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Abstract
Interacting agent and particle systems are exten-
sively used to model complex phenomena in sci-
ence and engineering. We consider the problem
of learning interaction kernels in these dynam-
ical systems constrained to evolve on Rieman-
nian manifolds from given trajectory data. The
models we consider are based on interaction ker-
nels depending on pairwise Riemannian distances
between agents, with agents interacting locally
along the direction of the shortest geodesic con-
necting them. We show that our estimators con-
verge at a rate that is independent of the dimension
of the state space, and derive bounds on the trajec-
tory estimation error, on the manifold, between
the observed and estimated dynamics. We demon-
strate the performance of our estimator on two
classical first order interacting systems: Opinion
Dynamics and a Predator-Swarm system, with
each system constrained on two prototypical man-
ifolds, the 2-dimensional sphere and the Poincaré
disk model of hyperbolic space.

1. Introduction
Dynamical systems of interacting agents, where “agents”
may represent atoms, particles, neurons, cells, animals,
people, robots, planets, etc..., are an important modeling
tool in many disciplines, including Physics, Biology, Chem-
istry, Economics and Social Sciences. It is a fundamental
challenge to learn the governing equations of these sys-
tems. Often, agents are either associated with state variables
which belong to non-Euclidean spaces, e.g., phase variables
considered in various Kuramoto models (Kuramoto, 1975;
Strogatz, 2000), or constrained to move on non-Euclidean
spaces, for example (Ahn et al., 2020). This has motivated
a growing body of research considering interacting agent
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systems on various manifolds (Lee et al., 2018; Caponigro
et al., 2014; Sarlette & Sepulchre, 2008), including opinion
dynamics (Aydoğdu et al., 2017), flocking models (Ahn
et al., 2020) and a classical aggregation model (C. Fetecau
& Zhang, 2019). Further recent approaches for interacting
agents on manifolds include (Yang et al., 2020; Soize &
Ghanem, 2020).

In this work, we offer a nonparametric and inverse-problem-
based learning approach to infer the governing structure of
interacting agent dynamics, in the form of Ẋt = f(Xt),
constrained on Riemannian manifolds, from observations of
trajectories. Our method is different from others introduced
to learn ODEs/PDEs from observations, that aim to infer f
directly, and would be cursed by the high-dimension of the
state space of X (Lu et al., 2019b). Instead, we exploit the
form of the function f , special to the class of interacting
agent systems under consideration, which is determined by
an interaction kernel function φ of one variable only, and
learn φ, with minimal assumptions on φ. By exploiting
invariance of the equations under permutation of the agents
as well as the radial symmetry of φ, we are able to avoid
the curse of dimensionality. We also demonstrate how our
approach can perform transfer learning in section 5.

The research on inferring a suitable dynamical system of
interacting agents from observation data has been a long-
standing problem in science and engineering; see (Lukeman
et al., 2010; Katz et al., 2011; Cui et al., 2014; Tran & Ward,
2017) and references therein. Many recent approaches in
machine learning have been developed for inferring general
dynamical systems, including multistep methods (Keller &
Du, 2019), optimization (Wróbel et al., 2013), sparse re-
gression (Brunton et al., 2016; Rudy et al., 2017; Schaeffer
et al., 2013), Bayesian regression (Zhang & Lin, 2018), and
deep learning (Raissi et al., 2018; Rudy et al., 2019). In a
different direction, the generalization of traditional machine
learning algorithms in Euclidean settings to Riemannian
manifolds, and the development of new algorithms designed
to work on Riemannian manifolds, has been attracting in-
creased attention; for example in variational calculus (Soize
& Ghanem, 2020), reinforcement learning (Riccio et al.,
2018), deep learning (Chen et al., 2020) and theoretical CS
(Monte-Alto et al., 2020).

Let (M, g) be a connected, smooth, and geodesically-
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complete d-dimensional Riemannian manifold, with the
Riemannian distance denoted by dM. Consider N interact-
ing agents, each represented by a state vector xi(t) ∈ M.
Their dynamics is governed by the following first order
dynamical system, where φ, the interaction kernel, is the
object of our inference: for each i = 1, . . . , N ,

ẋi(t) =
1

N

N∑
i′=1

φ(dM(xi(t),xi′(t)))w(xi(t),xi′(t))

(1)
and t ∈ [0, T ]. Here w(z1, z2), for z1, z2 ∈ M, is a
weight vector pointing in the tangent direction at z1 to the
shortest geodesic from z1 to z2. For this to make sense, we
restrict our attention to local interactions, e.g. by assuming
that φ is compactly supported in a sufficiently small interval
[0, R], so that length-minimizing geodesics exist uniquely.
We discuss the well-posedness of this model in greater detail
in section 2.1, where we emphasize that this model is derived
naturally as a gradient system with a special potential energy
depending on pairwise Riemannian distances.

