the fact that we would not prefer to include
u in either L orR. On the other hand, when p(u1)� p(u2),
we have (σ◦p)(u1) ≈ p(u1), which captures our confidence
that u should belong to L. The following lemma summaries
some key properties of σ.

Lemma 3. The following holds for the σ-operator:
• σ ◦ (c · p) = c · (σ ◦ p) for p ∈ R2n

≥0 and any c ∈ R≥0;
• σ ◦ (a+ b) � σ ◦ a+ σ ◦ b for a, b ∈ R2n

≥0;
• σ ◦ (pW ) � (σ ◦ p)W for p ∈ R2n

≥0.

While these three properties will all be used in our analysis,
the third is of particular importance: it implies that, if p is

the probability distribution of a random walk inH , applying
σ before taking a one-step random walk would never result
in lower probability mass than applying σ after taking a
one-step random walk. This means that no probability mass
would be lost when the σ-operator is applied between every
step of a random walk, in comparison with applying σ at
the end of an entire random walk process.

Description of the algorithm. Our proposed algorithm
is conceptually simple: every vertex u of the input graph G
maintains two copies u1, u2 of itself, and these two “virtual”
vertices are used to simulate u’s corresponding vertices in
the double cover H of G. Then, as the neighbours of u1
and u2 in H are entirely determined by u’s neighbours in
G and can be constructed locally, a random walk process
in H will be simulated in G. This will allow us to apply a
local algorithm similar to the one by Anderson et al. (2006)
on this “virtual” graph H . Finally, since all the required
information about u1, u2 ∈ VH is maintained by u ∈ VG,
the σ-operator will be applied locally.

The formal description of our algorithm is given in Algo-
rithm 1, which invokes Algorithm 2 as the key component to
compute aprH(α, χu1

, r). Specifically, Algorithm 2 main-
tains, for every vertex u ∈ G, tuples (p(u1), p(u2)) and
(r(u1), r(u2)) to keep track of the values of p and r in G’s
double cover. For a given vertex u, the entries in these tu-
ples are expressed by p1(u), p2(u), r1(u), and r2(u) respec-
tively. Every dcpush operation (Algorithm 3) preserves
the invariant p+ prH(α, r) = prH(α, χv1), which ensures
that the final output of Algorithm 2 is an approximate Pager-
ank vector. We remark that, although the presentation of
the ApproximatePagerankDC procedure is similar to
the one in Andersen et al. (2006), in our dcpush proce-
dure the update of the residual vector r is slightly more
involved: specifically, for every vertex u ∈ VG, both r1(u)
and r2(u) are needed in order to update r1(u) (or r2(u)).
That is one of the reasons that the performance of the algo-
rithm in Andersen et al. (2006) cannot be directly applied
for our algorithm, and a more technical analysis, some of
which is parallel to theirs, is needed in order to analyse the
correctness and performance of our algorithm.

3.3. Analysis of the Algorithm

To prove the correctness of our algorithm, we will show two
complementary facts which we state informally here:

1. If there is a simple set S ⊂ VH with low conductance,
then for most u1 ∈ S, the simplified approximate
Pagerank vector p = σ ◦ apr(α, χu1

, r) will have a lot
of probability mass on a small set of vertices.

2. If p = σ ◦ apr(α, χu1
, r) contains a lot of probability

mass on some small set of vertices, then there is a
sweep set of p with low conductance.
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Algorithm 1 LocBipartDC
Input: A graphG, starting vertex u, target volume γ, and

target bipartiteness β
Output: Two disjoint sets L and R
Set α = β2

378 , and ε = 1
20γ

Compute p′ = ApproximatePagerankDC(u, α, ε)
Compute p = σ ◦ p′
for j ∈ [1, |supp(p)|] do

if Φ(Spj ) ≤ β then
Set L = {u : u1 ∈ Spj }, and R = {u : u2 ∈ Spj }
return (L,R)

end if
end for

Algorithm 2 ApproximatePagerankDC
Input: Starting vertex v, parameters α and ε
Output: Approximate Pagerank vector aprH(α, χv1 , r)
Set p1 = p2 = r2 = 0; set r1 = χv
while max(u,i)∈V×{1,2}

ri(u)
deg(u) ≥ ε do

Choose any u and i ∈ {1, 2} such that ri(u)
deg(u) ≥ ε

(p1, p2, r1, r2) = dcpush(α, (u, i), p1, p2, r1, r2)
end while
return p = [p1, p2]

As we have shown in Section 3.1, there is a direct corre-
spondence between densely connected sets in G, and low-
conductance and simple sets in H . This means that the
two facts above are exactly what we need to prove that
Algorithm 1 can find densely connected sets in G.

