
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Supplementary Material for Learning Interaction Kernels for Agent Systems
on Riemannian Manifolds

A. Preliminaries
In this work,M is a connected, smooth, and geodesically complete d-dimensional Riemannian manifold with Riemannian
metric g. For details regarding the basic definitions of Riemannian manifolds, geodesics, Riemannian distances, exponential
maps, cut loci, and injectivity radii, please see (Lee, 2003; do Carmo, 1976). We will discuss how to find the minimal
geodesic and the Riemannian distance between any two points on the two prototypical manifolds used in our numerical
algorithms: the two-dimensional sphere (S2) and the Poincaré Disk (PD).

A.1. Riemannian Geometry on the 2D Sphere

The 2D Sphere (S2) of radius r and centered at the origin can be isometrically embedded in R3 in the natural way, i.e.,
x,y ∈ S2 ⊂ R3. Then for any x,y ∈ S2, the Riemannian distance between x and y is given by

dM(x,y) = r · θ, θ = acos
(
〈x,y〉
‖x‖ · ‖y‖

)
.

The minimal geodesic between x and y is the piece of the arc on the great circle of S2 with the smallest length, assuming x
and y are not in each others’ cut locus, i.e. diametrically opposed. The unit vector on the minimal geodesic from x to y,
denoted as v(x,y), can be computed as follows

v(x,y) =
y − x− Proj−x(y − x)∥∥y − x− Proj−x(y − x)

∥∥ .
Here Proju(w) is the projection of w onto u.

A.2. Riemannian Geometry on the Poincaré Disk

For any two points x,y ∈ PD on the Poincaré Disk (PD) where PD := {x ∈ R2 s.t. ‖x‖ < 1}, the Riemannian metric,
written in the standard coordinates of R2, is given by

gi,j(x) =
4δi,j

(1− ‖x‖2)2
, x ∈ PD ,

with δi,j being the Kronecker delta, and the corresponding Riemannian distance between x and y is

dM(x,y) = acosh
(

1 +
‖x− y‖2

(1− ‖x‖2)(1− ‖y‖2)

)
.

The minimal geodesics between x and y are either straight line segments if x and y are on a line through the origin or
circular arc perpendicular to the boundary. For the straight line segment case, we have the unit vector on the minimal
geodesic from x to y, denoted as v(x,y), computed as follows: we identify the vector y − x, computed in R2 as a
tangent vector in TxM, then normalize it to obtain v(x,y) = y−x

‖y−x‖TxM
. For the perpendicular arc case, we first find

the inverse y′ of y w.r.t to the unit disk (in R2); then we use the three points x,y,y′ to find the center o′ of the circle
passing through x,y and y′. Then the unit tangent vector on the geodesic from x to y is computed as follows: , we compute
y − x− Projo′−x(y − x) in R2 (with the Euclidean metric), then identify it as a tangent vector in TxM, and normalize it:

v(x,y) =
y − x− Projo′−x(y − x)∥∥y − x− Projo′−x(y − x)

∥∥
TxM

.
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Learning Interaction Kernels for Agent Systems on Riemannian Manifolds

B. Learning Theory: Foundation
In this section, we present the theoretical foundation needed to prove the theorems presented in the main body. We follow
the ideas presented in (Lu et al., 2019b) with similar strategies presented in (Cucker & Smale, 2002; Györfi et al., 2006). We
begin with the following assumption.

Assumption 1. H is a compact (in L∞-norm) and convex subset of L2([0, R]), such that every ϕ ∈ H is bounded above by
some constant S0 ≥ S, i.e. ‖ϕ‖L∞([0,R]) ≤ S0; moreover ϕ is smooth enough to ensure the existence and uniqueness of
solutions of

ẋi(t) =
1

N

N∑
i′=1

φ(dM(xi(t),xi′(t)))w(xi(t),xi′(t)), i = 1, . . . , N. (1)

for t ∈ [0, T ], i.e. ϕ ∈ H ∩ KR,S0 .

Another important observation is that since φ ∈ KR,S and T is finite, the distribution of xi(t)’s does not blow up over [0, T ]
ensuring that the xi(t)’s have bounded distance from the xi(0)’s. In fact, let R0 be the maximum Riemannian distance
between any pair of agents at t = 0, then

max
i,i′=1,...,N

ri,i′(t) = max
i,i′=1,...,N

dM(xi(t),xi′(t)) ≤ R0 + TRS, for t ∈ [0, T ].

Hence the xi(t)’s live in a compact (w.r.t to the dM metric) ball around the xi(0)’s, denoted as BM(X0, R1) where
R1 = R0 + TRS. Recall the definition of the loss functional used to find the estimator, namely φ̂L,M,H to the unknown
interaction kernel φ, give by

EL,M,M(ϕ) :=
1

ML

L,M∑
l,m=1

∥∥∥Ẋm

tl
− f c

ϕ(Xm
tl

)
∥∥∥2
TXm

tl
MN

. (2)

Further recall that the estimator is defined as φ̂L,M,H := arg min
ϕ∈H

EL,M,M(ϕ). When M → ∞, we obtain the following

loss functional (by the law of large numbers).

EL,∞,M(ϕ) :=
1

L

L∑
l=1

EX0∼µ0(MN )

[ ∥∥∥Ẋtl − f c
ϕ(Xtl)

∥∥∥2
TXtl

MN

]
. (3)

The minimizer of EL,∞,M overH is defined as φ̂L,∞,H, which is closely related to φ̂L,M,H (in the M →∞ sense). And
they are close to φ, when we establish the following condition onH.

Definition B.1 (Geometric Coercivity condition). The geometric evolution system in (1) with initial condition sampled from
µ0(MN ) onMN is said to satisfy the geometric coercivity condition on the admissible hypothesis spaceH if there exists a
constant cL,N,H,M > 0 such that for any ϕ ∈ H with ϕ(·)· ∈ L2(ρLT,M), the following inequality holds:

cL,N,H,M ‖ϕ(·)·‖2L2(ρLT,M) ≤
1

L

L∑
l=1

EX0∼µ0(MN )

[ ∥∥f c
ϕ(Xtl)

∥∥2
TXtl

MN

]
. (4)

From this condition, we can derive the following theorem.

Theorem B.1. Let φ ∈ L2([0, R]), and H a compact (w.r.t the L∞ norm) and convex subset of L2([0, R]) such that the
geometric coercivity condition (4) holds with a constant cL,N,H,M. Then, for φ̂L,M,H, estimated by minimizing (2) on the
trajectory data generated by (1), the following inequality∥∥∥φ̂L,M,H(·) · −φ(·)·

∥∥∥2
L2(ρLT,M)

≤ 2

cL,N,H,M

(
ε+ inf

ϕ∈H
‖ϕ(·) · −φ(·)·‖2L2(ρLT,M)

)
(5)

holds with probability at least 1− τ , when M ≥ 1152S2
0R

2

εcL,N,H,M

(
ln(N (H, ε

48S0R2 )) + ln( 1
τ )
)

. Here N (U , ε) is the covering
number of a set U with open balls of radius ε w.r.t the L∞-norm.
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Using this concentration result, we can get the strong consistency of our estimators under mild hypotheses.

Theorem B.2. For a family of compact (w.r.t. the L∞ norm) convex subsets, {HM}∞M=1, of L2([0, R]), when the following
conditions hold, (i) ∪MHM is compact in L∞; (ii) the geometric coercivity condition, (B.1), holds on ∪MHM ; (iii)

inf
ϕ∈HM

‖ϕ(·) · −φ(·)·‖L2(ρLT,M)
M→∞−→ 0, then

lim
M→∞

∥∥∥φ̂L,M,HM (·) · −φ(·)·
∥∥∥
L2(ρLT,M)

= 0 a.s. (6)

This theorem establishes the almost sure convergence of our estimator to the true interaction kernel as M →∞.

