Supplementary Material for Learning Interaction Kernels for Agent Systems
on Riemannian Manifolds

A. Preliminaries

In this work, M is a connected, smooth, and geodesically complete d-dimensional Riemannian manifold with Riemannian
metric g. For details regarding the basic definitions of Riemannian manifolds, geodesics, Riemannian distances, exponential
maps, cut loci, and injectivity radii, please see (Lee, 2003; do Carmo, 1976). We will discuss how to find the minimal
geodesic and the Riemannian distance between any two points on the two prototypical manifolds used in our numerical
algorithms: the two-dimensional sphere (S?) and the Poincaré Disk (PD).

A.1. Riemannian Geometry on the 2D Sphere

The 2D Sphere (S?) of radius r and centered at the origin can be isometrically embedded in R? in the natural way, i.e.,
x,y € S C R3. Then for any x, y € S?, the Riemannian distance between x and vy is given by

dpm(z,y)=r-60, 6= acos<<m7y>>.
]l - [yl

The minimal geodesic between & and y is the piece of the arc on the great circle of S? with the smallest length, assuming
and y are not in each others’ cut locus, i.e. diametrically opposed. The unit vector on the minimal geodesic from x to y,
denoted as v(x, y), can be computed as follows

( ) y—a:—Projfm(y—w)
v(x,y) = - )
Yo lly—z—Proj_(y—a)

Here Proj,, (w) is the projection of w onto w.

A.2. Riemannian Geometry on the Poincaré Disk
For any two points «,y € PD on the Poincaré Disk (PD) where PD = {x € R?s.t. |z| < 1}, the Riemannian metric,

written in the standard coordinates of R, is given by

46; ;
] x € PD,

950 = P

with §; ; being the Kronecker delta, and the corresponding Riemannian distance between « and y is

o |z — yl|°
dpi(@.y) aC°5h<1 T - ||y||2>> |

The minimal geodesics between x and y are either straight line segments if x and y are on a line through the origin or
circular arc perpendicular to the boundary. For the straight line segment case, we have the unit vector on the minimal
geodesic from x to y, denoted as v(x,y), computed as follows: we identify the vector y — @, computed in R? as a

tangent vector in T M, then normalize it to obtain v(x,y) = W For the perpendicular arc case, we first find
TeM

the inverse y’ of y w.r.t to the unit disk (in R?); then we use the three points , y, 4’ to find the center o’ of the circle
passing through x, y and y’. Then the unit tangent vector on the geodesic from @ to y is computed as follows: , we compute
y — x — Proj,,__(y — x) in R? (with the Euclidean metric), then identify it as a tangent vector in 7;; M, and normalize it:

o) y—x—Proj,_,(y—x)
v(x,y) = j .
Y =2 Projy_o(y — @)1 no
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B. Learning Theory: Foundation

In this section, we present the theoretical foundation needed to prove the theorems presented in the main body. We follow
the ideas presented in (Lu et al., 2019b) with similar strategies presented in (Cucker & Smale, 2002; Gyorfi et al., 2006). We
begin with the following assumption.

Assumption 1. H is a compact (in L>-norm) and convex subset of L*([0, R)), such that every ¢ € H is bounded above by
some constant Sy > S, i.e. ||¢]] Lo ([0,R]) < Sy, moreover ¢ is smooth enough to ensure the existence and uniqueness of
solutions of

N
a;(t) = % Y dldum(zit) @ (D))w(@i(t), o (),  i=1...,N. (1)

/=1

fort €[0,T), i.e. ¢ € HN KRg.s,-

Another important observation is that since ¢ € K, g and T is finite, the distribution of «;(¢)’s does not blow up over [0, T']
ensuring that the x;(¢)’s have bounded distance from the x;(0)’s. In fact, let Ry be the maximum Riemannian distance
between any pair of agents at t = 0, then

max 7 (t)= ,max NdM(wi(t)7:ci/ (t)) < Ry+TRS, forte|0,T].
Hence the x;(t)’s live in a compact (w.r.t to the d 4 metric) ball around the «;(0)’s, denoted as Ba(X o, R1) where

Ry = Ry + TRS. Recall the definition of the loss functional used to find the estimator, namely ¢, 5r,7; to the unknown
interaction kernel ¢, give by

Eram(p) = 11 > |X7 - rax @

l,m=1

‘TXWMN '

Further recall that the estimator is defined as gg v, = argmin €,y am (). When M — oo, we obtain the following
YEH
loss functional (by the law of large numbers).
. 2
ELco,Mm(0) : ZEXUNMQ(MN)[HXtZ - fo(X4) ‘ 3)

=1

TxthN }

The minimizer of £, oo A over H is defined as 0 L,00,H» Which is closely related to o .M, (in the M — oo sense). And
they are close to ¢, when we establish the following condition on .

Definition B.1 (Geometric Coercivity condition). The geometric evolution system in (1) with initial condition sampled from
po(MN) on MY is said to satisfy the geometric coercivity condition on the admissible hypothesis space H. if there exists a
constant cp, N 1, m > 0 such that for any ¢ € H with p(-)- € LQ(p%}M), the following inequality holds:

cr,NHMmlp() ||L2 W ST ZEXOWO MN) {Hf (X+,) HT MN?| “4)

From this condition, we can derive the following theorem.

Theorem B.1. Let ¢ € L*([0, R]), and H a compact (w.r.t the L°° norm) and convex subset of L*([0, R]) such that the
geometric coercivity condition (4) holds with a constant cp, N 3, . Then, for ¢ a3, estimated by minimizing (2) on the
trajectory data generated by (1), the following inequality

2

H(ZL,M}L(') : *éf)(')"

2 . 2
L2(pf 1) CL.NHM (EJF oo loC) =00 lzagop, o ©)

holds with probability at least 1 — T, when M > 15255 R ( (N, z572)) + ln(%)) Here N'(U, €) is the covering

— €CL,N,H,M
number of a set U with open balls of radius e w.r.t the L>-norm.
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Using this concentration result, we can get the strong consistency of our estimators under mild hypotheses.

Theorem B.2. For a family of compact (w.r.t. the L norm) convex subsets, {Hr }55_,, of L*([0, R]), when the following
conditions hold, (i) UpsHas is compact in L°°; (ii) the geometric coercivity condition, (B.1), holds on UpH s, (iii)

. M—)oo
wéI;{fM l() - =0C) N2y — O then

lim H(EL,M,HM(') : —¢(')" =0 as. (6)

M — o0

L? (p%)M)
This theorem establishes the almost sure convergence of our estimator to the true interaction kernel as M — oc.