With (M, g) known to us, our observations consist of
{xmi (tl), ẋ

m
i (tl)}N,L,Mi,l,m=1 with 0 = t1 < · · · < tL = T ,

L being the number of observations made in time, M being
the number of trajectories, and each (xmi (0))Ni=1 ∈ MN

is drawn i.i.d from a probability measure µ0(MN ). We
construct an estimator φ̂L,M,H of φ, close to φ in an appro-
priate L2 sense, and generating a system in the form (1)
with trajectories close to those of the original system (with
the same initial condition); it is defined as

φ̂L,M,H = argmin
ϕ∈H

EL,M,M(ϕ).

HereH is a function space containing suitable approxima-
tions to φ and EL,M,M is a least squares loss functional built
from the trajectory data, which takes into account the geom-
etry of (M, g). Having established a geometry-dependent
coercivity condition that ensures, among other things, the
recoverability of φ, our theory shows that the convergence
rate (in M ) of our estimator to the true interaction kernel is
independent of the dimension Nd of the observation data,
and is the same as the minimax rate for 1-dimensional non-
parametric regression:

E
[ ∥∥∥φ̂L,M,H(·) · −φ(·)·

∥∥∥
L2(ρLT,M)

]
.

(
logM

M

) 1
3

.

where the expectation is with respect to the initial condition
distributed as described above, φ is assumed to be 1-time
differentiable, ρLT,M is a dynamics-adapted probability mea-
sure which captures the distribution of pairwise Riemannian
distances, and the implicit constant depends onM.

We also establish bounds on trajectory predictions: let
X̂ [0,T ],X [0,T ] be trajectories evolved with the interaction

kernels φ̂L,M,H and φ respectively, started at the same initial
condition, then:

E
[
dtrj(X [0,T ], X̂ [0,T ])

2
]
.
∥∥∥φ(·) · −φ̂L,M,H(·)·

∥∥∥2
L2(ρT,M)

,

where dtrj is a natural geometry-based distance on trajec-
tories. As M grows, the norm on the right hand side con-
verges at the rate above, yielding convergence of the trajec-
tories. We demonstrate the performance of our estimators
on an opinion dynamics and a predator-swarm model, each
constrained on two model manifolds: the two-dimensional
sphere S2 and the Poincaré disk.

2. Model Equations
In this section we introduce the governing equations which
we use to model interacting agents constrained on Rieman-
nian manifolds, and discuss the properties of the dynamics.
Table 1 shows a list of definitions of the common terms used
throughout this paper.

Variable Definition
(M, g) Riemannian Manifold with metric g
TxM Tangent plane toM at x
〈·, ·〉g(x), 〈·, ·〉g Inner product on TxM
‖v‖TxM, ‖v‖g Length of v ∈ TxM induced by g(x)

dM(·, ·) Geodesic distance induced by g

Table 1. Notation for first-order models.

2.1. Main model

In order to motivate the choice of the model equations we
use, we begin with a geometric gradient flow model of an in-
teracting agent system. Consider a system of N interacting
agents, with each agent described by a state vector xi(t) on
a d-dimensional connected, smooth, and geodesically com-
plete Riemannian manifoldM with metric g. The change
of the state vectors seeks to decrease a system energy E:

dxi(t)

dt
= −∂xiE(x1(t), . . . ,xN (t)), i = 1, . . . , N.

Our first key assumption is that E takes the special form

E(x1(t), . . . ,xN (t)) =
1

N

N∑
i′=1

U(dM(xi(t),xi′(t))
2),

for some U : R+ → R with U(0) = 0, and dM(·, ·) the
geodesic distance on (M, g). Simplifying, and omitting
from the notation the dependency on t of ẋi and xi, we
obtain the first-order geometric evolution equation,

ẋi =
1

N

N∑
i′=1

φ(dM(xi,xi′))w(xi,xi′), (2)

for i = 1, . . . , N . We call φ(r) := 2U ′(r2) the interaction
kernel. We have let w(z1, z2) := dM(z1, z2)v(z1, z2) for