B.1. Concentration and Consistency

Our first step is to establish the consistency of the estimator for the true kernel φ of the system. Note thatH can be embedded
as a compact (in L∞ sense) set of L2(ρLT,M). We establish a strong consistency result on our estimators of the form,

lim
M→∞

∥∥∥φ̂L,M (·) · −φ(·)·
∥∥∥
L2(ρLT,M)

= 0, a.s.

Our discussions of consistency under the L2−norm on manifolds can be regarded as a natural extension from the case on
Euclidean Space in (Lu et al., 2019b). We define the following loss functional of the vectorized system, Xt

EXt
(ϕ) :=

1

N

N∑
i=1

∥∥∥∥∥ 1

N

N∑
i′=1

(φii′,t − ϕii′,t)wii′,t

∥∥∥∥∥
2

Txi(t)
M

=
1

N

N∑
i=1

〈 1

N

N∑
i′=1

(φii′,t − ϕii′,t)wii′,t,
1

N

N∑
i′′=1

(φii′′,t − ϕii′′,t)wii′′,t〉g(xi(t)). (7)

Here we take wii′,t = dM(xi(t),xi′(t))v(xi(t),xi′(t)) and φii′,t = φ(dM(xi(t),xi′(t)); similarly for ϕii′,t. Now we
can see that

EL,M,M(ϕ) =
1

LM

L,M∑
l,m=1

EXm
tl

(ϕ).

When M →∞, this functional converges to, by the law of large numbers,

EL,∞,M(ϕ) =
1

L

L∑
l=1

EX0∼µ0(MN )EXtl
(ϕ) .

We are ready to summarize some basic properties of EXt
(ϕ).

Proposition 1. For ϕ1, ϕ2 ∈ H, we have∣∣EXt
(ϕ1)− EXt

(ϕ2)
∣∣ ≤ ‖ϕ1(·) · −ϕ2(·)·‖L2(ρ̂tM) ‖2φ(·) · −ϕ1(·) · −ϕ2(·)·‖L2(ρ̂tM) . (8)

Here we define the probability measure, ρ̂tM(r) := 1
N2

∑N
i,i′=1 δdM(xi(t),xi′ (t))

(r).

Proof. Let ϕ1, ϕ2 ∈ H, and define ϕ1
ii′,t := ϕ1(dM(xi(t),xi′(t))), similarly for ϕ2

ii′,t. Moreover, let rii′,t :=
dM(xi(t),xi′(t)) and wii′,t := dM(xi(t),xi′(t))v(xi(t),xi′(t)). Immediately, we have

‖wii′,t‖Txi(t)
M ≤ rii′,t,
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since v(xi(t),xi′(t)) has either length 1 or 0. Next, using Jensen’s inequality, we have

∣∣EXt
(ϕ1)− EXt

(ϕ2)
∣∣ =

∣∣ 1

N

N∑
i=1

〈 1

N

N∑
i′=1

(ϕ1
ii′,t − ϕ2

ii′,t)wii′,t,
1

N

N∑
i′′=1

(2φii′′,t − ϕ1
ii′′,t − ϕ2

ii′′,t)wii′′,t〉g(xi(t))
∣∣

≤ 1

N

N∑
i=1

∥∥∥∥∥ 1

N

N∑
i′=1

(ϕ1
ii′,t − ϕ2

ii′,t)wii′,t

∥∥∥∥∥
Txi(t)

M

∥∥∥∥∥ 1

N

N∑
i′′=1

(2φii′′,t − ϕ1
ii′′,t − ϕ2

ii′′,t)wii′′,t

∥∥∥∥∥
Txi(t)

M

≤

√√√√ 1

N2

N∑
i,i′=1

(ϕ1
ii′,t − ϕ2

ii′,t)r
2
ii′,t

√√√√ 1

N2

N∑
i,i′′=1

(2φii′′,t − ϕ1
ii′,t − ϕ2

ii′,t)r
2
ii′′,t

≤ ‖ϕ1(·) · −ϕ2(·)·)‖L2(ρ̂tM) ‖2φ(·) · −ϕ1(·) · −ϕ2(·)·‖L2(ρ̂tM) ,

where ρ̂tM(r) = 1
N2

∑N
i,i′=1 δrii′,t(r).

With Proposition 1 proven, we get the following proposition establishing the continuity of our error functionals.

Proposition 2. For ϕ1, ϕ2 ∈ H, we have the inequalities∣∣EL,M,M(ϕ1)− EL,M,M(ϕ2)
∣∣ ≤ ‖ϕ1(·) · −ϕ2(·)·‖L∞ ‖2φ(·) · −ϕ1(·) · −ϕ2(·)·‖L∞∣∣EL,∞,M(ϕ1)− EL,∞,M(ϕ2)
∣∣ ≤ ‖ϕ1(·) · −ϕ2(·)·‖L2(ρLT,M) ‖2φ(·) · −ϕ1(·) · −ϕ2(·)·‖L2(ρLT,M) .

(9)

Proof. Using the results from Prop. 1, and defining ρ̂LT,M := 1
L

∑L
l=1 ρ̂

tl
M, we have

∣∣ 1
L

L∑
l=1

EXtl
(ϕ1)− 1

L

L∑
l=1

EXtl
(ϕ2)

∣∣ ≤ 1

L

L∑
l=1

∣∣EXtl
(ϕ1)− EXtl

(ϕ2)
∣∣

<
1

L

L∑
l=1

‖ϕ1(·) · −ϕ2(·)·‖L2(ρ̂tM) ‖2φ(·) · −ϕ1(·) · −ϕ2(·)·‖L2(ρ̂tM)

≤

√√√√ 1

L

L∑
1=1

‖ϕ1(·) · −ϕ2(·)·‖L2(ρ̂tM)

√√√√ 1

L

L∑
l=1

‖2φ(·) · −ϕ1(·) · −ϕ2(·)·‖L2(ρ̂tM)

= ‖ϕ1(·) · −ϕ2(·)·‖L2(ρ̂LT,M) ‖2φ(·) · −ϕ1(·) · −ϕ2(·)·‖L2(ρ̂LT,M)

Next, we have

∣∣EL,M,M(ϕ1)− EL,M,M(ϕ2)
∣∣ ≤ 1

M

M∑
m=1

∣∣ 1
L

L∑
l=1

EXm
tl

(ϕ1)− 1

L

L∑
l=1

EXm
tl

(ϕ2)
∣∣

≤ 1

M

M∑
m=1

‖ϕ1(·) · −ϕ2(·)·‖L2(ρ̂LT,M) ‖2φ(·) · −ϕ1(·) · −ϕ2(·)·‖L2(ρ̂LT,M)

≤ ‖ϕ1(·) · −ϕ2(·)·‖L∞ ‖2φ(·) · −ϕ1(·) · −ϕ2(·)·‖L∞

≤ R2 ‖ϕ1 − ϕ2‖L∞ ‖2φ− ϕ1 − ϕ2‖L∞ .

Meanwhile, taking M →∞ for
∣∣EL,M,M(ϕ1)− EL,M,M(ϕ2)

∣∣, we obtain∣∣EL,∞,M(ϕ1)− EL,∞,M(ϕ2)
∣∣ ≤ ‖ϕ1(·) · −ϕ2(·)·‖L2(ρLT,M) ‖2φ(·) · −ϕ1(·) · −ϕ2(·)·‖L2(ρLT,M) ,

where ρLT,M = EX0∼µ0(MN )[ρ̂
L
T,M].

As a further derivation, we observe that for anyϕ ∈ H ⊂ L2([0, R]), we have that maxr∈[0,R]

∣∣ϕ(·)·
∣∣ ≤ Rmaxr∈[0,R]

∣∣ϕ(·)
∣∣,

so we obtain the following Corollary:
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Corollary B.3. For ϕ ∈ H, define
LM (ψ) := EL,∞,M(ϕ)− EL,M,M(ϕ),

then for any ϕ1, ϕ2 ∈ H, we have∣∣LM (ϕ1)− LM (ϕ2)
∣∣ ≤ 2R2 ‖ϕ1 − ϕ2‖L∞ ‖2φ− ϕ1 − ϕ2‖L∞ .