B.1. Concentration and Consistency

Our first step is to establish the consistency of the estimator for the true kernel ¢ of the system. Note that 7 can be embedded
as a compact (in L> sense) set of L%(pk ). We establish a strong consistency result on our estimators of the form,

lim HaL,M(') : —(/5(')"

M—o0

=0, a.s.
L2(pk aq)

Our discussions of consistency under the L2 —norm on manifolds can be regarded as a natural extension from the case on
Euclidean Space in (Lu et al., 2019b). We define the following loss functional of the vectorized system, X ;

2

1 N N
gXt N Z Z ¢n’ t — 9021’ t wu’ t
=1 =1 m'i(t)M
N N 1 N
=N Z Z Giir 4 — it )Wiir 1~ N D (Biir i — @i )Wiir 1) g(w, (1)) (7

i’=1

Here we take w;;r ¢ = daq(xi(t), T (t))v(xi(t), 24 (1)) and ¢iir ¢ = d(da(24(t), i (t)); similarly for ;i ;. Now we
can see that

When M — o0, this functional converges to, by the law of large numbers,

L
1
ELoom(p) = 7 > Extgmpo(m™)Ex,, (#) -
=1

We are ready to summarize some basic properties of Ex, (¢).

Proposition 1. For o1, s € H, we have
|5Xt(901) - 5Xt(902)| < g1 () - _902(')'||L2(;33M) 126() - =1 () - _802(')‘||L2(,33M) : (®)

Here we define the probability measure, p((r) = ﬁ Zf\;,:l Odps (s (£),a,0 (£)) (T)-

Proof. Let 1,2 € H, and define o, , = @1(dm(xi(t), zi(t))), similarly for c,ofi%. Moreover, let 7 =
dp(zi(t), 2y (1)) and wypr ¢ = daq(xi(t), zor (£))v(2i(£), i (¢)). Immediately, we have

||wi1i’,t||Tmi(t)M < Tt



Learning Interaction Kernels for Agent Systems on Riemannian Manifolds

since v(x;(t), z,(t)) has either length 1 or 0. Next, using Jensen’s inequality, we have

N N N
1 1 1
€x,(p1) — Ex,(p2)]| = |N Z<N > (Pl s — Ol Wit 1, N > (@i s — Pl — Coi Wi ) g (i (1))
i=1 =1 ir=1
1
N Z i, it ‘Pzzz",t)wii’,t N Z (2500 — (pzli”,t - @?z”/,t)wii//7t
i=1 =1 Te,(yM "=l Ta; M
N
- Z (p“, t <,0”/ t) ’2’/ t N2 Z 2¢”” t— 9011’ t (pzz/ t) zQz“ t
=1 7,4/ =1
<lea () - =02 () L2 ) 11200) - =01 () - =02 () ll L2t »
where p'y(r) = = ZlNi,:l Oryr , (1) O
With Proposition 1 proven, we get the following proposition establishing the continuity of our error functionals.
Proposition 2. For ¢, € H, we have the inequalities
€ mrm(01) = Enrm(p2)| < 01() - =020 )l pee [126() - =01 () - =02() |l e ©

[€L.00.:m (1) = ELcom(@2)| < Hlr () - =02() llagpr ) 1260) - =01 () - =02() [l 2 pr ) -

Proof. Using the results from Prop. 1, and defining p7, o == T S p",, we have
L L
|* Z Ex,, (1) ngtl (p2)| < 7 Y 1Ex, (01) — Ex,, (92)]
=1

< H<p1(~)~—¢2()||m 10 1200) - =01() - =2 ) ll L2t

WMh

L
Z ler() - =p2()llpagayon| T Z 126() - —e1() - =p2()-ll L2, )

=1

IN
L ~| =
—

1) =2V llgagap ) 1260) —m) L.

= lle o
Next, we have
M L
‘5L,JW,M(901) —Ermm(p2)| < M Z Zé'xm (1) — = ngm ()]
1; I=1 L3
< M Z le1() - =pa()llnzor ) 11200) - =01 () - =2 ()Nl 2ot )
< ||<P1() —p2() e 120() - =1 () - —p2()- [l e

< R [le1 — @2l 120 — 01 — 92| e -

Meanwhile, taking M — oo for ’8L,M,M (p1) = Enmm(p2)),

|€L.00.0m(p1) = ELco.m(2)] < l1() - =02( ) ll 2 pr ) 11260) - =1() - =020 ll 2 er ) »

where pf o = Exompuo (M) 107 p4)-

As a further derivation, we observe that forany ¢ € 7 C L?([0, R]), we have that max,.c[o, g [ (-):| < Rmax,c[o g [¢(-)
so we obtain the following Corollary:
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Corollary B.3. For ¢ € H, define
Lyr(¥) = Eroo,Mm(p) — EL,m.1m(9),
then for any 1, p2 € H, we have

|Lar(p1) = Lar(e2)| < 2R? o1 — pall oo 126 — 01 — @2 oo -
Now we can consider the distance between the minimizer of the error functional £, o, o4 over H and any other ¢ € H. Let
OL oo = argmin €L oo i ()-
pEH

From the geometric coercivity condition and the convexity of #, we obtain

Proposition 3. For any p € H,
(10)

Ercom(9) = ELcom(PL.oomt) > CL N M HSO() : —¢A5L,oo,?-t(')" L
LZ(F’T,M)

We now define the defect function Dy, a3 () == L m (@) — 5L7M,M<$L,oo,7-t)’ and define
Drooulp) = m Dparu(p) = Er001(P) = Er oo, M(PL,00,1)-
Dr,co,#t()—Dr a1 ()

Dr,co,n(")+e
Proposition 4. For any e > 0 and « € (0, 1), we have

D100, 1(p) — Dr s m () ae cL, N M2 Me
ey T B ) o
po) <Zlelg Dpoom(p) + € 230 ) SN(H 8syr2) P 3253

Then, we show that we can uniformly bound

on H with high probability,

where N'(U, 1) is the covering number of set U with open balls of radius r w.r.t the L —norm.

The proof of Proposition 4 uses the following Lemma similar to Lemma 19 in (Lu et al., 2019b),
Lemma B.4. Forany e > 0and o € (0,1), if p1 € H satisfies

Drooi(p1) — Droaw (1)

<«
DL,com(p1) + €
then for any 2 € H s.t. |1 — @2 < 10 = g5 7z, We have
D -D
00,1 (02) L. (P2) < 3

Drcom(p2) + €

Using the results we have just established, the proofs of theorems B.1 and B.2 now follow similarly to the analogous results
in (Lu et al., 2019b;a; Miller et al., 2020).