Learning Interaction Kernels for Agent Systems on Riemannian Manifolds

z1, z2 ∈ M, with v(z1, z2) being, for z2 6= z1, the unit
vector (i.e. ‖v‖Tz1

M = 1) tangent at z1 to the minimizing
geodesic from z1 to z2 if z2 is not in the cut locus of z1,
and equal to 0 otherwise. In order to guarantee existence
and uniqueness of a solution for (2) over the time interval
[0, T ], we make a further assumption that φ belongs to

KR,S := {ϕ ∈ C1([0, R])
∣∣∣ ‖ϕ‖L∞ + ‖ϕ′‖L∞ ≤ S},

for some constant S > 0. Here, R is smaller than the global
injectivity radius ofM, and L∞ = L∞([0, R]). With this
assumption, the possible discountinuity of v(z1, z2) due to
either z2 → z1 or z2 tends to a point in the cut locus of
z1 is canceled by the multiplication by dM(z1, z2)→ 0 in
the former case, and φ(dM(z1, z2))→ 0 in the latter case.
Therefore, the ODE system in (2) has a Lipschitz right-hand
side, and thus it has a unique solution existing for t ∈ [0, T ]
see (Hairer et al., 2006).

Using this geometric gradient flow point of view, the form
of the equations and the radial symmetry of the interaction
kernels are naturally pre-determined by the energy poten-
tial. This approach seems to us natural and geometric; for
different approaches see (Aydoğdu et al., 2017; Caponi-
gro et al., 2014). Note that in the case ofM = Rd with
the Euclidean metric, we have dM(xi,xi′) = ‖xi′ − xi‖
and v(xi,xi′) =

xi′−xi

‖xi′−xi‖ , and we recover the Euclidean
space models used in (Bongini et al., 2017; Lu et al., 2019b)
and the many works referenced therein. Moreover, our
learning method still applies to models with different def-
initions of the weight vector, e.g. w(xi,xi′), as long as
w(xi,xi′) ∈ Txi

M.

3. Learning Framework
We are given a set of trajectory data of the form
{xmi (tl), ẋ

m
i (tl)}N,L,Mi,l,m=1, for 0 = t1 < . . . < tL = T ,

with the initial conditions {xmi (0)}Ni=1 being i.i.d from a
distribution µ0(M). The objective is to construct an estima-
tor φ̂L,M,H of the interaction kernel φ.

Before we describe the construction of our estimator, we
introduce some vectorized notations. We let, in MN :=
M× · · · ×M,

Xm
tl

:=


...

xmi (tl)
...

 and X :=


...
xi
...

 ,
where (MN , gNM) is the canonical product of Riemannian
manifolds with product Riemannian metric given by,

〈
...
ui
...

 ,


...
zi
...


〉
gNM(X)

:=
1

N

N∑
i=1

〈ui, zi〉g(xi),

for ui, zi ∈ Txi
M. The initial conditions, Xm

0 are drawn
i.i.d. from µ0(MN ). Finally, fφ is the vector field onMN

(i.e. fφ(X) ∈ TXMN for X ∈MN ), given by

fφ(X
m
tl
) :=


...

1
N

∑N
i′=1 φ(dM(xmi (tl),x

m
i′ (tl)))w(xmi (tl),x

m
i′ (tl))

...

 ,
The system of equations (2) can then be rewritten, for each
m = 1, . . . ,M , as Ẋ

m

t = fφ(X
m
t ).

3.1. Geometric Loss Functionals

In order to simplify the presentation, we assume that the
observation times, i.e. {tl}Ll=1, are equispaced in [0, T ] (the
general case is similar). We begin with the definition of the
hypothesis spaceH, over which we shall minimize an error
functional to obtain an estimator of φ.

Definition 3.1. An admissible hypothesis spaceH is a com-
pact (in L∞-norm) and convex subset of L2([0, R]), such
that every ϕ ∈ H is bounded above by some constant
S0 ≥ S, i.e. ‖ϕ‖L∞([0,R]) ≤ S0; moreover ϕ is smooth
enough to ensure the existence and uniqueness of solutions
of (2) for t ∈ [0, T ], i.e. ϕ ∈ H ∩ KR,S0

.