Now we can consider the distance between the minimizer of the error functional EL,∞,M overH and any other ϕ ∈ H. Let

φ̂L,∞,H = arg min
ϕ∈H

EL,∞,M(ϕ).

From the geometric coercivity condition and the convexity ofH, we obtain
Proposition 3. For any ϕ ∈ H,

EL,∞,M(ϕ)− EL,∞,M(φ̂L,∞,H) ≥ cL,N,H,M
∥∥∥ϕ(·) · −φ̂L,∞,H(·)·

∥∥∥
L2(ρLT,M)

. (10)

We now define the defect function DL,M,H(ϕ) := EL,M,M(ϕ)− EL,M,M(φ̂L,∞,H), and define

DL,∞,H(ϕ) := lim
M→∞

DL,M,H(ϕ) = EL,∞,H(ϕ)− EL,∞,M(φ̂L,∞,H).

Then, we show that we can uniformly bound DL,∞,H(·)−DL,M,H(·)
DL,∞,H(·)+ε onH with high probability,

Proposition 4. For any ε > 0 and α ∈ (0, 1), we have

Pµ0(MN )

(
sup
ϕ∈H

DL,∞,H(ϕ)−DL,M,H(ϕ)

DL,∞,H(ϕ) + ε
≥ 3α

)
≤ N

(
H, αε

8S0R2

)
exp

(
− cL,N,H,Mα

2Mε

32S2
0

)
where N (U, r) is the covering number of set U with open balls of radius r w.r.t the L∞−norm.

The proof of Proposition 4 uses the following Lemma similar to Lemma 19 in (Lu et al., 2019b),
Lemma B.4. For any ε > 0 and α ∈ (0, 1), if ϕ1 ∈ H satisfies

DL,∞,H(ϕ1)−DL,M,H(ϕ1)

DL,∞,H(ϕ1) + ε
< α

then for any ϕ2 ∈ H s.t. ‖ϕ1 − ϕ2‖L∞ ≤ r0 = αε
8S0R2 , we have

DL,∞,H(ϕ2)−DL,M,H(ϕ2)

DL,∞,H(ϕ2) + ε
< 3α

Using the results we have just established, the proofs of theorems B.1 and B.2 now follow similarly to the analogous results
in (Lu et al., 2019b;a; Miller et al., 2020).

B.2. Rate of Convergence

Using these results, we establish the convergence rate of φ̂L,M,H to φ as M increases.
Theorem B.5. Let µ0(MN ) be the distribution of the initial conditions of trajectories, and HM = Bn with n �
(M/logM)

1
2s+1 , where Bn is the central ball of Ln with radius c1 + S, and the linear space Ln ⊆ L∞([0, R]) sat-

isfies the dimension and approximation conditions below,

dim(Ln) ≤ c0n and inf
ϕ∈Ln

‖ϕ− φ‖L∞ ≤ c1n−s

for some constants c0, c1, s > 0. Suppose that the geometric coercivity condition holds on L := ∪nLn with constant
cL,N,L,M. Then there exists some constant C(S,R, c0, c1) such that

E
[ ∥∥∥φ̂L,M,HM (·) · −φ(·)·

∥∥∥
L2(ρLT,M)

]
≤ C(S,R, c0, c1)

cL,N,L,M

( logM

M

) s
2s+1

.

The proof of the theorem uses the results above, which took into account the geometry ofM, while closely following the
ideas in (Lu et al., 2019b) and their further development in (Lu et al., 2019a; Miller et al., 2020), and is therefore omitted.
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B.3. Trajectory Estimation Error

Recall the following theorem on the trajectory estimator error:

Theorem B.6. Let φ ∈ KR,S and φ̂ ∈ KR,S0
, for some S0 ≥ S. Suppose that X [0,T ] and X̂ [0,T ] are solutions of (1) w.r.t

to φ and φ̂, respectively, for t ∈ [0, T ], with X̂0 = X0. Then the following inequalities hold:

dtraj,MN

(
X [0,T ], X̂ [0,T ]

)2
≤ 4C(M, T )T exp(64T 2S2

0)
∥∥∥Ẋt − f c

φ̂
(Xt)

∥∥∥2
TXtM

N
, (11)

and

EX0∼µ0(MN )

[
dtraj,MN

(
X [0,T ], X̂ [0,T ]

)2]
≤ 4C(M, T )T 2 exp(64T 2S2

0)
∥∥∥φ(·) · −φ̂(·)·

∥∥∥2
L2(ρT,M)

, (12)

where C(M, T ) is a positive constant depending only on geometric properties of M and on T , but may be chosen
independent of T ifM is compact.

It states two different estimates of the trajectory estimation error. First, it bounds the system trajectory error for any one
single initial condition; second, it bounds the expectation of the worst trajectory estimation error on time interval [0, T ]
among all different initial conditions.

Proof of Theorem B.6. Assume that φ ∈ KR,S , φ̂ ∈ KR,S0
, and Xt, X̂t are two system states, at some t ∈ [0, T ], generated

by φ, φ̂ with the same initial conditions at t = 0. Next, we assume thatM is isometrically embedded in Rd′ (at least one
such embedding exists, by Nash’s embedding theorem), via a map I :M→ Rd′ . From now on, we will identify xi with
Ixi. Then for any t ∈ [0, T ], we have

1

N

N∑
i=1

‖xi(t)− x̂i(t)‖2Rd′ =
1

N

N∑
i=1

∥∥∥∥∫ t

s=0

(ẋi(s)− ˙̂xi(s)) ds

∥∥∥∥2
Rd′
≤ 1

N

N∑
i=1

t

∫ t

s=0

∥∥∥ẋi(s)− ˙̂xi(s)
∥∥∥2
Rd′

ds

≤ T

N

N∑
i=1

∫ t

s=0

∥∥∥ẋi(s)− ˙̂xi(s)
∥∥∥2
Rd′

ds.

Define the function FMϕ (x, ·) : M → TxM for every x ∈ M as FMϕ (x, ·) := ϕ(dM(x, ·))w(x, ·). Let FMϕ,ii′,t =

FMϕ (xi(t),xi′(t)) and FM
ϕ,̂iî′,t

= FMϕ (x̂i(t), x̂i′(t)). Then

N∑
i=1

∫ t

s=0

∥∥∥ẋi(s)− ˙̂xi(s)
∥∥∥2
Rd′

ds =

N∑
i=1

∫ t

s=0

∥∥∥∥∥ẋi(s)− 1

N

N∑
i′=1

FM
φ̂,̂iî′,s

∥∥∥∥∥
2

Rd′
ds

≤ 2

N∑
i=1

∫ t

s=0

(∥∥∥∥∥ẋi(s)− 1

N

N∑
i′=1

FM
φ̂,ii′,s

∥∥∥∥∥
2

Rd′
+

∥∥∥∥∥ 1

N

N∑
i′=1

FM
φ̂,ii′,s

− 1

N

N∑
i′=1

FM
φ̂,̂iî′,s

∥∥∥∥∥
2

Rd′

)
ds

= 2

N∑
i=1

∫ t

s=0

(∥∥∥∥∥ẋi(s)− 1

N

N∑
i′=1

FM
φ̂,ii′,s

∥∥∥∥∥
2

Rd′
+ I(s)

)
ds .