B.2. Rate of Convergence

Using these results, we establish the convergence rate of ¢ .M, to ¢ as M increases.
Theorem B.5. Let 11o(M™) be the distribution of the initial conditions of trajectories, and Hy = By with n =<

(M/log M)TIH, where B, is the central ball of L,, with radius ¢; + S, and the linear space L, C L*([0, R]) sat-
isfies the dimension and approximation conditions below,

dim(L,) <con and inf |@— | <cin”
pEL,

for some constants cg,c1,s > 0. Suppose that the geometric coercivity condition holds on L := U, L, with constant
cL,N,c,M- Then there exists some constant C(S, R, ¢y, ¢1) such that

< C(S, R, co,c1) (1ogM)ﬁ .

e[ 0-—o0) :

Lz(p%,M)} - CL,N,LM

The proof of the theorem uses the results above, which took into account the geometry of M, while closely following the
ideas in (Lu et al., 2019b) and their further development in (Lu et al., 2019a; Miller et al., 2020), and is therefore omitted.
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B.3. Trajectory Estimation Error
Recall the following theorem on the trajectory estimator error:

Theorem B.6. Let ¢ € K, s and quS € Kr,s,, for some So > S. Suppose that X (o 1) and X[QT] are solutions of (1) w.r.t
to ¢ and <$, respectively, for t € [0,T), with Xo = Xo. Then the following inequalities hold:

2

3(X4)

; , (11

N 2 .
iraj, MmN (X[O,T]vX[O,T]) < 4C(M, T)T exp(64T>55) HXt - f T AN
Xt

and

2 ~
Exgmpo ) [dos o (X011 X o)) | < ACM,T)T2 exp(647253) o) - —6(.)

12)

)
L2(pr,m)

where C'(M,T) is a positive constant depending only on geometric properties of M and on T, but may be chosen
independent of T if M is compact.

It states two different estimates of the trajectory estimation error. First, it bounds the system trajectory error for any one
single initial condition; second, it bounds the expectation of the worst trajectory estimation error on time interval [0, T]
among all different initial conditions.

Proof of Theorem B.6. Assume that ¢ € Kg g, (;AS € Kg,s,, and X4, X, are two system states, at some ¢ € [0, 7], generated
by ¢, (;AS with the same initial conditions at ¢ = 0. Next, we assume that M is isometrically embedded in R? (at least one
such embedding exists, by Nash’s embedding theorem), viaamap Z : M — RY". From now on, we will identify x; with
Za;. Then for any ¢ € [0, T, we have

N 2 N
= Z [l (t) )| = ]1[1_21 /;O(wz(s) —xi(s))ds o < ;f;t/f 0 ’ xi(s) — fvz(s)‘ ;d/
Tt 2
< N;/S_O ‘ z;(s) — x( )‘ p ds.

Define the function F(x,-) : M — Ty M for every x € M as F}'(z,-) = p(dpm(,-))w(e,-). Let F2%, , =
FM(xi(t), zi(t)) and Fé\,/%{/,t = F2(@,(t), & (t)). Then

Nt . 2 N o
Z/ ’ml(s)_ﬁ:z(s)HRd/ dSZZ/ _*Z B.id s ds
=1 s=0 i—1 s=0 — o
1 N 1 N 2
M M
- 22/ By Z X I D F. N 2 Foiis ) ds
/=1 d’ il=1 - ]Rd/
N 1 " 2
:22/ ( T 5)_NZF¢QW,5 +](5)) ds.
i=1 =0 =1 R
Next,
1 Y 2 1 IIE )
_ M B " » y y
= N Fois ™ N Foits T N2 Z (F&ii’-,s —F it s T F$,%{/’s)
i'=1 =1 R/ ] y
N 2 ~ )
M ™ “
= ( Z 2 d’ i S) * Z (F@i{',s - F$,%{’,s) ) ’
=1 R i'=1 R
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Since $ € Kr.,sy» Fé\" is Lipschitz in each of its arguments; moreover, max,¢(o, g] |c/ﬂ < S, so that Lip(Fé‘"(a:, s
Lip(Ff"(~, x)) < 2S5p. Therefore,

N
2 2 . ~ ~ 2
I(5) <~ (2Lip(F2" Z i (5) = 0 (92w +2 3 Lin(F2 (o ()2 [is) — (5) 2 )
/=1
4 41
2 . ~ A 2
<N ~aLip(F5" Z lzeir(s) = &ir () llgar + 772 ZLIP(FfA('awi'(S)))2 i (s) — @i ()| gar
/=1
165 165 9
< O Z i (s) — 2 ( HRd’ 0 Z i (s) — i (8)||ga
i'=1 =1
325 9
< 0 Z @i (s) — Zir(s)||gar -
i'=1

Putting these results together, we have

N N t
2T 325
l|(t) — HRd’ <=~ i ( il s O ||:BZ ) — i ( )H%d’ ds
N N ¢
i=1 i=1 s=0 i’=1 :i’ =1
2
64T 52 al
= S50 S 1) — 1) 2 + Z / (-5 P e
i=1 =1 R’
By Gronwall’s inequality, we have
N N 2
Z ll:(t) ®)|ae < —exp (6472S53) Z/ (s) N F;V;Z . ds.
i=1 =1 R

Recall that T’ isAsmall, hence the solution X; and X ¢ live in a compact neighborhood of the initial condition, X ¢ = X 0 €
MN:ie. X, X, € B (X, R2) with Re = Ry + TRSy. From the compactness of (the closure of) this set, and via the
embedding Z, we deduce that there exists a constant Cy (M, Z,T) such that

dp(zi(t), 2i(t) < Cr(M, L, T) [|&i(t) — 2i(t)||gar , fort € [0,T].

Since Z is isometric, for u € Ty M we have ||dZ(u)|gar = [[u[|1, 14 Using both the bounds above, we have
N
S 1 . Cl M Z,T)?
(X X0 = =3 dualai(), (1)) < Z J4(t) — 4(0)
i=1
2
2C1 (M, T, T)*T exp(64T252) <~ [* 1 M
< = )SY | TURES Sr S
=1 R4
2C1 (M, T, T)?T exp(64T2S2) o= [* 1 & ’
o 1 )L 0 R M
- 5 S e -y,
=1 Ty ()M
t . 2
— 901 (M, T, T)>T exp(64T2 52 / HX e d
1( )"T exp( 0) - F5(X5) T
Letting
C(M,T) := inf Cy(M,ZT,T)?,

all isometric embeddings 7

and choosing an isometric embedding Z which gives a value at most twice the infimum, we obtain

2

(Xs) ds.