We will first show in Lemma 4 how the σ-operator affects
some standard mixing properties of Pagerank vectors in or-
der to establish the first fact promised above. This lemma
relies on the fact that S ⊂ VG corresponds to a simple set in
VH . This allows us to apply the σ-operator to the approxi-
mate Pagerank vector aprH(α, χu1 , r) while preserving a
large probability mass on the target set.

Lemma 4. For any set S ⊂ VG with partitioning (L,R)
and any constant α ∈ [0, 1], there is a subset Sα ⊆ S
with vol(Sα) ≥ vol(S)/2 such that, for any vertex v ∈ Sα,
the simplified approximate Pagerank on the double cover
p = σ ◦ (aprH(α, χv1 , r)) satisfies

p(L1 ∪R2) ≥ 1− 2β(L,R)

α
− 2vol(S) max

u∈V

r(u)

deg(u)
.

To prove the second fact, we show as an intermediate lemma
that the value of p(u1) can be bounded with respect to its
value after taking a step of the random walk: pW (u1).

Lemma 5. Let G be a graph with double cover H , and
apr(α, s, r) be the approximate Pagerank vector defined
with respect to H . Then, p = σ ◦ (apr(α, s, r)) satisfies

Algorithm 3 dcpush
Input: α, (u, i), p1, p2, r1, r2
Output: (p′1, p

′
2, r
′
1, r
′
2)

Set (p′1, p
′
2, r
′
1, r
′
2) = (p1, p2, r1, r2)

Set p′i(u) = pi(u) + αri(u); r′i(u) = (1− α) ri(u)2
for v ∈ NG(u) do

Set r′3−i(v) = r3−i(v) + (1− α) ri(u)
2 deg(u)

end for
return (p′1, p

′
2, r
′
1, r
′
2)

that p(u1) ≤ α (s(u1) + r(u2)) + (1− α)(pW )(u1), and
p(u2) ≤ α (s(u2) + r(u1)) + (1 − α)(pW )(u2) for any
u ∈ VG.

Notice that applying the σ-operator for any vertex u1 in-
troduces a new dependency on the value of the residual
vector r at u2. This subtle observation demonstrates the
additional complexity introduced by the σ-operator when
compared with previous analysis of Pagerank-based local
algorithms (Andersen et al., 2006). Taking account of the
σ-operator, we further analyse the Lovász-Simonovits curve
defined by p, which is a common technique in the analysis
of random walks on graphs (Lovász & Simonovits, 1990):
we show that if there is a set S with a large value of p(S),
there must be a sweep set Spj with small conductance.

Lemma 6. Let G be a graph with double cover H , and let
p = σ ◦ (aprH(α, s, r)) such that maxu∈VH

r(u)
d(u) ≤ ε. If

there is a set of vertices S ⊂ VH and a constant δ such that
p(S) − vol(S)

vol(VH) ≥ δ, then there is some j ∈ [1, |supp(p)|]

such that ΦH(Spj ) < 6
√

(1 + εvol(S))α ln( 4
δ )
/
δ.

We have now shown the two facts promised at the begin-
ning of this subsection. Putting these together, if there is
a simple set S ⊂ VH with low conductance then we can
find a sweep set of σ ◦ apr(α, s, r) with low conductance.
By the reduction from almost-bipartite sets in G to low-
conductance simple sets in H our target set corresponds to
a simple set S ⊂ VH which leads to Algorithm 1 for finding
almost-bipartite sets. Our result is summarised as follows.

Theorem 1. Let G be an n-vertex undirected graph, and
L,R ⊂ VG be disjoint sets such that β(L,R) ≤ β and
vol(L ∪ R) ≤ γ. Then, there is a set C ⊆ L ∪ R
with vol(C) ≥ vol(L ∪ R)/2 such that, for any v ∈ C,
LocBipartDC

(
G, v, γ,

√
7560β

)
returns (L′, R′) with

β(L′, R′) = O
(√
β
)

and vol(L′ ∪R′) = O
(
β−1γ

)
. More-

over, the algorithm has running time O
(
β−1γ log n

)
.