For a function ϕ ∈ H, we define the loss functional

EL,M,M(ϕ) :=
1

ML

L,M∑
l,m=1

∥∥∥Ẋm

tl
− fϕ(X

m
tl
)
∥∥∥2
g
, (3)

where the norm ‖·‖g in TXm
tl
MN can be written as∥∥∥Ẋm

tl
− fϕ(X

m
tl
)
∥∥∥2
g
=

1

N

N∑
i=1

∥∥∥∥∥ẋmi,tl − 1

N

N∑
i′=1

ϕ(rmii′,tl)w
m
ii′,tl

∥∥∥∥∥
2

Txm
i

(tl)
M

,

with ẋmi,tl := ẋmi (tl), rmii′,tl := dM(xmi (tl),x
m
i′ (tl)), and

wm
ii′,tl

:= w(xmi (tl),x
m
i′ (tl)). This loss functional is non-

negative, and reaches 0 when ϕ is equal to the (true) inter-
action kernel φ if φ ∈ H ∩ KR,S . Given thatH is compact
and convex and EL,M,M is continuous onH, the minimizer
of EL,M,M exists and is unique. We define it to be our
estimator:

φ̂L,M,H := argmin
ϕ∈H

EL,M,M(ϕ) .

As M →∞, since each trajectory has i.i.d. ICs, by the law
of large numbers, we have EL,M,M → EL,∞,M, with

EL,∞,M(ϕ) :=
1

L

L∑
l=1

EX0∼µ0(MN )

[ ∥∥∥Ẋtl − fϕ(Xtl)
∥∥∥2
g

]
.

(4)
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Since EL,∞,M is continuous on H, the minimization of
EL,∞,M overH is well-posed and it has a unique minimizer
φ̂L,∞,H := argminϕ∈HEL,∞,M(ϕ). Much of our theoreti-
cal work establishes the relationship between the estimator
φ̂L,M,H, the closely related (in the infinite sample limit
M →∞) φ̂L,∞,H, and the true interaction kernel φ.

3.2. Performance Measures

We introduce a suitable normed function space in which to
compare the estimator φ̂L,M,H with the true interaction ker-
nel φ. We also measure performance in terms of trajectory
estimation error based on a distance between trajectories
generated from the true dynamics (evolved using φ with
some initial condition X0 ∼ µ0(MN )) and the estimated
dynamics (evolved using the estimated interaction kernel
φ̂L,M,H, and with the same initial condition, i.e. X0).

3.2.1. ESTIMATION ERROR

First we introduce a probability measure ρT,M on R+, that
is used to define a norm to measure the error of the estimator,
derived from the loss functionals (given by (3) and (4)),
that reflects the distribution of pairwise data given by the
dynamics as well as the geometry of the manifoldM:

ρT,M(r) :=
1(
N
2

)E[ 1
T

∫ T

0

∑
i,i′

δdM(xi(t),xi′ (t))
(r) dt

]
,

where δ is the Dirac measure. Note that E is w.r.t X0 ∼
µ0(MN ). In words, this measure is obtained by averaging
δ-functions having mass at any pairwise distances in any
trajectory, over all initial conditions drawn from µ0(MN ),
over all pairs of agents and all times. A time-discretized
version is given by:

ρLT,M(r) :=
1

L
(
N
2

)E[ L∑
l=1

∑
1≤i<i′≤N

δdM(xi(tl),xi′ (tl))
(r)
]
.

Note that E is w.r.t X0 ∼ µ0(MN ). The two probability
measures defined above appear naturally in the proofs for
the convergence rate of the estimator. From observational
data we compute the empirical version:

ρL,MT,M(r) :=
1

ML
(
N
2

) L,M∑
l,m=1

∑
1≤i<i′≤N

δdM(xi(tl),xi′ (tl))
(r).

The geometry ofM is incorporated in these three measures
by the presence of geodesic distances. The norm

‖ϕ(·)·‖2L2(ρT,M) :=

∫ ∞
r=0

∣∣ϕ(r)r∣∣2 dρT,M(r)

is used to define the estimation error:
||φ̂L,M,H(·) · −φ(·)·||L2(ρT,M). We also use a rela-
tive version of this error, to enable a meaningful comparison

across different interaction kernels:

‖ϕ(·) · −φ(·)·‖Rel.L2(ρT,M):=
‖ϕ(·) · −φ(·)·‖L2(ρT,M)

‖φ(·)·‖L2(ρT,M)

.

(5)

3.2.2. TRAJECTORY ESTIMATION ERROR

Let Xm
[0,T ] := (Xm

t )t∈[0,T ] be the trajectory generated by
the mth initial condition, Xm

0 . The trajectory estimation
error between Xm

[0,T ] and X̂
m

[0,T ], evolved using, the un-
known interaction kernel φ and, respectively, the estimated
one, φ̂, with the same initial condition, is given by

dtrj(X
m
[0,T ], X̂

m

[0,T ])
2 := sup

t∈[0,T ]

∑
i dM(xmi (t), x̂mi (t))2

N
. (6)

This quantity is random with the initial conditions, hence we
report the mean and standard deviation of these trajectory
errors over a (large) number of initial conditions sampled
i.i.d. from µ0(MN ); and the errors are denoted as meanIC
and stdIC respectively.