Tx MN

t
A (X1, X1)? < ATC(M,T) exp(64T253)/ HX - f5
s=0
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Now, take ¢ to be the true interaction kernel, and Zs the estimator of ¢ by our learning approach, by Prop. 1 we have that

2

at < o) =40

’TXMN L2(pr,m)

T . 2
HXS - f%;(Xs)
t=0
Together with (11), recalling that X o = X and X ~ 1o(M?Y), we have the desired result that

Exgmpio () [ (X 0,73, X p0,11)%] < AT2C(M,T) exp(64T253) Exe, o vy || 6) - =0)

L2(prm)

C. Numerical Implementations

If the trajectory data, {x"(¢;), &;" (tl)}f\fl’ﬁ;fp is given by the user, we use the following geometry-based algorithm to find

the minimizer of (2). First, we construct a finite dimensional subspace of the hypothesis space, i.e. Hps C H, where H s
. . . . 1 . . .

with dimension dim(H ) = n = n(M) ~ O(M3) is a space of clamped B-spline functions' supported on [R% | RS ]

with R°% /RS being the minimum/maximum interaction radius computed from the observation data. Hence the test

min max

functions can be expressed as linear combination of the basis functions of Hyy, i.e., o(r) = 22:1 o (r) with {1y} _q

being a basis for H ;. Next, we use either a local chart i/ : M — R< or a natural embedding Z : M — Rd/, such that
x; € M can be expressed using either local coordinates in R4 (as in the PD case) or global coordinates in RY (as in the S?
case). The computation of (-, -) ;) will be based on the choice of the local chart, or on the embedding, accordingly. Then,
we define a basis matrix, U™ € (szyf MY % ox TX;n MN)”, whose columns are

. Fo, (X57)
\I’m(:,’r])z\lfm — : ETXQMNX~-~XTX?LMN,
£, (X))

=

recall

FolXo) = %20, ‘P(d/\/l(xi(t)v;Ui’(t)))w(mi(t)vwi’(t)) € I, M".

Next, we define the derivative vector, dm ¢ TX?{ MY xox TX?L MY | as follows,

a1 Xfl
TUN |
tr
Then, we define the learning matrix Ay, € R™*™ as follows
m
Apr(n,n') LMZ U)a, fornn =1,....n

Here the inner product (-, ) on ¥/ € Txy: MY x oo x Txy. MY is defined as

L
(v Z £, (X0, fw (X ))gMN(le).
1=1
Next for the learning right hand side, b v € R we have
- 1 &
b]\4(77):mn;<d7\1’n>@7 f0f77:17~-~7n

!Other type of basis functions can be considered, such as piecewise polynomials, Fourier, etc., provided they satisfy the approximation
assumptions in the main theorem.
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Therefore, the minimization of (2) over H ; can be rewritten as
a1
A]\/[O_Z:g]\], a= e R™*1,
Qg

Ay is symmetric positive definite (guaranteed by the geometric coercivity condition), hence we can solve the linear system
to obtain &, and assemble
n
r) = Z Gy (7)
n=1

In order to produce unique solution of (1) using Ey, we smooth out g/zS\ for the evolution of the dynamics.

If the trajectory data is not given, we will generate it using a Geometric Numerical Integrator, which is a fourth order
Backward Differentiation Formula (BDF) of fixed time step size h combined with a projection scheme. For details see
(Hairer et al., 2006). Once a reasonable evolution of the dynamics is obtained, we observeitat0 =t < ... <ty =Tto
obtain a set of trajectory data, and use it as training data to input to the learning algorithm. The observation times do not

need to be aligned with the numerical integration times, i.e. where numerical solution of {x"(t), &; (t)}fvnfv ! | is obtained

at {tlr}lL,/zl (except for t; = 0 and t;» = T'). When ¢; does not land on one of the numerical integration time points, a
continuous extension method is used to interpolate the numerical solution at ;.

C.1. Computational Complexity

The total computational cost for solving the learning problem is: M LN 24+ M Ld_?:L2 +n3 with M LN? for computing pairwise
distances M Ldn? for assembling Ay, and by, and n3 for solving Apr@ = bys. When choosing the optimal n = n, ~

(IOIgVIM) 7T &~ M3 (s = 1 for C"* functions) as per Thm. B.5, we have comp. time = MLN?+MLAM?3 +M = O(M%)

The computational bottleneck comes from the assembly of A,; and b v - However, since we can parallelize our learning

M
num. cores

approach in m, the updated computing time in the parallel regime is comp. time = O (( g). The total storage for

the algorithm is M L N d floating-point numbers for the trajectory data, albeit one does not need to hold all of the trajectory
data in memory. The algorithm can process the data from one trajectory at a time, requiring LN d. Once the linear system,
A& = by, is assembled, the algorithm just needs to hold roughly n? ﬂoatln% point numbers in memory. When we use the
optimal number of basis functions, i.e. n, = M3, the memory used is O(M3).

D. Numerical Experiments

We consider three prototypical first order dynamics, Opinion Dynamics (OD), Lennard-Jones Dynamics (LJD), and Predator-
Swarm dynamics (PS1), on two different manifolds, the 2D sphere (S? centered at the origin with radius %) and the Poincaré
disk (PD, unit disk centered at the origin, with the hyperbolic metric). The two prototypical manifolds are chosen because S?
and P are model spaces with constant positive and negative curvature, respectively. We conduct extensive experiments on
the aforementioned six different scenarios to demonstrate the performance of our learning approach for dynamics evolving
on manifolds. We report the results in terms of function estimation errors and trajectory estimation errors, and discuss in
detail the learning performance of the estimators.

The setup of the numerical experiments is as follows. We generate a set of M, different initial conditions, and evolve the
various dynamics of N agents for ¢ € [0, T'] using a Geometric Numerical Integrator with a uniform time step h (for details
see section C); then we observe each dynamics at equidistant times, i.e. 0 = ¢; < ... <t = T, to obtain a set of trajectory
data, {zI"(t;), mzn(tl)}fvl anl , to approximate the “true” probability distribution p% - From this set of pre-generated
trajectory data, we randomly choose a subset of M < M, of them to be used as training data for the learning simulation.
The hypothesis space where the estimator is learned is generated as a set of n first-degree clamped B-spline basis functions
built on a uniform partition of the learning interval [R°% | R ], with R% and R being the minimum and maximum

interaction radii computed from the training and trajectory data, respectively. Once an estimator, denoted as QAS is obtained,
we report the estimation error, ¢(-) - —¢(-)-, using

lo() - =) Il 2 (pppn)
16C) 22 (prp)

() - =0C) lret.L2 (o i) = ; (13)
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and the trajectory estimation error

m 2 Al (1), &7 (1))?
(X5 1, X o) = s N (14)

between, the true and estimated dynamics, evolved using ¢ or (,zAS with the same initial conditions for ¢ € [0, T respectively,
and observed at the same observation times 0 = ¢; < ... < t; = T, over both the training initial conditions and another set
of M randomly chosen initial conditions. Moreover, the above learning procedure is run 10 times independently in order to
generate empirical error bars. We will report the errors in the form of mean =+ std. Visual comparisons of ¢ versus a, and X
versus X will be shown, and discussions of learning results will be presented in each subsection.