The quadratic approximation guarantee in Theorem 1
matches the state-of-the-art local algorithm for finding a
single set with low conductance (Andersen et al., 2016).
Furthermore, our result presents a significant improvement
over the previous state-of-the-art by Li and Peng (2013),



Local Algorithms for Finding Densely Connected Clusters

whose design is based on an entirely different technique
than ours. For any ε ∈ [0, 1/2], their algorithm runs in
time O

(
ε2β−2γ1+ε log3 γ

)
and returns a set with volume

O
(
γ1+ε

)
and bipartiteness ratio O

(√
β/ε
)

. In particular,
their algorithm requires much higher time complexity in
order to guarantee the same bipartiteness ratio O

(√
β
)
.

4. The Algorithm for Digraphs
We now turn our attention to local algorithms for finding
densely connected clusters in digraphs. In comparison
with undirected graphs, we are interested in finding dis-
joint L,R ⊂ V of some digraph G = (V,E) such that most
of the edges adjacent to L∪R are from L toR. To formalise
this, we define the flow ratio from L to R as

F (L,R) , 1− 2e(L,R)

volout(L) + volin(R)
,

where e(L,R) is the number of directed edges from L to R.
Notice that we take not only edge densities but also edge
directions into account: a low F (L,R)-value tells us that
almost all edges with their tail in L have their head inR, and
conversely almost all edges with their head in R have their
tail in L. One could also see F (L,R) as a generalisation of
β(L,R). In particular, if we view an undirected graph as
a digraph by replacing each edge with two directed edges,
then β(L,R) = F (L,R). In this section, we will present
a local algorithm for finding such vertex sets in a digraph,
and analyse the algorithm’s performance.

4.1. The Reduction by Semi-Double Cover

Given a digraph G = (VG, EG), we construct its semi-
double cover H = (VH , EH) as follows: (1) every vertex
v ∈ VG has two corresponding vertices v1, v2 ∈ VH ; (2)
for every edge (u, v) ∈ EG, we add the edge {u1, v2} in
EH . 1 It is worth comparing this reduction with the one for
undirected graphs:

• For undirected graphs, we apply the standard double
cover and every undirected edge in G corresponds to
two edges in the double cover H;

• For digraphs, every directed edge in G corresponds
to one undirected edge in H . This asymmetry would
allow us to “recover” the direction of any edge in G.

We follow the use of S1, S2 from Section 3: for any S ⊂ VG,
we define S1 ⊂ VH and S2 ⊂ VH by S1 , {v1 | v ∈ S}
and S2 , {v2 | v ∈ S}. The lemma below shows the
connection between the value of FG(L,R) for any L,R
and ΦH(L1 ∪R2).
Lemma 7. Let G be a digraph with semi-double cover
H . Then, it holds for any L,R ⊂ VG that FG(L,R) =

1We remark that this reduction was also used by Ander-
son (2010) for finding dense components in a digraph.

ΦH(L1 ∪ R2). Similarly, for any simple set S ⊂ VH , let
L = {u : u1 ∈ S} and R = {u : u2 ∈ S}. Then, it holds
that FG(L,R) = ΦH(S).

4.2. Design and Analysis of the Algorithm

Our presented algorithm is a modification of the algorithm
by Andersen and Peres (2009). Given a digraph G as input,
our algorithm simulates the volume-biased ESP onG’s semi-
double coverH . Notice that the graphH can be constructed
locally in the same way as the local construction of the
double cover. However, as the output set S of an ESP-
based algorithm is not necessarily simple, our algorithm
only returns vertices u ∈ VG in which exactly one of u1 and
u2 is included in S. The key procedure for our algorithm
is given in Algorithm 4, in which the GenerateSample
procedure is the one described at the end of Section 2.

Algorithm 4 EvoCutDirected (ECD)
Input: Starting vertex u, i ∈ {1, 2}, target flow ratio φ
Output: A pair of sets L,R ⊂ VG
Set T = b(100φ

2
3 )−1c.