3.3. Algorithm and Computational Complexity

Algorithm1 1 shows the detailed steps on how to construct
the estimator to φ given the observation data. We emphasize
that our estimator, and the learning theory we develop, do
not dependent on a particular choice of basis. In our exam-
ples we choose Clamped B-splines due to their regularity
and approximation-theoretic properties.

Assuming a finite dimensional subspace of H, i.e. HM ⊂
H with dim(HM ) = n(M), we are able to re-write the
minimization problem of (3) over HM as a linear system,
i.e. AM~α = ~bM with AM ∈ Rn×n and ~bM ∈ Rn×1; for
details, see the Sec. C.1. in SI. Moreover, this linear system
is well conditioned, ensured by the geometric coercivity
condition.

The total computational cost for solving the learning
problem is of O(M 5

3 ) when the optimal n = n∗ ≈
( M
logM )

1
2s+1 ≈ M

1
3 (s = 1 for C1 functions) as per Thm.

4.2 is used. The computational bottleneck comes from the
assembly ofAM and~bM . However, since we can parallelize
our learning approach in m, the updated computing time in
the parallel regime is comp. time = O(( M

num. cores )
5/3).

1Implementation of the algorithm can be found on https://
github.com/MingZhongCodes/LearningDynamics,
which also includes code to reproduce the results presented here.

https://github.com/MingZhongCodes/LearningDynamics
https://github.com/MingZhongCodes/LearningDynamics
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Algorithm 1 Learning Algorithm

Input: data {xmi (tl), ẋ
m
i (tl)}N,L,Mi,l,m=1

Compute Robs
{min,max} = {min,max}i,i′,l,mdM(xmi (tl),x

m
i′ (tl))

Choose a type of basis functions, e.g., clamped B-spline
Construct basis ofHM , e.g. {ψη}nη=1, on the uniform partition
of [Robs

min, R
obs
max]

Choose either a local chart U :M→ Rd or a natural embed-
ding I :M→ Rd

′

Construct Ψm ∈ (TXm
t1
MN × · · · × TXm

tL
MN )n and ~dm ∈

TXm
t1
MN × · · · × TXm

tL
MN :

Ψm(:, η) := Ψm
η =

1√
N

fφ(Xm
t1)

...
fφ(Xm

tL)

 , ~dm :=
1√
N

Ẋ
m
t1
...

Ẋ
m
tL


Define 〈·, ·〉G on Ψm

η ∈ TXm
t1
MN × · · · × TXm

tL
MN as

〈Ψm
η ,Ψ

m
η′〉G =

∑L
l=1〈fφ(Xm

tl ),fφ(Xm
tl )〉

gMN
(Xm

l
)

Assemble AM (η, η′) = 1
LM

∑M
m=1〈Ψ

m
η ,Ψ

m
η′〉G ∈ Rn×n.

Assemble~bM (η) = 1
LM

∑M
m=1〈~d,Ψ

m
η 〉G ∈ Rn×1.

Solve AM~α = ~bM for ~̂α ∈ Rn.
Assemble φ̂ =

∑n
η=1 α̂ηψη .

4. Learning Theory
We present in this section the major results, including the
convergence of the estimator φ̂L,M,H to φ at the optimal
learning rate, and bounding the trajectory estimation error
between the true and estimated dynamics (evolved using
φ̂L,M,H), with corresponding proofs in Sec. B in the SI.

4.1. Learnability: geometric coercivity condition

We establish a geometry-adapted coercivity condition, ex-
tending that of (Bongini et al., 2017; Lu et al., 2019b) to the
Riemannian setting, which will guarantee the uniqueness
of the minimizer of EL,∞,M(ϕ), and show that EL,∞,M(ϕ)
controls the ‖·‖L2(ρT,M) distance between the minimizer
and the true interaction kernel.

Definition 4.1 (Geometric Coercivity condition). The geo-
metric evolution system in (2) with initial condition sampled
from µ0(MN ) onMN is said to satisfy the geometric co-
ercivity condition on the admissible hypothesis spaceH if
there exists a constant c ≡ cL,N,H,M > 0 such that for any
ϕ ∈ H with ϕ(·)· ∈ L2(ρLT,M) we have

c ‖ϕ(·)·‖2L2(ρLT,M) ≤
1

L

L∑
l=1

E
[ ∥∥fϕ(Xtl)

∥∥2
TXtl

MN

]
.