Table 1 shows the values of the common parameters shared by all six experiments.

M, ‘ N ‘ L ‘ M ‘Nurn. of Learning Trials ‘ R on S? ‘ R on PD
3000 \ 20 \ 500 \ 500 \ 10 \ 5 \ 00

Table 1. Values of the parameters shared by the six experiments

Moreover, section A shows the details on how to calculate the geodesic direction and the Riemannian distance between any
two points on S? and PD. The distribution of the initial conditions, MO(MN ), is given as follows: uniform on M = S?;
whereas uniform on an open ball (centered at origin with radius r) for the PD case with o given as follows.

1 4 1
o= <2 + cosh(5) —1 \/cosh(5) " (cosh(b) — 1)2)/2'

This radius is used so that the maximum distance between any pair of agents on the Poincaré disk is 5. PS1 will have
different setup for the initial conditions, which will be discussed in section D.4.

D.1. Computing Platform

We use a computing workstation with an AMD Ryzen 9 3900X CPU (which has 12 computing cores), and available 128 GB
memory, running CentOS 7. All 6 experiments are ran in the MATLAB (R2020a) environment with parallel mode enabled
and a parallel pool of 12 workers. Such parallel mode is used in each experiment for the computation of pZ. > learning, and
trajectory error estimation. Detailed report of the running time for the experiments is provided in the result section of each
experiment.

D.2. Opinion Dynamics

We first choose opinion dynamics, which is used to model simple interactions of opinions (Aydogdu et al., 2017; Weisbuch
et al., 2003) as well as choreography (Caponigro et al., 2014). We consider the generalization of this dynamics to take place
on two different manifolds: the 2D sphere (S?) and the Poincaré disk (PD). We consider the interaction kernel

1, 0<r< % —0.01

ar1r® 4+ bir? + crr + dy, %—0.01§r<%
é(r) =4 0.1, % <r <0.99

asr3 + bar? 4+ cor +ds, 099<7r <1

0, otherwise

The parameters, i.e. (ai,as,by,bs,c1,c2,d1,ds), are chosen so that ¢ € C1([0,1]). Table 2 shows the values of the
parameters needed for the learning simulation.

ng | nmep | T | h
51| 69 | 10 | 0.01

Table 2. Test Parameters for OD.
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Results for the S? case: Fig. 1 shows the comparison between ¢ and its estimator $ learned from the trajectory data.

%10t | <10
A 3
01—
H2.5
0.08 -
2
0.06 -
1.5
0.04 -
1
0.02
0.5
0

1 1 1 1 1 1 1 1 1
0
0.5 1 15 2 2.5 3 3.5 4 4.5

r (pairwise distance)

Figure 1. (OD on S?) Comparison of ¢ and ;5, with the relative error being 1.894 - 107! +£3.1-107* (calculated using (13)). The true
interaction kernel is shown in L 2 black solid line, whereas the mean estimated interaction kernel is shown in a blue dashed line with its std

o~

interval, i.e. mean(¢) =+ std(¢), region shaded in red. Shown in the background is the comparison of the approximate pqL~7 m versus the

s LM
empirical pp7 -
)

As it is shown in Fig. 1, the estimator is able to capture the compact support of the ¢ from the trajectory data. Fig. 2 shows
the comparison of the trajectory data between the true dynamics and estimated dynamics.

) 1 _ ~ —x;(t), ] -
. - A ~ ) - _/J_\_:
g0 0 ;
g1 : 1
10 fpn 1.0 - _
O O _1 0 — _1 0 00 1 0 O 0 1 0
™ 1 ) x;(t) 1
STl - 1
10 _ 1.0 —
o —xi(t)
. 1 PSRN 09 .
g - == = -1 i
Q ,,,,,,777»7777777%"7_7” . = I """":—,,,,,,mwrhr R— - —
1.0 — 1.0
0.0 49 40 00 10 0.0 19 -1.0 0.0
Coord. 2 Coord. 1 Coord. 2 Coord. 1

Figure 2. (OD on S?) Comparison of X (generated by ¢) and X (generated by $), with the errors reported in table 3. Top: X and X
are generated from an initial condition taken from the training data. Middle: X and X are generated from a randomly chosen initial
condition. Bottom: X and X are generated from a new initial condition with bigger N = 40. The color of the trajectory indicates the
flow of time, from deep blue (at ¢ = 0) to light green (at ¢t = T").
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A quantitative comparison of the trajectory estimation errors is shown in Table 3.

[0.7]

meanyc: Training ICs 88-1072+1.7-10°
stdic: Training ICs 59-1024+1.5-10 °

meanic: Random ICs 9.0-1072+16-10°
stdic: Random ICs 6.0-1072+1.7-1073

Table 3. (OD on S?) trajectory estimation errors: Initial Conditions (ICs) used in the training set (first two rows), new ICs randomly drawn

from po (MN) (second set of two rows). meanjc and stdic are the mean and standard deviation of the trajectory errors calculated using
(14).

We also report the condition number and the smallest eigenvalue of the learning matrix A to indirectly verify the geometric
coercivity condition in table 4.

Condition Number || 1.8-10° +1.4-10*
Smallest Eigenvalue H 1.09-10774£9.0-10°

Table 4. (OD on S?) Information from the learning matrix A.

It took 1.41 - 10* seconds to generate p%’ aq and 4.76 - 10* seconds to run 10 learning simulations, with 1.44 - 103 seconds
spent on learning the estimated interactions (on average, it took 1.44-10% £ 3.1 seconds to run one estimation), and 4.61 - 10*

seconds spent on computing the trajectory error estimates (on average, it took 4.61 - 103 & 20.0 seconds to run one set of
trajectory error estimation).