Compute S = GenerateSampleH(ui, T )
Let L = {u ∈ VG : u1 ∈ S and u2 6∈ S}
Let R = {u ∈ VG : u2 ∈ S and u1 6∈ S}
return L and R

Notice that in our constructed graph H , Φ(L1 ∪ R2) ≤ φ
does not imply that Φ(L2∪R1) ≤ φ. Due to this asymmetry,
Algorithm 4 takes a parameter i ∈ {1, 2} to indicate whether
the starting vertex is in L or R. If it is not known whether
u is in L or R, two copies can be run in parallel, one with
i = 1 and the other with i = 2. Once one of them terminates
with the performance guaranteed in Theorem 2, the other
can be terminated. Hence, we can always assume that it is
known whether the starting vertex u is in L or R.

Now we sketch the analysis of the algorithm. Notice that,
since the evolving set process gives us an arbitrary set on
the semi-double cover, in Algorithm 4 we convert this into
a simple set by removing any vertices u where u1 ∈ S and
u2 ∈ S. The following definition allows us to discuss sets
which are close to being simple.
Definition 4 (ε-simple set). For any set S ⊂ VH , let P =
{u1, u2 : u ∈ VG, u1 ∈ S and u2 ∈ S}. We call set S
ε-simple if it holds that vol(P )

vol(S) ≤ ε.

The notion of ε-simple sets measures the ratio of vertices
in which both u1 and u2 are in S. In particular, any simple
set defined in Definition 2 is 0-simple. We show that, for
any ε-simple set S ⊂ VH , one can construct a simple set S′

such that Φ(S′) ≤ 1
1−ε · (Φ(S) + ε). Therefore, in order to

guarantee that Φ(S′) is small, we need to construct S such
that Φ(S) is small and S is ε-simple for small ε. Because of
this, our presented algorithm uses a lower value of T than
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the algorithm in Andersen and Peres (2009); this allows
us to better control vol(S) at the cost of a slightly worse
approximation guarantee. Our algorithm’s performance is
summarised in Theorem 2.

Theorem 2. Let G be an n-vertex digraph, and L,R ⊂ VG
be disjoint sets such that F (L,R) ≤ φ and vol(L ∪
R) ≤ γ. There is a set C ⊆ L ∪ R with vol(C) ≥
vol(L ∪ R)/2 such that, for any v ∈ C and some i ∈
{1, 2}, EvoCutDirected(G, v, i, φ) returns (L′, R′)

such that F (L′, R′) = O
(
φ

1
3 log

1
2 n
)

and vol(L′ ∪R′) =

O
(

(1− φ 1
3 )−1γ

)
. Moreover, the algorithm has running

time O
(
φ−

1
2 γ log

3
2 n
)

.

To the best of our knowledge, this is the first local algorithm
for digraphs that approximates a pair of densely connected
clusters, and demonstrates that finding such a pair appears
to be much easier than finding a low-conductance set in a
digraph; in particular, existing local algorithms for finding
a low-conductance set require the stationary distribution of
the random walk in the digraph (Andersen & Chung, 2007),
the sublinear-time computation of which is unknown (Co-
hen et al., 2017). However, knowledge of the stationary
distribution is not needed for our algorithm.

Further Discussion. It is important to note that the semi-
double cover construction is able to handle directed graphs
which contain edges between two vertices u and v in both
directions. In other words, the adjacency matrix of the di-
graph need not be skew-symmetric. This is an advantage of
our approach over previous methods (e.g., (Cucuringu et al.,
2020)), and it would be a meaningful research direction to
identify the benefit this gives our developed reduction.

It is also insightful to discuss why Algorithm 1 cannot be
applied for digraphs, although the input digraph is translated
into an undirected graph by our reduction. This is because,
when translating a digraph into a bipartite undirected graph,
the third property of the σ-operator in Lemma 3 no longer
holds, since the existence of the edge {u1, v2} ∈ EH does
not necessarily imply that {u2, v1} ∈ EH . Indeed, Fig-
ure 4 gives a counterexample in which (σ ◦ (pW )) (u) 6≤
((σ ◦ p)W ) (u) for some u. This means that the typical anal-
ysis of a Pagerank vector with the Lovász-Simonovitz curve
cannot be applied anymore. In our point of view, construct-
ing some operator similar to our σ-operator and applying
this operator to design a Pagerank-based local algorithm for
digraphs is a very interesting open question, and may help
to close the gap in the approximation guarantee between the
undirected and directed cases.