Next,

I(s) =

∥∥∥∥∥ 1

N

N∑
i′=1

FM
φ̂,ii′,s

− 1

N

N∑
i′=1

FM
φ̂,̂iî′,s

∥∥∥∥∥
2

Rd′
=

1

N2

∥∥∥∥∥
N∑
i′=1

(
FM
φ̂,ii′,s

− FM
φ̂,iî′,s

+ FM
φ̂,iî′,s

− FM
φ̂,̂iî′,s

)∥∥∥∥∥
2

Rd′

≤ 2

N2

(∥∥∥∥∥
N∑
i′=1

(
FM
φ̂,ii′,s

− FM
φ̂,iî′,s

)∥∥∥∥∥
2

Rd′
+

∥∥∥∥∥
N∑
i′=1

(
FM
φ̂,iî′,s

− FM
φ̂,̂iî′,s

)∥∥∥∥∥
2

Rd′

)
.
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Since φ̂ ∈ KR,S0
, FM

φ̂
is Lipschitz in each of its arguments; moreover, maxr∈[0,R]

∣∣φ̂∣∣ ≤ S0, so that Lip(FM
φ̂

(x, ·)),

Lip(FM
φ̂

(·,x)) ≤ 2S0. Therefore,

I(s) ≤ 2

N2

(
2Lip(FM

φ̂
(xi(s), ·))2

N∑
i′=1

‖xi′(s)− x̂i′(s)‖2Rd′ + 2

N∑
i′=1

Lip(FM
φ̂

(·, x̂i′(s)))2 ‖xi(s)− x̂i(s)‖2Rd′
)

≤ 4

N2
Lip(FM

φ̂
(xi(s), ·))2

N∑
i′=1

‖xi′(s)− x̂i′(s)‖2Rd′ +
4

N2

N∑
i′=1

Lip(FM
φ̂

(·, x̂i′(s)))2 ‖xi′(s)− x̂i′(s)‖2Rd′

≤ 16S2
0

N2

N∑
i′=1

‖xi′(s)− x̂i′(s)‖2Rd′ +
16S2

0

N2

N∑
i′=1

‖xi′(s)− x̂i′(s)‖2Rd′

≤ 32S2
0

N2

N∑
i′=1

‖xi′(s)− x̂i′(s)‖2Rd′ .

Putting these results together, we have

1

N

N∑
i=1

‖xi(t)− x̂i(t)‖2Rd′ ≤
2T

N

N∑
i=1

∫ t

s=0

(∥∥∥∥∥ẋi(s)− 1

N

N∑
i′=1

FM
φ̂,ii′,s

∥∥∥∥∥
2

Rd′
+

32S2
0

N2

N∑
i′=1

‖xi′(s)− x̂i′(s)‖2Rd′
)
ds

=
64TS2

0

N

N∑
i=1

‖xi(t)− x̂i(t)‖2Rd′ +
2T

N

N∑
i=1

∫ t

s=0

∥∥∥∥∥ẋi(s)− 1

N

N∑
i′=1

FM
φ̂,ii′,s

∥∥∥∥∥
2

Rd′
ds.

By Grönwall’s inequality, we have

1

N

N∑
i=1

‖xi(t)− x̂i(t)‖2Rd′ ≤
2T

N
exp(64T 2S2

0)

N∑
i=1

∫ t

s=0

∥∥∥∥∥ẋi(s)− 1

N

N∑
i′=1

FM
φ̂,ii′,s

∥∥∥∥∥
2

Rd′
ds.

Recall that T is small, hence the solution Xt and X̂t live in a compact neighborhood of the initial condition, X0 = X̂0 ∈
MN ; i.e. Xt, X̂t ∈ BM(X0, R2) with R2 = R0 + TRS0. From the compactness of (the closure of) this set, and via the
embedding I, we deduce that there exists a constant C1(M, I, T ) such that

dM(xi(t), x̂i(t)) ≤ C1(M, I, T ) ‖xi(t)− x̂i(t)‖Rd′ , for t ∈ [0, T ].

Since I is isometric, for u ∈ TxM we have ‖dI(u)‖Rd′ = ‖u‖TxM. Using both the bounds above, we have

dM(Xt, X̂t)
2 =

1

N

N∑
i=1

dM(xi(t), x̂i(t))
2 ≤ C1(M, I, T )2

N

N∑
i=1

‖xi(t)− x̂i(t)‖2Rd′

≤ 2C1(M, I, T )2T exp(64T 2S2
0)

N

N∑
i=1

∫ t

s=0

∥∥∥∥∥ẋi(s)− 1

N

N∑
i′=1

FM
φ̂,ii′,s

∥∥∥∥∥
2

Rd′
ds.

=
2C1(M, I, T )2T exp(64T 2S2

0)

N

N∑
i=1

∫ t

s=0

∥∥∥∥∥ẋi(s)− 1

N

N∑
i′=1

FM
φ̂,ii′,s

∥∥∥∥∥
2

Txi(s)
M

ds

= 2C1(M, I, T )2T exp(64T 2S2
0)

∫ t

s=0

∥∥∥Ẋs − f c
φ̂
(Xs)

∥∥∥2
TXsMN

ds

Letting
C(M, T ) := inf

all isometric embeddings I
C1(M, I, T )2 ,

and choosing an isometric embedding I which gives a value at most twice the infimum, we obtain

dM(Xt, X̂t)
2 ≤ 4TC(M, T ) exp(64T 2S2

0)

∫ t

s=0

∥∥∥Ẋs − f c
φ̂
(Xs)

∥∥∥2
TXMN

ds.
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Now, take φ to be the true interaction kernel, and φ̂ the estimator of φ by our learning approach, by Prop. 1 we have that

1

T

∫ T

t=0

∥∥∥Ẋs − f c
φ̂
(Xs)

∥∥∥2
TXMN

dt ≤
∥∥∥φ(·) · −φ̂(·)·

∥∥∥2
L2(ρT,M)

.

Together with (11), recalling that X̂0 = X0 and X0 ∼ µ0(MN ), we have the desired result that

EX0∼µ0(MN )

[
dtraj,M(X [0,T ], X̂ [0,T ])

2
]
≤ 4T 2C(M, T ) exp(64T 2S2

0)EX0∼µ0(MN )

∥∥∥φ(·) · −φ̂(·)·
∥∥∥2
L2(ρT,M)

.

C. Numerical Implementations

If the trajectory data, {xmi (tl), ẋ
m
i (tl)}N,L,Mi,l,m=1, is given by the user, we use the following geometry-based algorithm to find

the minimizer of (2). First, we construct a finite dimensional subspace of the hypothesis space, i.e. HM ⊂ H, whereHM
with dimension dim(HM ) = n = n(M) ≈ O(M

1
3 ) is a space of clamped B-spline functions1 supported on [Robs

min, R
obs
max]

with Robs
min/Robs

max being the minimum/maximum interaction radius computed from the observation data. Hence the test
functions can be expressed as linear combination of the basis functions ofHM , i.e., ϕ(r) =

∑n
η=1 αηψη(r) with {ψη}nη=1

being a basis for HM . Next, we use either a local chart U : M→ Rd or a natural embedding I : M→ Rd′ , such that
xi ∈M can be expressed using either local coordinates in Rd (as in the PD case) or global coordinates in Rd′ (as in the S2
case). The computation of 〈·, ·〉g(x) will be based on the choice of the local chart, or on the embedding, accordingly. Then,
we define a basis matrix, Ψm ∈ (TXm

t1
MN × · · · × TXm

tL
MN )n, whose columns are

Ψm(:, η) = Ψm
η =

1√
N

f
c
ψη (Xm

t1 )
...

f c
ψη (Xm

tL)

 ∈ TXm
t1
MN × · · · × TXm

tL
MN ,

recall

f c
ϕ(Xt) =


...

1
N

∑N
i′=1 ϕ(dM(xi(t),xi′(t)))w(xi(t),xi′(t))

...

 ∈ TXtMN .

Next, we define the derivative vector, ~dm ∈ TXm
t1
MN × · · · × TXm

tL
MN , as follows,

~dm =
1√
N

Ẋ
m

t1
...

Ẋ
m

tL

 .
Then, we define the learning matrix AM ∈ Rn×n as follows

AM (η, η′) =
1

LM

m∑
m=1

〈Ψm
η ,Ψ

m
η′〉G, for η, η′ = 1, . . . , n.

Here the inner product 〈·, ·〉G on Ψm
η ∈ TXm

t1
MN × · · · × TXm

tL
MN is defined as

〈Ψm
η ,Ψ

m
η′〉G =

L∑
l=1

〈f c
ψη (Xm

tl
),f c

ψη′
(Xm

tl
)〉gMN (Xm

l ).