Results for the PD case: Fig. 3 shows the comparison between the C'! version of ¢ and its estimator ¢? learned from the
trajectory data.

x10% < 15?.1
T y 7 . = )
0.1P— 6|,
1 Istd(&)
: oL
0.08 : Tu 25
\ pr
0.06 - 3 12
0.04 415
| 41
0.02 '.|
L\' D 0.5
0
| | | | | | | | O
0.5 1

1 1
15 2 25 3 3.5 4 4.5 5 5.5
r (pairwise distance)

Figure 3. (OD on PD) Comparison of ¢ and g/g, with the relative error being 2.114 - 107! £5.0- 10™* (calculated using (13)). The true
interaction kernel is shown in a black solid line, whereas the mean estimated interaction kernel is shown in a blue dashed line with its std

interval, i.e. mean(cg) + std(a), region shaded in red. Shown in the background is the comparison of the approximate p%y m versus the
empirical p:ﬁ%

As it is shown in Fig. 3, the estimator is able to capture the compact support of the ¢ from the trajectory data. Fig. 4 shows
the comparison of the trajectory data between the true dynamics and estimated dynamics.
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Figure 4. (OD on PD ) Comparison of X (generated by ¢) and X (generated by $), with the errors reported in table 5. Top: X and X
are generated from an initial condition taken from the training data. Middle: X and X are generated from a randomly chosen initial
condition. Bottom: X and X are generated from a new initial condition with bigger N = 40. The color of the trajectory indicates the
flow of time, from deep blue (at ¢ = 0) to light green (att = 7).

As shown in Fig. 3, around r = % the estimator (E produces values bigger than that from ¢, leading to stronger influence,
hence the merging of cluster happening in the predicted trajectories in the second row of Fig. 4. As demonstrated by
the average prediction error on trajectories, this is a relatively rare event, occurring for only certain initial conditions. A
quantitative comparison of the trajectory estimation errors is shown in Table 5.

[0.7]

meanic: Training ICs 253-100T+£72-107°
stdic: Training ICs 1.90-107T+6.5-103

meanic: Random ICs 255-1071+9.7-1073
stdic: Random ICs 1.89-1071+59-1073

Table 5. (OD on PD ) trajectory estimation errors: Initial Conditions (ICs) used in the training set (first two rows), new ICs randomly
drawn from 1o (M™) (second set of two rows). meanyc and stdjc are the mean and standard deviation of the trajectory errors calculated
using (14).

We also report the condition number and the smallest eigenvalue of the learning matrix A to indirectly verify the geometric
coercivity condition in table 6.

Condition Number || 4.9-10° +1.5-10"
Smallest Eigenvalue || 5.3-107°+£1.2-107"

Table 6. (OD on PD ) Information from the learning matrix A.

It took 1.33 - 10* seconds to generate p:% q and 4.06 - 10* seconds to run 10 learning simulations, with 1.23 - 10® seconds
spent on learning the estimated interactions (on average, it took 1.23- 102 4-1.1 seconds to run one estimation), and 3.93 - 10*
seconds spent on computing the trajectory error estimates (on average, it took 3.93 - 10% 4 82.1 seconds to run one set of
trajectory error estimation).
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D.3. Lennard-Jones Dynamics

The second first-order model considered here is induced from a special energy functional, the so-called Lennard-Jones
energy potential. This first-order model, the Lennard-Jones Dynamics (LJD), is a simplified version of the second-order
dynamics used in molecular dynamics. The energy function, Uy, is given by

v =1((2)"- (2))

Here ¢ is the depth of the potential well, o is the distance when U is zero, and r is the distance between any pair of agents.
We set ¢ = 10 and 0 = 1. The corresponding interaction kernel ¢, derived from this potential, is

ot = B0 a5 (2 -2(2)")

We shall use a slightly modified version of ¢y :

PLi(1) — o15(1)/4, 0<r<i
Py (Dr? = o (D) + ¢ui(1), 3 <r<1

o(r) =< oui(r), 1<r<0.99R
asr® + bsr? + car + ds, 0.99Rp <7 < R
0, Ry <.

The parameters, (ag, bs, c3, d3), are chosen so that ¢ € C*([0, Raq]) when R < oo; otherwise ¢(r) = ¢py(r) forr > 1.
Table 7 shows the values of the parameters needed for the learning simulation.

Ng2 ‘ nep ‘ T ‘ h
51 [ 69 | 107° [ 10°°

Table 7. Test Parameters for LID.

Results for the S? case: Fig. 5 shows the comparison between ¢ and its estimator (E learned from the trajectory data.

x10* x10"
I I I
0 4 WWM‘WA,AM 3
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o \s p%]\[ 12
-0.06 " T
-0.08 / N <15
-0.1F
11
-0.12
-0.14 & -10.5
-0.16 | | | | | | | | | 0
0.5 1 1.5 2 2.5 3 3.5 4 4.5

r (pairwise distance)

Figure 5. (LJD on s$%) Comparison of ¢ and g/b\, with the relative error being 3.65 - 10724+ 2.7-10™* (calculated using (13)). The true

interaction kernel is shgwn ina Illack solid line, whereas the mean estimated interaction kernel is shown in a blue dashed line with its

std interval, i.e. mean(¢) = std(¢), region shaded in red. Shown in the background is the comparison of the approximate p% versus the
- L,M

empirical p;’
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Fig. 6 shows the comparison of the trajectory data between the true dynamics and estimated dynamics.
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Figure 6. (LJD on S?) Comparison of X (generated by ¢) and X (generated by a), with the errors reported in table 8. Top: X and X
are generated from an initial condition taken from the training data. Middle: X and X are generated from a randomly chosen initial
condition. Bottom: X and X are generated from a new initial condition with bigger N = 40. The color of the trajectory indicates the
flow of time, from deep blue (at t = 0) to light green (att = T').

A quantitative comparison of the trajectory estimation errors is shown in Table 8.

[0.7]

meanyc: Training ICs 288-107°+£25-107°
stdic: Training ICs 6.1-10 7+1.8-10°

meanic: Random ICs || 2.88-10"3+3.2-107°
stdic: Random ICs 6.0-1007+1.8-107°

Table 8. (LID on S?) trajectory estimation errors: Initial Conditions (ICs) used in the training set (first two rows), new ICs randomly
drawn from pu0(M™) (second set of two rows). The trajectory estimation errors is calculated using (13).

We also report the condition number and the smallest eigenvalue of the learning matrix A to indirectly verify the geometric
coercivity condition in table 9.

Condition Number || 6-10° £1.5-10°
Smallest Eigenvalue || 2.4-107°+6.2-10°

Table 9. (LID on S?) Information from the learning matrix A.

It took 2.43 - 10* seconds to generate p% pmand 7.14 - 10* seconds to run 10 learning simulations, with 1.72 - 10® seconds
spent on learning the estimated interactions (on average, it took 1.72- 102 4-2.5 seconds to run one estimation), and 6.96 - 10*
seconds spent on computing the trajectory error estimates (on average, it took 6.96 - 10® 4+ 35.9 seconds to run one set of
trajectory error estimation).