In addition, we underline that one cannot apply the tighter
analysis of the ESP process given by Andersen et al. (2016)
to our algorithm. The key to their analysis is an improved

a1 b1

a2 b2

a b =⇒

Figure 4. Consider the digraph and its semi-double cover above.
Suppose p(a1) = p(a2) = 0.5 and p(b1) = p(b2) = 0. It is
straightforward to check that (σ ◦ (pW ))(b2) = 0.25 and ((σ ◦
p)W )(b2) = 0.

bound on the probability that a random walk escapes from
the target cluster. In order to take advantage of this, they
use a larger value of T in the algorithm which relaxes the
guarantee on the volume of the output set. Since our analysis
relies on a very tight guarantee on the overlap of the output
set with the target set, we cannot use their improvement in
our setting.

5. Experiments
In this section we evaluate the performance of our proposed
algorithms on both synthetic and real-world data sets. For
undirected graphs, we compare the performance of our algo-
rithm against the previous state-of-the-art (Li & Peng, 2013),
referred to as LP, through the synthetic dataset with various
parameters and apply the real-world dataset to demonstrate
the significance of our algorithm. For directed graphs, we
compare the performance of our algorithm with the state-of-
the-art non-local algorithm since, to the best of our knowl-
edge, our local algorithm for digraphs is the first such algo-
rithm in the literature. All experiments were performed on
a Lenovo Yoga 2 Pro with an Intel(R) Core(TM) i7-4510U
CPU @ 2.00GHz processor and 8GB of RAM. We include
additional discussion in the full version. Our code can be
downloaded from https://github.com/pmacg/local-densely-
connected-clusters.

5.1. Results for Undirected Graphs

Synthetic Dataset. We first compare the performance of
our algorithm with the previously best one on graphs gener-
ated from the stochastic block model (SBM). Specifically,
we assume that the graph has k = 3 clusters {Cj}3j=1, and
the number of vertices in each cluster, denoted by n1, n2 and
n3 respectively, satisfy n1 = n2 = 0.1n3. Moreover, any
pair of vertices u ∈ Ci and v ∈ Cj is connected with prob-
ability Pi,j . We assume that P1,1 = P2,2 = p1, P3,3 = p2,
P1,2 = q1, and P1,3 = P2,3 = q2. Throughout our exper-
iments, we maintain the ratios p2 = 2p1 and q2 = 0.1p1,
leaving the parameters n1, p1 and q1 free. Notice that the
different values of q1 and q2 guarantee that C1 and C2 are
the ones optimising the β-value, which is why our proposed
model is slightly more involved than the standard SBM.

https://github.com/pmacg/local-densely-connected-clusters
https://github.com/pmacg/local-densely-connected-clusters
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Table 1. Full comparison between Algorithm 1 (LocBipartDC) and the previous state-of-the-art (Li & Peng, 2013). For clarity we
report the target bipartiteness β = β(C1, C2) and target volume γ = vol(C1 ∪ C2) along with the SBM parameters.

INPUT GRAPH PARAMETERS ALGORITHM RUNTIME β-VALUE ARI MISCLASSIFIED RATIO

n1 = 1, 000, p1 = 0.001, q1 = 0.018 LOCBIPARTDC 0.09 0.154 0.968 0.073
β ≈ 0.1, γ ≈ 40, 000 LP 0.146 0.202 0.909 0.138

n1 = 10, 000, p1 = 0.0001, q1 = 0.0018 LOCBIPARTDC 0.992 0.215 0.940 0.145
β ≈ 0.1, γ ≈ 400, 000 LP 1.327 0.297 0.857 0.256

n1 = 100, 000, p1 = 0.00001, q1 = 0.00018 LOCBIPARTDC 19.585 0.250 0.950 0.166
β ≈ 0.1, γ ≈ 4, 000, 000 LP 30.285 0.300 0.865 0.225

n1 = 1, 000, p1 = 0.004, q1 = 0.012 LOCBIPARTDC 1.249 0.506 0.503 0.763
β ≈ 0.4, γ ≈ 40, 000 LP 1.329 0.597 0.445 0.785