Next for the learning right hand side,~bM ∈ Rn×1, we have

~bM (η) =
1

LM

m∑
m=1

〈~d,Ψm
η 〉G, for η = 1, . . . , n

1Other type of basis functions can be considered, such as piecewise polynomials, Fourier, etc., provided they satisfy the approximation
assumptions in the main theorem.
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Therefore, the minimization of (2) overHM can be rewritten as

AM~α = ~bM , ~α =

α1

...
αn

 ∈ Rn×1.

AM is symmetric positive definite (guaranteed by the geometric coercivity condition), hence we can solve the linear system
to obtain ~̂α, and assemble

φ̂(r) =

n∑
η=1

α̂ηψη(r).

In order to produce unique solution of (1) using φ̂, we smooth out φ̂ for the evolution of the dynamics.

If the trajectory data is not given, we will generate it using a Geometric Numerical Integrator, which is a fourth order
Backward Differentiation Formula (BDF) of fixed time step size h combined with a projection scheme. For details see
(Hairer et al., 2006). Once a reasonable evolution of the dynamics is obtained, we observe it at 0 = t1 < . . . < tL = T to
obtain a set of trajectory data, and use it as training data to input to the learning algorithm. The observation times do not
need to be aligned with the numerical integration times, i.e. where numerical solution of {xmi (t), ẋmi (t)}N,Mi,m=1 is obtained
at {tl′}L

′

l′=1 (except for t1 = 0 and tL′ = T ). When tl does not land on one of the numerical integration time points, a
continuous extension method is used to interpolate the numerical solution at tl.

C.1. Computational Complexity

The total computational cost for solving the learning problem is: MLN2+MLdn2+n3 withMLN2 for computing pairwise
distances, MLdn2 for assembling AM and ~bM , and n3 for solving AM~α = ~bM . When choosing the optimal n = n∗ ≈
( M
logM )

1
2s+1 ≈M 1

3 (s = 1 for C1 functions) as per Thm. B.5, we have comp. time = MLN2+MLdM
2
3 +M = O(M

5
3 ).

The computational bottleneck comes from the assembly of AM and~bM . However, since we can parallelize our learning

approach in m, the updated computing time in the parallel regime is comp. time = O
((

M
num. cores

) 5
3
)

. The total storage for
the algorithm is MLNd floating-point numbers for the trajectory data, albeit one does not need to hold all of the trajectory
data in memory. The algorithm can process the data from one trajectory at a time, requiring LNd. Once the linear system,
AM~α = ~bM , is assembled, the algorithm just needs to hold roughly n2 floating-point numbers in memory. When we use the
optimal number of basis functions, i.e. n∗ = M

1
3 , the memory used is O(M

2
3 ).

D. Numerical Experiments
We consider three prototypical first order dynamics, Opinion Dynamics (OD), Lennard-Jones Dynamics (LJD), and Predator-
Swarm dynamics (PS1), on two different manifolds, the 2D sphere (S2 centered at the origin with radius 5

π ) and the Poincaré
disk (PD, unit disk centered at the origin, with the hyperbolic metric). The two prototypical manifolds are chosen because S2
and PD are model spaces with constant positive and negative curvature, respectively. We conduct extensive experiments on
the aforementioned six different scenarios to demonstrate the performance of our learning approach for dynamics evolving
on manifolds. We report the results in terms of function estimation errors and trajectory estimation errors, and discuss in
detail the learning performance of the estimators.

The setup of the numerical experiments is as follows. We generate a set of Mρ different initial conditions, and evolve the
various dynamics of N agents for t ∈ [0, T ] using a Geometric Numerical Integrator with a uniform time step h (for details
see section C); then we observe each dynamics at equidistant times, i.e. 0 = t1 < . . . < tL = T , to obtain a set of trajectory
data, {xmi (tl), ẋ

m
i (tl)}

N,L,Mρ

i,l,m=1 , to approximate the “true” probability distribution ρLT,M. From this set of pre-generated
trajectory data, we randomly choose a subset of M �Mρ of them to be used as training data for the learning simulation.
The hypothesis space where the estimator is learned is generated as a set of n first-degree clamped B-spline basis functions
built on a uniform partition of the learning interval [Robs

min, R
obs
max], with Robs

min and Robs
max being the minimum and maximum

interaction radii computed from the training and trajectory data, respectively. Once an estimator, denoted as φ̂, is obtained,
we report the estimation error, φ(·) · −φ̂(·)·, using

‖ϕ(·) · −φ(·)·‖Rel.L2(ρT,M):=
‖ϕ(·) · −φ(·)·‖L2(ρT,M)

‖φ(·)·‖L2(ρT,M)

; (13)
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and the trajectory estimation error

dtrj(X
m
[0,T ], X̂

m

[0,T ])
2 := sup

t∈[0,T ]

∑
i dM(xmi (t), x̂mi (t))2

N
(14)

between, the true and estimated dynamics, evolved using φ or φ̂ with the same initial conditions for t ∈ [0, T ] respectively,
and observed at the same observation times 0 = t1 < . . . < tL = T , over both the training initial conditions and another set
of M randomly chosen initial conditions. Moreover, the above learning procedure is run 10 times independently in order to
generate empirical error bars. We will report the errors in the form of mean± std. Visual comparisons of φ versus φ̂, and X
versus X̂ will be shown, and discussions of learning results will be presented in each subsection.

Table 1 shows the values of the common parameters shared by all six experiments.

Mρ N L M Num. of Learning Trials RM on S2 RM on PD
3000 20 500 500 10 5 ∞

Table 1. Values of the parameters shared by the six experiments

Moreover, section A shows the details on how to calculate the geodesic direction and the Riemannian distance between any
two points on S2 and PD. The distribution of the initial conditions, µ0(MN ), is given as follows: uniform onM = S2;
whereas uniform on an open ball (centered at origin with radius r0) for the PD case with r0 given as follows.

r0 =

(
2 +

1

cosh(5)− 1
−

√
4

cosh(5)− 1
+

1

(cosh(5)− 1)2

)
/2.

This radius is used so that the maximum distance between any pair of agents on the Poincaré disk is 5. PS1 will have
different setup for the initial conditions, which will be discussed in section D.4.

D.1. Computing Platform

We use a computing workstation with an AMD Ryzen 9 3900X CPU (which has 12 computing cores), and available 128 GB
memory, running CentOS 7. All 6 experiments are ran in the MATLAB (R2020a) environment with parallel mode enabled
and a parallel pool of 12 workers. Such parallel mode is used in each experiment for the computation of ρLT,M, learning, and
trajectory error estimation. Detailed report of the running time for the experiments is provided in the result section of each
experiment.

D.2. Opinion Dynamics

We first choose opinion dynamics, which is used to model simple interactions of opinions (Aydoğdu et al., 2017; Weisbuch
et al., 2003) as well as choreography (Caponigro et al., 2014). We consider the generalization of this dynamics to take place
on two different manifolds: the 2D sphere (S2) and the Poincaré disk (PD). We consider the interaction kernel

φ(r) :=



1, 0 ≤ r < 1√
2
− 0.01

a1r
3 + b1r

2 + c1r + d1,
1√
2
− 0.01 ≤ r < 1√

2

0.1, 1√
2
≤ r < 0.99

a2r
3 + b2r

2 + c2r + d2, 0.99 ≤ r < 1
0, otherwise

The parameters, i.e. (a1, a2, b1, b2, c1, c2, d1, d2), are chosen so that φ ∈ C1([0, 1]). Table 2 shows the values of the
parameters needed for the learning simulation.

nS2 nPD T h
51 69 10 0.01

Table 2. Test Parameters for OD.
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Results for the S2 case: Fig. 1 shows the comparison between φ and its estimator φ̂ learned from the trajectory data.
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Figure 1. (OD on S2) Comparison of φ and φ̂, with the relative error being 1.894 · 10−1 ± 3.1 · 10−4 (calculated using (13)). The true
interaction kernel is shown in a black solid line, whereas the mean estimated interaction kernel is shown in a blue dashed line with its std
interval, i.e. mean(φ̂)± std(φ̂), region shaded in red. Shown in the background is the comparison of the approximate ρLT,M versus the
empirical ρL,MT,M.