Results for the PD case: Fig. 7 shows the comparison between ¢ and its estimator (Z learned from the trajectory data.
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Figure 7. (LJD on PD ) Comparison of ¢ and $, with the relative error being 2.52 - 1072+ 3.6 - 10~* (calculated using (13)). The true
interaction kernel is shgwn ina lllack solid line, whereas the mean estimated interaction kernel is shown in a blue dashed line with its

std interval, i.e. mean(¢) = std(¢), region shaded in red. Shown in the background is the comparison of the approximate p% versus the
empirical p;’

Fig. 8 shows the comparison of the trajectory data between the true dynamics and estimated dynamics.
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Figure 8. (LJD on PD ) Comparison of X (generated by ¢) and X (generated by $), with the errors reported in table 10. Top: X and X
are generated from an initial condition taken from the training data. Middle: X and X are generated from a randomly chosen initial
condition. Bottom: X and X are generated from a new initial condition with bigger N = 40. The color of the trajectory indicates the
flow of time, from deep blue (at ¢ = 0) to light green (at ¢t = T").

A quantitative comparison of the trajectory estimation errors is shown in Table 10.



Learning Interaction Kernels for Agent Systems on Riemannian Manifolds

[0,T]

meanc: Training ICs || 2.27-10 °+4.0-10"°
stdic: Training ICs 5.6-10 14+ 1.7-10 °

meanyc: Random ICs || 2.28 - 107> £3.8-107°
stdic: Random ICs 5.6-10 7+ 1.6-10 °

Table 10. (LJD on PD ) trajectory estimation errors: Initial Conditions (ICs) used in the training set (first two rows), new ICs randomly
drawn from ,uo(/\/lN ) (second set of two rows). meanic and stdc are the mean and standard deviation of the trajectory errors calculated
using (14).

We also report the condition number and the smallest eigenvalue of the learning matrix A to indirectly verify the geometric
coercivity condition in table 11.

Condition Number || 6-10°+1.9-10°
Smallest Eigenvalue || 1.7-107°£6.6- 10"

Table 11. (LD on PD ) Information from the learning matrix A.

It took 1.51 - 10* seconds to generate p% am and 6.23 - 10* seconds to run 10 learning simulations, with 1.20 - 103 seconds
spent on learning the estimated interactions (on average, it took 1.20- 102 £ 9.4 seconds to run one estimation), and 6.10- 10*
seconds spent on computing the trajectory error estimates (on average, it took 6 - 103 4 1.3 - 103 seconds to run one set of
trajectory error estimation).

D.4. Predator-Swarm Dynamics

The third first-order model considered here is a heterogeneous agent system, which is used to model interactions between
multiple types of animals (Chen & Kolokolnikov, 2013; Olson et al., 2016) or agents (need ref.). The learning theory
presented in this work is described for homogeneous agent systems, but the theory and the corresponding algorithms extend
naturally to heterogeneous agent systems in a manner analogous to (Lu et al., 2019a; Miller et al., 2020).

We consider here a system of a single predator versus a group of preys, namely the Predator-Swarm Dynamics (PS1),
discussed in (Chen & Kolokolnikov, 2013). The preys are in type 1, and the single predator is in type 2. We have multiple
interaction kernels, depending on the types of agents in each interacting pair: ¢/ defines the influence of agents in type &’
on agents in type k, for k, k" = 1, 2. The interaction Kernels are given as follows.

N

=(r—0.01)+ (1 - 54z) 0<r<0.01

ol

0
() =d 17 0.01 < 7 < 0.99R
R aiard +biar? +caar+dig, 0.99RMm <71 < Ry
0, Ryp<r

The parameters, (a1,1,b1,1,¢1.1,d1,1), are chosen so that ¢11(r) € C1([0, Rap]) when Ry < oo; otherwise ¢q1(r) =
1-— 7% for r > 0.01;

o.§13 (r —0.01) + 502 0<r<0.01
bra(r) = T 0.01 < 7 < 0.99R 4
U0 a1 0m3 4 byar? + cior +dia, 0.99RpM <7 < Ray
Oa RM S r

The parameters, (a1,2,b1,2, 1,2, d1,2), are chosen so that ¢12(r) € C*([0, Ryq]) when Raq < oo; otherwise ¢12(r) = =
forr > 0.01;

gt (r = 0.01) + 53%) 0<r<001
() =4 0.01 < r < 0.99R s
U= a0 1r3 4 bayar? + conr +dag, 0.99Ru <7 < R
07 RM S T

The parameters, (a2 1, b2.1, 2,1, d2.1), are chosen so that ¢o; (r) € C*([0, Raq]) when Ryq < oo; otherwise g1 (r) = =
for r > 0.01; then ¢ = 0, since there is only one predator. We set T' = 0.5 and h = 10~ for the two P.S1 models.
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Results for the S? case: In order to produce more interesting interactions, we choose the distribution of the initial condition
to be as follows. The setting will start from R? first. The position of the predator is randomly chosen uniformly within a
circular disk of radius 0.1 centered at the origin of R?. The remaining N — 1 agents will be prey and chosen uniformly
at random within an annulus of radii 0.3 and 0.8, centered at the origin. Then these positions will mapped through a
stereographic projection (where the origin of R? is the south pole of S?) back to S2. When back on S?, the position of the
predator is moved via parallel transport to a random location on S?, and the rest of the preys are moved using the same map,
so that the relative position between each pair of agents is not changed.

Table 12 shows the number of basis functions, namely ny’s, for each estimator ggkk/ for k, k' = 1,2, and their corresponding
degrees, pi x/’s, for the Clamped B-spline basis.

ni1 | N12 | N21 | N2
50 37 37 1

P11 | P12 | P21 | P22
1 1 1 0

Table 12. (PS1 on S? ) Number of basis functions.

Fig. 11 shows the comparison between ¢/ and its estimators g/b\kk/ learned from the trajectory data.
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Figure 9. (PS1 on S?) Comparison of ¢/ and q§k 1/, with the relative errors shown in table 17. The true interaction kernels are shown in
black solid lines, whereas the mean estimated interaction kernel are shown in blue dashed lines with their corresponding std interval,

ie. mean((gk == std($k %’ ), regions shaded in red. Shown in the background is the comparison of the approximate pé’kk/ versus the

s L,M,kk’ . L,12, L,M,12 L,12, L,M,21 N
empirical p77™"" . Notice that p7>"“/p77™ " and p;’"“/p77""" are the same distributions.

Erry y \ Erry 2 \ Erra 1 | Errz2
2.98-107 " +5.9-107° [ 84-107°£3.0-10"" [ 25-107°£1.6-107° | 0

Table 13. (PS1 on S? ) Relative estimation errors calculated using (13).