Here and in what follows, E is taken, as usual, w.r.t X0 ∼
µ0(MN ); unless otherwise indicated. In order to simplify
the argument on how this geometric coercivity condition

controls the distance between φ̂L,∞,H and φ, we introduce
the inner product on L2 = L2(ρLT,M) defined as

〈〈ϕ1, ϕ2〉〉L2 :=
1

L

L∑
l=1

E
[
〈fϕ1

(Xtl),fϕ2
(Xtl)〉TXtl

MN

]
.

Then the geometric coercivity condition can be rewritten as

cL,N,H,M ‖ϕ(·)·‖2L2(ρLT,M) ≤ 〈〈ϕ,ϕ〉〉L2(ρLT,M),

and since the loss function from (4) can be written as
EL,∞,H(ϕ) = 〈〈ϕ− φ, ϕ− φ〉〉, this implies

cL,N,H,M ‖ϕ(·) · −φ(·)·‖2L2(ρLT,M) ≤ EL,∞,H(ϕ).

Hence when EL,∞,H(ϕ) is small, ‖ϕ(·) · −φ(·)·‖L2(ρLT,M)

is also small; hence if we construct a sequence of minimiz-
ers of EL,∞,H over increasing H with decreasing EL,∞,H
values, the convergence of φ̂L,∞,H to φ can be established.

4.2. Concentration and Consistency

The first theorem bounds, with high probability, the differ-
ence between the estimator φ̂L,M,H and the true interaction
kernel φ, which makes apparent the trade-off between the
L2(ρLT,M)-distance between φ andH (approximation error),
and M the number of trajectories needed for achieving the
desired accuracy. Here N (U , ε) is the covering number of a
set U with open balls of radius ε w.r.t the L∞-norm.

Theorem 4.1. Let φ ∈ L2([0, R]), andH an admissible hy-
pothesis space such that the geometric coercivity condition
holds with a constant cL,N,H,M. Then, φ̂L,M,H, minimizer
of (3) on the trajectory data generated by (2), satisfies∥∥∥φ̂L,M,H(·) · −φ(·)·

∥∥∥2
L2(ρLT,M)

≤

2

cL,N,H,M

(
ε+ inf

ϕ∈H
‖ϕ(·) · −φ(·)·‖2L2(ρLT,M)

)
with probability at least 1 − τ , when M ≥
1152S2

0R
2

εcL,N,H,M
(lnN (H, ε

48S0R2 ) + ln 1
τ ).

This quantifies the usual bias-variance tradeoff in our setting:
on the one hand, with a large hypothesis space, the quantity
infϕ∈H ‖ϕ(·) · −φ(·)·‖L2(ρLT,M) could be made small. On
the other hand, we wish to have the right number of samples
to make the variance of the estimator small, by controlling
the covering number of the hypothesis spaceH.

4.3. Convergence Rate

Next we establish the convergence rate of φ̂L,M,H to φ as
M increases.
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Theorem 4.2. Let µ0(MN ) be the distribution of the ini-
tial conditions of trajectories, and HM = Bn with n =

n∗ � (M/logM)
1

2s+1 , where Bn is the central ball of Ln
with radius c1 + S, and the linear space Ln ⊆ L∞([0, R])
satisfies

dim(Ln) ≤ c0n and inf
ϕ∈Ln

‖ϕ− φ‖L∞ ≤ c1n
−s

for some constants c0, c1, s > 0. Suppose that the geometric
coercivity condition holds on L := ∪nLn with constant
cL,N,L,M. Then there exists some constant C(S,R, c0, c1)
such that

EX0∼µ0(MN )

[ ∥∥∥φ̂L,M,HM
(·) · −φ(·)·

∥∥∥
L2(ρLT,M)

]
≤ C(S,R, c0, c1)

cL,N,L,M

( logM
M

) s
2s+1

.

The constant s is tied closely to the regularity of φ, and it
plays an important role in the convergence rate. For example,
when φ ∈ C1, we can take s = 1 with linear spaces of
first degree piecewise polynomials, we end up with a M

1
3

learning rate. The rate is the same as the minimax rate for
nonparametric regression with noise in one dimension (up to
the logarithmic factor), and in particular it is independent of
the dimension D = Nd of the state space. Empirical results
suggest that at least in some cases, when L grows, i.e. each
trajectory is sampled at more points, then the estimators
improve; this is however not captured by our bound.