As it is shown in Fig. 1, the estimator is able to capture the compact support of the φ from the trajectory data. Fig. 2 shows
the comparison of the trajectory data between the true dynamics and estimated dynamics.

Figure 2. (OD on S2) Comparison of X (generated by φ) and X̂ (generated by φ̂), with the errors reported in table 3. Top: X and X̂
are generated from an initial condition taken from the training data. Middle: X and X̂ are generated from a randomly chosen initial
condition. Bottom: X and X̂ are generated from a new initial condition with bigger N = 40. The color of the trajectory indicates the
flow of time, from deep blue (at t = 0) to light green (at t = T ).
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A quantitative comparison of the trajectory estimation errors is shown in Table 3.

[0, T ]
meanIC: Training ICs 8.8 · 10−2 ± 1.7 · 10−3

stdIC: Training ICs 5.9 · 10−2 ± 1.5 · 10−3

meanIC: Random ICs 9.0 · 10−2 ± 1.6 · 10−3

stdIC: Random ICs 6.0 · 10−2 ± 1.7 · 10−3

Table 3. (OD on S2) trajectory estimation errors: Initial Conditions (ICs) used in the training set (first two rows), new ICs randomly drawn
from µ0(MN ) (second set of two rows). meanIC and stdIC are the mean and standard deviation of the trajectory errors calculated using
(14).

We also report the condition number and the smallest eigenvalue of the learning matrix A to indirectly verify the geometric
coercivity condition in table 4.

Condition Number 1.8 · 105 ± 1.4 · 104
Smallest Eigenvalue 1.09 · 10−7 ± 9.0 · 10−9

Table 4. (OD on S2) Information from the learning matrix A.

It took 1.41 · 104 seconds to generate ρLT,M and 4.76 · 104 seconds to run 10 learning simulations, with 1.44 · 103 seconds
spent on learning the estimated interactions (on average, it took 1.44 ·102±3.1 seconds to run one estimation), and 4.61 ·104

seconds spent on computing the trajectory error estimates (on average, it took 4.61 · 103 ± 20.0 seconds to run one set of
trajectory error estimation).

Results for the PD case: Fig. 3 shows the comparison between the C1 version of φ and its estimator φ̂ learned from the
trajectory data.
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Figure 3. (OD on PD) Comparison of φ and φ̂ , with the relative error being 2.114 · 10−1 ± 5.0 · 10−4 (calculated using (13)). The true
interaction kernel is shown in a black solid line, whereas the mean estimated interaction kernel is shown in a blue dashed line with its std
interval, i.e. mean(φ̂)± std(φ̂), region shaded in red. Shown in the background is the comparison of the approximate ρLT,M versus the
empirical ρL,MT,M.

As it is shown in Fig. 3, the estimator is able to capture the compact support of the φ from the trajectory data. Fig. 4 shows
the comparison of the trajectory data between the true dynamics and estimated dynamics.



660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Learning Interaction Kernels for Agent Systems on Riemannian Manifolds

Figure 4. (OD on PD ) Comparison of X (generated by φ) and X̂ (generated by φ̂), with the errors reported in table 5. Top: X and X̂
are generated from an initial condition taken from the training data. Middle: X and X̂ are generated from a randomly chosen initial
condition. Bottom: X and X̂ are generated from a new initial condition with bigger N = 40. The color of the trajectory indicates the
flow of time, from deep blue (at t = 0) to light green (at t = T ).

As shown in Fig. 3, around r = 1√
2

, the estimator φ̂ produces values bigger than that from φ, leading to stronger influence,
hence the merging of cluster happening in the predicted trajectories in the second row of Fig. 4. As demonstrated by
the average prediction error on trajectories, this is a relatively rare event, occurring for only certain initial conditions. A
quantitative comparison of the trajectory estimation errors is shown in Table 5.

[0, T ]
meanIC: Training ICs 2.53 · 10−1 ± 7.2 · 10−3

stdIC: Training ICs 1.90 · 10−1 ± 6.5 · 10−3

meanIC: Random ICs 2.55 · 10−1 ± 9.7 · 10−3

stdIC: Random ICs 1.89 · 10−1 ± 5.9 · 10−3

Table 5. (OD on PD ) trajectory estimation errors: Initial Conditions (ICs) used in the training set (first two rows), new ICs randomly
drawn from µ0(MN ) (second set of two rows). meanIC and stdIC are the mean and standard deviation of the trajectory errors calculated
using (14).

We also report the condition number and the smallest eigenvalue of the learning matrix A to indirectly verify the geometric
coercivity condition in table 6.

Condition Number 4.9 · 105 ± 1.5 · 104
Smallest Eigenvalue 5.3 · 10−6 ± 1.2 · 10−7

Table 6. (OD on PD ) Information from the learning matrix A.

It took 1.33 · 104 seconds to generate ρLT,M and 4.06 · 104 seconds to run 10 learning simulations, with 1.23 · 103 seconds
spent on learning the estimated interactions (on average, it took 1.23 ·102±1.1 seconds to run one estimation), and 3.93 ·104

seconds spent on computing the trajectory error estimates (on average, it took 3.93 · 103 ± 82.1 seconds to run one set of
trajectory error estimation).
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D.3. Lennard-Jones Dynamics

The second first-order model considered here is induced from a special energy functional, the so-called Lennard-Jones
energy potential. This first-order model, the Lennard-Jones Dynamics (LJD), is a simplified version of the second-order
dynamics used in molecular dynamics. The energy function, ULJ, is given by

ULJ(r) := 4ε
((σ

r

)12
−
(σ
r

)6)
.

Here ε is the depth of the potential well, σ is the distance when U is zero, and r is the distance between any pair of agents.
We set ε = 10 and σ = 1. The corresponding interaction kernel φ, derived from this potential, is

φLJ(r) :=
U ′LJ(r)

r
= 24

ε

σ2

((σ
r

)8
− 2
(σ
r

)14)
.

We shall use a slightly modified version of φLJ:

φ(r) :=


φLJ(1)− φ′LJ(1)/4, 0 ≤ r < 1

2
φ′LJ(1)r2 − φ′LJ(1)r + φLJ(1), 1

2 ≤ r < 1
φLJ(r), 1 ≤ r < 0.99RM
a3r

3 + b3r
2 + c3r + d3, 0.99RM ≤ r < RM

0, RM ≤ r.

The parameters, (a3, b3, c3, d3), are chosen so that φ ∈ C1([0, RM]) when RM <∞; otherwise φ(r) = φLJ(r) for r ≥ 1.
Table 7 shows the values of the parameters needed for the learning simulation.

nS2 nPD T h
51 69 10−3 10−6

Table 7. Test Parameters for LJD.

Results for the S2 case: Fig. 5 shows the comparison between φ and its estimator φ̂ learned from the trajectory data.
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Figure 5. (LJD on S2) Comparison of φ and φ̂, with the relative error being 3.65 · 10−2 ± 2.7 · 10−4 (calculated using (13)). The true
interaction kernel is shown in a black solid line, whereas the mean estimated interaction kernel is shown in a blue dashed line with its
std interval, i.e. mean(φ̂)± std(φ̂), region shaded in red. Shown in the background is the comparison of the approximate ρLT versus the
empirical ρL,MT .
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Fig. 6 shows the comparison of the trajectory data between the true dynamics and estimated dynamics.

Figure 6. (LJD on S2) Comparison of X (generated by φ) and X̂ (generated by φ̂), with the errors reported in table 8. Top: X and X̂
are generated from an initial condition taken from the training data. Middle: X and X̂ are generated from a randomly chosen initial
condition. Bottom: X and X̂ are generated from a new initial condition with bigger N = 40. The color of the trajectory indicates the
flow of time, from deep blue (at t = 0) to light green (at t = T ).