Fig. 10 shows the comparison of the trajectory data between the true dynamics and estimated dynamics.
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Figure 10. (PS1 on S? ) Comparison of X (generated by ¢k k’s) and X (generated by (;AS;C x’s), with the errors reported in table 14. Top:
X and X are generated from an initial condition taken from the training data. Middle: X and X are generated from a randomly chosen
initial condition. Bottom: X and X are generated from a new initial condition with bigger N = 40. The color of the trajectory indicates
the flow of time, from deep blue/bright red (at t = 0) to light green/light yellow (at ¢ = T"). The blue/green combination is assigned to the
preys; whereas the red/yellow comb for the predator.

A quantitative comparison of the trajectory estimation errors is shown in Table 18.

[0.7]

meanyc: Training ICs 2.36-1072+9.8-10" %
stdic: Training ICs 1.9-1002+15-10" ¢

meanyc: Random ICs || 2.40-1072£8.1-107*
stdic: Random ICs 23.107°+6.1-10"°

Table 14. (PS1 on S?) trajectory estimation errors: Initial Conditions (ICs) used in the training set (first two rows), new ICs randomly
drawn from ,uo(/\/lN ) (second set of two rows). mean;c and stdc are the mean and standard deviation of the trajectory errors calculated
using (14).

We also report the condition number and the smallest eigenvalue of the learning matrix A to indirectly verify the geometric
coercivity condition in table 19.

Condition Number for A, 2.2-107 £1.8-10°
Smallest Eigenvalue for A; 1.28.10°%5+85-10" 1
Condition Number for A, 2.9-10° £2.2-10°
Smallest Eigenvalue for A; 9-107 " £57-10 "

Table 15. (PS1 on S? ) Information from the learning matrix Ay’s.

The matrix A; is used to obtain the estimators, 517 1 and QASLQ; whereas A, is used to obtain &52_’1 and &5\272. Since there
is one single predator, we set ;5272 to zero. It took 9.77 - 10* seconds to generate pan, am and 4.01 - 10° seconds to run 10
learning simulations, with 1.66 - 10® seconds spent on learning the estimated interactions (on average, it took 1.66 - 10% & 4.6
seconds to run one estimation), and 4.05 - 10° seconds spent on computing the trajectory error estimates (on average, it took
4.0 -10* £ 7.1 - 102 seconds to run one set of trajectory error estimation).
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Results for the PD case: In order to produce more interesting interactions, we choose the distribution of the initial condition
to be as follows: the predator is randomly placed in a circle centered at the origin with radius r1, given as follows

1 4 1
o= (2 i cosh(0.5) —1 \/cosh(O.S) -1 * (cosh(0.5) — 1)2>/27

so that the agents are at most 0.5 distance away from each other; then the group of preys (Swarm) will be randomly and
uniformly placed on an annulus centered at the origin with radii,( Ry, 71 ), given as follows

1 4 1
e (2 + cosh(1) =1 \/cosh(l) -1 + (cosh(1) — 1)2)/2

1 4 1
= (2 * cosh(2) —1 \/cosh(Q) " (cosh(2) — 1)2>/2;

so that the group of preys are surrounding the single predator. Table 16 shows the number of basis functions, namely ngy’s,
for each estimator ¢y for k, k' = 1,2, and their corresponding degrees, py x’s, for the Clamped B-spline basis.

and

ni,1 ni,2 n21 n2, 2
68 43 43 1
P11 P1,2 P21 P2,2
1 1 1 0

Table 16. (PS1 on PD ) Number of basis functions.

Fig. 11 shows the comparison between ¢/ and its estimators <$kk/ learned from the trajectory data.
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Figure 11. (PS1 on PD ) Comparison of ¢ and q§k x’» with the relative errors shown in table 17. The true interaction kernels are shown
in black solid lines, whereas the mean estimated interaction kernel are shown in blue dashed lines with their corresponding std interval,
~ o~ ’

i.e. mean(¢yys ) & std(¢r ), regions shaded in red. Shown in the background is the comparison of the approximate pqLJkk versus the

L L,M,kk’ . L,12, L,M,12 L,12, L,M,21 T
empirical p;’ . Notice that p>"“/pr. and p7’“/p7. are the same distributions.

Err1,1 \ Erry 2 \ Erra,1 | Erra 2
9.0-107°+£26-107° [ 1.34-10 °+£8.8-107" | 3.6-10 *+£24-10°" | 0

Table 17. (PS1 on PD ) Relative estimation errors calculated using (13).
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Fig. 12 shows the comparison of the trajectory data between the true dynamics and estimated dynamics.
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Figure 12. (PS1 on PD ) Comparison of X (generated by ¢y, x/’s) and X (generated by $k k'), with the errors reported in table 18. Top:
X and X are generated from an initial condition taken from the training data. Middle: X and X are generated from a randomly chosen
initial condition. Bottom: X and X are generated from a new initial condition with bigger N = 40. The color of the trajectory indicates
the flow of time, from deep blue/bright red (at ¢ = 0) to light green/light yellow (at ¢ = T'). The blue/green combination is assigned to the
preys; whereas the red/yellow comb for the predator.

A quantitative comparison of the trajectory estimation errors is shown in Table 18.

[0, T

meanyc: Training ICs || 4.8-10 °+1.2-10 ¢
stdic: Training ICs 23.10°+£3.0-10 ¢

meanc: Random ICs || 4.8 1072 +1.2-10 2
stdic: Random ICs 25-1075+£3.9-1073

Table 18. (PS1 on PD ) trajectory estimation errors: Initial Conditions (ICs) used in the training set (first two rows), new ICs randomly
drawn from ,u,o(./\/lN ) (second set of two rows). meanic and stdic are the mean and standard deviation of the trajectory errors calculated
using (14).

We also report the condition number and the smallest eigenvalue of the learning matrix A to indirectly verify the geometric
coercivity condition in table 19.

Condition Number for A; 2.3-107 £4.7-10°
Smallest Eigenvalue for A; || 7-10 T +1.7-10"
Condition Number for As 5-10° £3.1-10°
Smallest Eigenvalue for A 4.108+£29-10°°

Table 19. (PS1 on PD ) Information from the learning matrix Ay,’s.

The matrix A; is used to obtain the estimators, 517 1 and QASLQ; whereas A, is used to obtain &52_’1 and &5\272. Since there
is one single predator, we set ;5272 to zero. It took 7.37 - 10* seconds to generate pan, am and 2.49 - 10° seconds to run 10
learning simulations, with 1.25 - 10® seconds spent on learning the estimated interactions (on average, it took 1.25-10% £ 1.5
seconds to run one estimation), and 2.48 - 10° seconds spent on computing the trajectory error estimates (on average, it took
2.48 - 10* £ 2.3 - 102 seconds to run one set of trajectory error estimation).
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