We evaluate the quality of the output (L,R) returned by
each algorithm with respect to its β-value, the Adjusted
Rand Index (ARI) (Gates & Ahn, 2017), as well as the ra-
tio of the misclassified vertices defined by |L4C1|+|R4C2|

|L∪C1|+|R∪C2| ,
where A4B is the symmetric difference between A and
B. All our reported results are the average performance of
each algorithm over 10 runs, in which a random vertex from
C1 ∪ C2 is chosen as the starting vertex of the algorithm.

We first compare the algorithms’ performance with different
values of n1, p1 and q1. As shown in Table 1, our algorithm
not only runs faster, but also produces better clusters with
respect to all three metrics. Secondly, since the clustering
task becomes more challenging when the target clusters
have higher β-value, we compare the algorithms’ perfor-
mance on a sequence of instances with increasing value of
β. Since q1/p1 = 2(1 − β)/β, we simply fix the values
of n1, p1 as n1 = 1, 000, p1 = 0.001, and generate graphs
with increasing value of q1/p1; this gives us graphs with
monotone values of β. As shown in Figure 5(a), our al-
gorithm’s performance is always better than the previous
state-of-the-art.
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Figure 5. (a) The ARI of each algorithm when varying the target
β-value. A larger q1/p1 ratio corresponds to a smaller β-value.
(b) The ARI of each algorithm when bounding the runtime of the
algorithm.

Thirdly, notice that both algorithms use some parameters
to control the algorithm’s runtime and the output’s approxi-
mation ratio, which are naturally influenced by each other.
To study this dependency, we generate graphs according

to n1 = 100, 000, p1 = 0.000015, and q1 = 0.00027
which results in target sets with β ≈ 0.1 and volume
γ ≈ 6, 000, 000. Figure 5(b) shows that, in comparison
with the previous state-of-the-art, our algorithm takes much
less time to produce output with the same ARI value.

Real-world Dataset. We demonstrate the significance of
our algorithm on the Dyadic Militarised Interstate Disputes
Dataset (v3.1) (Maoz et al., 2019), which records every in-
terstate dispute during 1816–2010, including the level of
hostility resulting from the dispute and the number of casu-
alties, and has been widely studied in the social and political
sciences (Mansfield et al., 2002; Martin et al., 2008) as well
as the machine learning community (Hu et al., 2017; Menon
& Elkan, 2011; Traag & Bruggeman, 2009). For a given
time period, we construct a graph from the data by represent-
ing each country with a vertex and adding an edge between
each pair of countries weighted according to the severity of
any military disputes between those countries. Specifically,
if there’s a war2 between the two countries, the correspond-
ing two vertices are connected by an edge with weight 30;
for any other dispute that is not part of an interstate war, the
two corresponding vertices are connected by an edge with
weight 1. We always use the USA as the starting vertex of
the algorithm, and our algorithm’s output, as visualised in
Figure 1(a)-(d), can be well explained by geopolitics. The β-
values of the pairs of clusters in Figures 1(a)-(d) are 0.361,
0.356, 0.170 and 0.191 respectively.

5.2. Results for Digraphs

Next we evaluate the performance of our algorithm for di-
graphs on synthetic and real-world datasets. Since there are
no previous local digraph clustering algorithms that achieve
similar objectives to ours, we compare the output of Algo-
rithm 4 (ECD) with the state-of-the-art non-local algorithm
proposed by Cucuringu et al. (2020), and we refer this to as
CLSZ in the following.

2A war is defined by the maintainers of the dataset as a series
of battles resulting in at least 1,000 deaths.
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Table 3. Comparison of EvoCutDirected with CLSZ on the US migration dataset.