A quantitative comparison of the trajectory estimation errors is shown in Table 8.

[0, T ]
meanIC: Training ICs 2.88 · 10−3 ± 2.5 · 10−5

stdIC: Training ICs 6.1 · 10−4 ± 1.8 · 10−5

meanIC: Random ICs 2.88 · 10−3 ± 3.2 · 10−5

stdIC: Random ICs 6.0 · 10−4 ± 1.8 · 10−5

Table 8. (LJD on S2) trajectory estimation errors: Initial Conditions (ICs) used in the training set (first two rows), new ICs randomly
drawn from µ0(MN ) (second set of two rows). The trajectory estimation errors is calculated using (13).

We also report the condition number and the smallest eigenvalue of the learning matrix A to indirectly verify the geometric
coercivity condition in table 9.

Condition Number 6 · 105 ± 1.5 · 105
Smallest Eigenvalue 2.4 · 10−8 ± 6.2 · 10−9

Table 9. (LJD on S2) Information from the learning matrix A.

It took 2.43 · 104 seconds to generate ρLT,M and 7.14 · 104 seconds to run 10 learning simulations, with 1.72 · 103 seconds
spent on learning the estimated interactions (on average, it took 1.72 ·102±2.5 seconds to run one estimation), and 6.96 ·104

seconds spent on computing the trajectory error estimates (on average, it took 6.96 · 103 ± 35.9 seconds to run one set of
trajectory error estimation).

Results for the PD case: Fig. 7 shows the comparison between φ and its estimator φ̂ learned from the trajectory data.
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Figure 7. (LJD on PD ) Comparison of φ and φ̂, with the relative error being 2.52 · 10−2 ± 3.6 · 10−4 (calculated using (13)). The true
interaction kernel is shown in a black solid line, whereas the mean estimated interaction kernel is shown in a blue dashed line with its
std interval, i.e. mean(φ̂)± std(φ̂), region shaded in red. Shown in the background is the comparison of the approximate ρLT versus the
empirical ρL,MT .

Fig. 8 shows the comparison of the trajectory data between the true dynamics and estimated dynamics.

Figure 8. (LJD on PD ) Comparison of X (generated by φ) and X̂ (generated by φ̂), with the errors reported in table 10. Top: X and X̂
are generated from an initial condition taken from the training data. Middle: X and X̂ are generated from a randomly chosen initial
condition. Bottom: X and X̂ are generated from a new initial condition with bigger N = 40. The color of the trajectory indicates the
flow of time, from deep blue (at t = 0) to light green (at t = T ).

A quantitative comparison of the trajectory estimation errors is shown in Table 10.
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[0, T ]
meanIC: Training ICs 2.27 · 10−3 ± 4.0 · 10−5

stdIC: Training ICs 5.6 · 10−4 ± 1.7 · 10−5

meanIC: Random ICs 2.28 · 10−3 ± 3.8 · 10−5

stdIC: Random ICs 5.6 · 10−4 ± 1.6 · 10−5

Table 10. (LJD on PD ) trajectory estimation errors: Initial Conditions (ICs) used in the training set (first two rows), new ICs randomly
drawn from µ0(MN ) (second set of two rows). meanIC and stdIC are the mean and standard deviation of the trajectory errors calculated
using (14).

We also report the condition number and the smallest eigenvalue of the learning matrix A to indirectly verify the geometric
coercivity condition in table 11.

Condition Number 6 · 106 ± 1.9 · 106
Smallest Eigenvalue 1.7 · 10−8 ± 6.6 · 10−9

Table 11. (LJD on PD ) Information from the learning matrix A.

It took 1.51 · 104 seconds to generate ρLT,M and 6.23 · 104 seconds to run 10 learning simulations, with 1.20 · 103 seconds
spent on learning the estimated interactions (on average, it took 1.20 ·102±9.4 seconds to run one estimation), and 6.10 ·104

seconds spent on computing the trajectory error estimates (on average, it took 6 · 103 ± 1.3 · 103 seconds to run one set of
trajectory error estimation).

D.4. Predator-Swarm Dynamics

The third first-order model considered here is a heterogeneous agent system, which is used to model interactions between
multiple types of animals (Chen & Kolokolnikov, 2013; Olson et al., 2016) or agents (need ref.). The learning theory
presented in this work is described for homogeneous agent systems, but the theory and the corresponding algorithms extend
naturally to heterogeneous agent systems in a manner analogous to (Lu et al., 2019a; Miller et al., 2020).

We consider here a system of a single predator versus a group of preys, namely the Predator-Swarm Dynamics (PS1),
discussed in (Chen & Kolokolnikov, 2013). The preys are in type 1, and the single predator is in type 2. We have multiple
interaction kernels, depending on the types of agents in each interacting pair: φkk′ defines the influence of agents in type k′

on agents in type k, for k, k′ = 1, 2. The interaction kernels are given as follows.

φ11(r) :=


2

0.013 (r − 0.01) + (1− 1
0.012 ) 0 < r ≤ 0.01

1− 1
r2 0.01 < r ≤ 0.99RM

a1,1r
3 + b1,1r

2 + c1,1r + d1,1, 0.99RM ≤ r < RM
0, RM ≤ r

The parameters, (a1,1, b1,1, c1,1, d1,1), are chosen so that φ11(r) ∈ C1([0, RM]) when RM < ∞; otherwise φ11(r) =
1− 1

r2 for r ≥ 0.01;

φ12(r) :=


4

0.013 (r − 0.01) + −2
0.012 ) 0 < r ≤ 0.01

−2
r2 0.01 < r ≤ 0.99RM
a1,2r

3 + b1,2r
2 + c1,2r + d1,2, 0.99RM ≤ r < RM

0, RM ≤ r

The parameters, (a1,2, b1,2, c1,2, d1,2), are chosen so that φ12(r) ∈ C1([0, RM]) when RM <∞; otherwise φ12(r) = −2
r2

for r ≥ 0.01;

φ21(r) :=


−10.5
0.014 (r − 0.01) + 3.5

0.013 ) 0 < r ≤ 0.01
3.5
r3 0.01 < r ≤ 0.99RM
a2,1r

3 + b2,1r
2 + c2,1r + d2,1, 0.99RM ≤ r < RM

0, RM ≤ r

The parameters, (a2,1, b2,1, c2,1, d2,1), are chosen so that φ21(r) ∈ C1([0, RM]) when RM <∞; otherwise φ21(r) = 3.5
r3

for r ≥ 0.01; then φ22 ≡ 0, since there is only one predator. We set T = 0.5 and h = 10−4 for the two PS1 models.
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Results for the S2 case: In order to produce more interesting interactions, we choose the distribution of the initial condition
to be as follows. The setting will start from R2 first. The position of the predator is randomly chosen uniformly within a
circular disk of radius 0.1 centered at the origin of R2. The remaining N − 1 agents will be prey and chosen uniformly
at random within an annulus of radii 0.3 and 0.8, centered at the origin. Then these positions will mapped through a
stereographic projection (where the origin of R2 is the south pole of S2) back to S2. When back on S2, the position of the
predator is moved via parallel transport to a random location on S2, and the rest of the preys are moved using the same map,
so that the relative position between each pair of agents is not changed.

Table 12 shows the number of basis functions, namely nkk′ ’s, for each estimator φ̂kk′ for k, k′ = 1, 2, and their corresponding
degrees, pk,k′ ’s, for the Clamped B-spline basis.

n1,1 n1,2 n2,1 n2,2

50 37 37 1
p1,1 p1,2 p2,1 p2,2
1 1 1 0

Table 12. (PS1 on S2 ) Number of basis functions.

Fig. 11 shows the comparison between φkk′ and its estimators φ̂kk′ learned from the trajectory data.
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Figure 9. (PS1 on S2 ) Comparison of φkk′ and φ̂k,k′ , with the relative errors shown in table 17. The true interaction kernels are shown in
black solid lines, whereas the mean estimated interaction kernel are shown in blue dashed lines with their corresponding std interval,
i.e. mean(φ̂kk′)± std(φ̂kk′), regions shaded in red. Shown in the background is the comparison of the approximate ρL,kk

′

T versus the
empirical ρL,M,kk

′

T . Notice that ρL,12T /ρL,M,12T and ρL,12T /ρL,M,21T are the same distributions.