4.4. Trajectory Estimation Error

We have established the convergence of the estimator
φ̂L,M,H to the true interaction kernel φ. We now establish
the convergence of the trajectories of the estimated dynam-
ics, evolved using φ̂L,M,H, to the observed trajectories.

Theorem 4.3. Let φ ∈ KR,S and φ̂ ∈ KR,S0
, for some

S0 ≥ S. Suppose that X [0,T ] and X̂ [0,T ] are solutions
of (2) w.r.t to φ and φ̂, respectively, for t ∈ [0, T ], with
X̂0 = X0. Then we have the following inequality,

EX0∼µ0(MN )

[
dtrj

(
X [0,T ], X̂ [0,T ]

)2]
≤

4T 2C(M, T ) exp(64T 2S2
0)
∥∥∥φ(·) · −φ̂(·)·∥∥∥2

L2(ρT,M)
,

where C(M, T ) is a positive constant depending only on
geometric properties ofM and T , but may be chosen inde-
pendent of T ifM is compact.

While these bounds are mainly useful for small times T ,
given the exponential dependence on T of the bounds, they
can be overly pessimistic. It may also happen that the pre-
dicted trajectories are not accurate in terms of agent po-
sitions, but they maintain, and even predict from initial

conditions, large-scale, emergent properties of the original
system, such as flocking of birds of milling of fish (Zhong
et al., 2020). We suspect this can hold also in the mani-
fold setting, albeit in ways that are affected by geometric
properties of the manifold.

5. Numerical Experiments
We consider two prototypical first order dynamics, Opinion
Dynamics (OD) and Predator-Swarm dynamics (PS1), each
on two different manifolds, the 2D sphere S2, centered at
the origin with radius 5

π , and the Poincaré disk PD (unit disk
centered at the origin, with the hyperbolic metric). These
are model spaces with constant positive and negative cur-
vature, respectively. We conduct extensive experiments on
these four scenarios to demonstrate the performance of the
estimators both in terms of the estimation errors (approxi-
mating φ’s) and trajectory estimator errors (estimating the
observed dynamics) over [0, T ].

For each type of dynamics, on each of the two model mani-
folds, we visualize trajectories of the system, with a random
initial condition (i.e. not in the training set), driven by φ
and φ̂. We also augment the system by adding new agents:
without any re-learning, thus we can transfer φ̂ to drive this
augmented system (with N = 40 in our examples), and will
visualize the trajectories (again, started from a new random
initial condition). We also report on the (relative) estimation
error of the interaction kernel, as defined in (5), and on the
trajectory errors, defined in (6).

For each system of N = 20 agents, we take M = 500 and
L = 500 to generate the training data. For eachHM , we use
first-degree clamped B-splines as the basis functions with
dim(HM ) = O(n∗) = O(( ML

log(ML) )
1
3 ). We use a geomet-

ric numerical integrator (Hairer, 2001) (4th order Backward
Differentiation Formula with a projection scheme) for the
evolution of the dynamics. For details, see Sec. C in the SI.

OD [0, T ]

meanS2
IC : Training ICs 8.8 · 10−2 ± 1.7 · 10−3

meanS2
IC : Random ICs 9.0 · 10−2 ± 1.6 · 10−3

meanPD
IC : Training ICs 1.08 · 10−1 ± 1.6 · 10−3

meanPD
IC : Random ICs 1.08 · 10−1 ± 2.6 · 10−3

Table 2. (Dynamics on S2 or PD) meanIC is the mean of the trajec-
tory errors over M initial conditions (ICs), as defined in eq.(6).

Opinion Dynamics (OD) is used to model simple interac-
tions of opinions (Aydoğdu et al., 2017; Weisbuch et al.,
2003) as well as choreography (Caponigro et al., 2014). In
fig.1 we display trajectories of the system on the two model
manifolds. The relative error of the estimator φ̂ for OD on
S2 is 1.894 · 10−1 ± 3.1 · 10−4, whereas for OD on PD is
1.935 ·10−1±9.5 ·10−4, both are calculated using (5). The
errors for trajectory prediction are reported in table 2.
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Figure 1. Top: comparison of φ and φ̂. The true interaction kernel is shown with a black solid line, whereas the mean estimated interaction
kernel is shown with a blue dashed line with its std interval, i.e. mean(φ̂) ± std(φ̂), region shaded in red. Shown in the background
is the comparison of the approximate ρLT,M versus the empirical ρL,MT,M. Bottom: comparison of trajectories X [0,T ] and X̂ [0,T ]. The
trajectories X [0,T ] and X̂ [0,T ] are generated by the interaction kernel φ or φ̂, respectively, with the same initial conditions. In the first
row, trajectories are started from a randomly chosen initial condition. In the second row, trajectories are generated for a new system, with
N = 40 agents. The colors along the trajectories indicate time, from deep blue (at t = 0) to light green (at t = T ).