FIGURE 1 SUBFIGURE ALGORITHM CLUSTER CUT IMBALANCE FLOW RATIO

- CLSZ PAIR 1 0.41 0.80
- CLSZ PAIR 2 0.35 0.83
- CLSZ PAIR 3 0.32 0.84
- CLSZ PAIR 4 0.29 0.84

(E) EVOCUTDIRECTED OHIO SEED 0.50 0.56
(F) EVOCUTDIRECTED NEW YORK SEED 0.49 0.58
(G) EVOCUTDIRECTED CALIFORNIA SEED 0.49 0.67
(H) EVOCUTDIRECTED FLORIDA SEED 0.42 0.79

Synthetic Dataset. We first look at the cyclic block
model (CBM) described in Cucuringu et al. (2020) with
parameters k, n, p, q, and η. In this model, we generate
a digraph with k clusters C1, . . . , Ck of size n, and for
u, v ∈ Ci, there is an edge between u and v with probability
p and the edge direction is chosen uniformly at random. For
u ∈ Ci and v ∈ Ci+1 mod k, there is an edge between u
and v with probability q, and the edge is from u to v with
probability η and from v to u with probability 1− η. We fix
p = 0.001, q = 0.01, and η = 0.9.

Secondly, since the goal of our algorithm is to find local
structure in a graph, we extend the cyclic block model with
additional local clusters and refer to this model as CBM+.
In addition to the parameters of the CBM, we introduce
the parameters n′, q′1, q

′
2, and η′. In this model, the clusters

C1 to Ck are generated as in the CBM, and there are two
additional clusters Ck+1 and Ck+2 of size n′. For u, v ∈
Ck+i for i ∈ {1, 2}, there is an edge between u and v with
probability p and for u ∈ Ck+1 and v ∈ Ck+2, there is
an edge with probability q′1; the edge directions are chosen
uniformly at random. For u ∈ Ck+1 ∪ Ck+2 and v ∈ C1,
there is an edge with probability q′2. If u ∈ Ck+1, the
orientation is from v to u with probability η′ and from u
to v with probability 1 − η′; if u ∈ Ck+2, the orientation
is from u to v with probability η′ and from v to u with
probability 1 − η′. We always fix q′1 = 0.5, q′2 = 0.005,
and η′ = 1. Notice that the clusters Ck+1 and Ck+2 form a
“local” cycle with the cluster C1.

In Table 2, we report the average performance over 10 runs
with a variety of parameters. We find that CLSZ can uncover
the global structure in the CBM more accurately than ECD.
On the other hand, CLSZ fails to identify the local cycle in
the CBM+ model, while ECD succeeds.

Real-world Dataset. Finally, we evaluate the algorithms’
performance on the US Migration Dataset (U.S. Census
Bureau, 2000). For fair comparison, we follow Cucuringu
et al. (2020) and construct the digraph as follows: every
county in the mainland USA is represented by a vertex;
for any vertices u, v, the edge weight of (u, v) is given

Table 2. Comparison of ECD with CLSZ on synthetic data.

TIME ARI

MODEL n′ n k ECD CLSZ ECD CLSZ

CBM - 103 5 1.59 3.99 0.92 1.00
CBM - 103 50 3.81 156.24 0.99 0.99

CBM+ 102 103 3 0.24 6.12 0.98 0.35
CBM+ 102 104 3 0.32 45.17 0.99 0.01

by
∣∣∣Mu,v−Mv,u

Mu,v+Mv,u

∣∣∣, where Mu,v is the number of people who
migrated from county u to county v between 1995 and 2000;
in addition, the direction of (u, v) is set to be from u to v
if Mu,v > Mv,u, otherwise the direction is set to be the
opposite.

For CLSZ, we follow their suggestion on the same dataset
and set k = 10. Both algorithms’ performance is evalu-
ated with respect to the flow ratio, as well as the Cut Im-
balance ratio used in their work. For any vertex sets L
and R, the cut imbalance ratio is defined by CI(L,R) =
1
2 ·
∣∣∣ e(L,R)−e(R,L)
e(L,R)+e(R,L)

∣∣∣, and a higher CI(L,R) value indicates
the connection between L and R is more significant. Using
counties in Ohio, New York, California, and Florida as the
starting vertices, our algorithm’s outputs are visualised in
Figures 1(e)-(h), and we compare them to the top 4 pairs
returned by CLSZ in Table 3. Our algorithm produces better
outputs with respect to both metrics.

These experiments suggest that local algorithms are not only
more efficient, but also much more effective than non-local
algorithms when learning certain structures in graphs. In
particular, some localised structure might be hidden when
applying the objective function over the entire graph.
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