Err1,1 Err1,2 Err2,1 Err2,2
2.98 · 10−1 ± 5.9 · 10−3 8.4 · 10−3 ± 3.0 · 10−4 2.5 · 10−2 ± 1.6 · 10−3 0

Table 13. (PS1 on S2 ) Relative estimation errors calculated using (13).

Fig. 10 shows the comparison of the trajectory data between the true dynamics and estimated dynamics.
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Figure 10. (PS1 on S2 ) Comparison of X (generated by φk,k′ ’s) and X̂ (generated by φ̂k,k′ ’s), with the errors reported in table 14. Top:
X and X̂ are generated from an initial condition taken from the training data. Middle: X and X̂ are generated from a randomly chosen
initial condition. Bottom: X and X̂ are generated from a new initial condition with bigger N = 40. The color of the trajectory indicates
the flow of time, from deep blue/bright red (at t = 0) to light green/light yellow (at t = T ). The blue/green combination is assigned to the
preys; whereas the red/yellow comb for the predator.

A quantitative comparison of the trajectory estimation errors is shown in Table 18.

[0, T ]
meanIC: Training ICs 2.36 · 10−2 ± 9.8 · 10−4

stdIC: Training ICs 1.9 · 10−2 ± 1.5 · 10−4

meanIC: Random ICs 2.40 · 10−2 ± 8.1 · 10−4

stdIC: Random ICs 2.3 · 10−3 ± 6.1 · 10−3

Table 14. (PS1 on S2 ) trajectory estimation errors: Initial Conditions (ICs) used in the training set (first two rows), new ICs randomly
drawn from µ0(MN ) (second set of two rows). meanIC and stdIC are the mean and standard deviation of the trajectory errors calculated
using (14).

We also report the condition number and the smallest eigenvalue of the learning matrix A to indirectly verify the geometric
coercivity condition in table 19.

Condition Number for A1 2.2 · 107 ± 1.8 · 106
Smallest Eigenvalue for A1 1.28 · 10−8 ± 8.5 · 10−10

Condition Number for A2 2.9 · 105 ± 2.2 · 105
Smallest Eigenvalue for A2 9 · 10−7 ± 5.7 · 10−7

Table 15. (PS1 on S2 ) Information from the learning matrix Ak’s.

The matrix A1 is used to obtain the estimators, φ̂1,1 and φ̂1,2; whereas A2 is used to obtain φ̂2,1 and φ̂2,2. Since there
is one single predator, we set φ̂2,2 to zero. It took 9.77 · 104 seconds to generate ρLT,M and 4.01 · 105 seconds to run 10

learning simulations, with 1.66 ·103 seconds spent on learning the estimated interactions (on average, it took 1.66 ·102±4.6
seconds to run one estimation), and 4.05 · 105 seconds spent on computing the trajectory error estimates (on average, it took
4.0 · 104 ± 7.1 · 103 seconds to run one set of trajectory error estimation).
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Results for the PD case: In order to produce more interesting interactions, we choose the distribution of the initial condition
to be as follows: the predator is randomly placed in a circle centered at the origin with radius r1, given as follows

r0 =

(
2 +

1

cosh(0.5)− 1
−

√
4

cosh(0.5)− 1
+

1

(cosh(0.5)− 1)2

)
/2,

so that the agents are at most 0.5 distance away from each other; then the group of preys (Swarm) will be randomly and
uniformly placed on an annulus centered at the origin with radii,(R1, r1), given as follows

r1 =

(
2 +

1

cosh(1)− 1
−

√
4

cosh(1)− 1
+

1

(cosh(1)− 1)2

)
/2

and

R1 =

(
2 +

1

cosh(2)− 1
−

√
4

cosh(2)− 1
+

1

(cosh(2)− 1)2

)
/2;

so that the group of preys are surrounding the single predator. Table 16 shows the number of basis functions, namely nkk′ ’s,
for each estimator φ̂kk′ for k, k′ = 1, 2, and their corresponding degrees, pk,k′ ’s, for the Clamped B-spline basis.

n1,1 n1,2 n2,1 n2,2

68 43 43 1
p1,1 p1,2 p2,1 p2,2
1 1 1 0

Table 16. (PS1 on PD ) Number of basis functions.

Fig. 11 shows the comparison between φkk′ and its estimators φ̂kk′ learned from the trajectory data.
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Figure 11. (PS1 on PD ) Comparison of φkk′ and φ̂k,k′ , with the relative errors shown in table 17. The true interaction kernels are shown
in black solid lines, whereas the mean estimated interaction kernel are shown in blue dashed lines with their corresponding std interval,
i.e. mean(φ̂kk′)± std(φ̂kk′), regions shaded in red. Shown in the background is the comparison of the approximate ρL,kk

′

T versus the
empirical ρL,M,kk

′

T . Notice that ρL,12T /ρL,M,12T and ρL,12T /ρL,M,21T are the same distributions.

Err1,1 Err1,2 Err2,1 Err2,2
9.0 · 10−2 ± 2.6 · 10−3 1.34 · 10−3 ± 8.8 · 10−5 3.6 · 10−3 ± 2.4 · 10−4 0

Table 17. (PS1 on PD ) Relative estimation errors calculated using (13).
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Fig. 12 shows the comparison of the trajectory data between the true dynamics and estimated dynamics.

Figure 12. (PS1 on PD ) Comparison of X (generated by φk,k′ ’s) and X̂ (generated by φ̂k,k′ ’s), with the errors reported in table 18. Top:
X and X̂ are generated from an initial condition taken from the training data. Middle: X and X̂ are generated from a randomly chosen
initial condition. Bottom: X and X̂ are generated from a new initial condition with bigger N = 40. The color of the trajectory indicates
the flow of time, from deep blue/bright red (at t = 0) to light green/light yellow (at t = T ). The blue/green combination is assigned to the
preys; whereas the red/yellow comb for the predator.

A quantitative comparison of the trajectory estimation errors is shown in Table 18.

[0, T ]
meanIC: Training ICs 4.8 · 10−3 ± 1.2 · 10−4

stdIC: Training ICs 2.3 · 10−3 ± 3.0 · 10−4

meanIC: Random ICs 4.8 · 10−3 ± 1.2 · 10−4

stdIC: Random ICs 2.5 · 10−3 ± 3.9 · 10−3

Table 18. (PS1 on PD ) trajectory estimation errors: Initial Conditions (ICs) used in the training set (first two rows), new ICs randomly
drawn from µ0(MN ) (second set of two rows). meanIC and stdIC are the mean and standard deviation of the trajectory errors calculated
using (14).

We also report the condition number and the smallest eigenvalue of the learning matrix A to indirectly verify the geometric
coercivity condition in table 19.

Condition Number for A1 2.3 · 109 ± 4.7 · 108
Smallest Eigenvalue for A1 7 · 10−11 ± 1.7 · 10−11

Condition Number for A2 5 · 105 ± 3.1 · 105
Smallest Eigenvalue for A2 4 · 10−8 ± 2.9 · 10−8

Table 19. (PS1 on PD ) Information from the learning matrix Ak’s.

The matrix A1 is used to obtain the estimators, φ̂1,1 and φ̂1,2; whereas A2 is used to obtain φ̂2,1 and φ̂2,2. Since there
is one single predator, we set φ̂2,2 to zero. It took 7.37 · 104 seconds to generate ρLT,M and 2.49 · 105 seconds to run 10

learning simulations, with 1.25 ·103 seconds spent on learning the estimated interactions (on average, it took 1.25 ·102±1.5
seconds to run one estimation), and 2.48 · 105 seconds spent on computing the trajectory error estimates (on average, it took
2.48 · 104 ± 2.3 · 102 seconds to run one set of trajectory error estimation).
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