ErrS
2

1,1 = 2.98 · 10−1 ± 5.9 · 10−3 ErrS
2

1,2 = 8.4 · 10−3 ± 3.0 · 10−4

ErrS
2

2,1 = 2.5 · 10−2 ± 1.6 · 10−3 ErrS
2

2,2 = 0

ErrPD1,1 = 9.0 · 10−2 ± 2.6 · 10−3 ErrPD1,2 = 1.34 · 10−3 ± 8.8 · 10−5

ErrPD2,1 = 3.6 · 10−3 ± 2.4 · 10−4 ErrPD2,2 = 0

Table 3. (PS1 on S2 or PD) Relative estimation errors for φ̂.

Predator-Swarm System (PS1): this is a heterogeneous
agent system, which is used to model interactions between
multiple types of animals (Chen & Kolokolnikov, 2013;
Olson et al., 2016). The learning theory presented in sec-
tion 4 is described for homogeneous agent systems, but the
theory and the corresponding algorithms extend naturally to
heterogeneous agent systems in a manner analogous to (Lu
et al., 2019a; Miller et al., 2020). In this case, there are K2

different interaction kernels, one φk,k′ for each (directed)
interaction between agents of type k and agents of type k′.
In our example here there are two types, {prey, predator},
and therefore 4 interaction kernels; however there is only
one predator, so the interaction kernel predator-predator is

0. The results are visualized in fig.2. The (relative) errors
of the estimators are in table 3. The errors for trajectory
prediction are reported in table 4.

PS1 [0, T ]

meanS2
IC : Training ICs 2.36 · 10−2 ± 9.8 · 10−4

meanS2
IC : Random ICs 2.40 · 10−2 ± 8.1 · 10−4

meanPD
IC : Training ICs 4.8 · 10−3 ± 1.2 · 10−4

meanPD
IC : Random ICs 4.8 · 10−3 ± 1.2 · 10−4

Table 4. As in table 2, but for the PS1 system.

Discussion: As shown in the figures and tables in this sec-
tion, the estimators not only provide close approximation to
their corresponding interaction kernels φ’s, but also capture
additional information about the true interaction laws, e.g.
the support. The accuracy on the trajectories is consistent
with the theory, and the lack of overfitting and the ability
to generalize well to predicting trajectories started at new
random initial conditions, which in general are very far from
any of the initial conditions in the training data, given the
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Figure 2. Top: comparison of φk,k′ and φ̂k,k′ . The true interaction kernels are shown with black solid lines, whereas the mean estimated
interaction kernels are shown with blue dashed lines with their corresponding std interval regions shaded in red. Shown in the background
is the comparison of the approximate ρL,kk

′

T,M versus the empirical ρL,M,kk
′

T,M . Notice that ρL,12T , ρL,M,12T and ρL,12T , ρL,M,21T are the same
distributions. Bottom: comparison of trajectories X [0,T ] and X̂ [0,T ]. The trajectories X [0,T ] and X̂ [0,T ] are generated by the interaction
kernels, {φk,k′}Kk,k′=1 and {φ̂k,k′}Kk,k′=1, respectively, with the same initial conditions. The two rows use a similar setup as in the OD
case. The colors along the trajectories indicate time, from deep blue/bright red (at t = 0) to light green/light yellow (at t = T ). The
blue/green combo is assigned to the preys; whereas the red/yellow combo to the predator.

high-dimensionality of the state space, demonstrates the ef-
fectiveness of our approach. This is made possible because
we have taken advantage of the symmetries in the system,
in particular invariance of the governing equations under
permutations of the agents (of the same type, in the case
of heterogeneous agent systems, such as PS1), and radial
symmetry of the interaction kernels. Further invariances,
when the number of agents increases, make it possible to
re-use the interaction kernel estimated on a system of N
agents to predict trajectories of a system with the same in-
teraction kernel, but a different number of agents, which
of course has a state space of a different dimension. This
simple example of transfer learning would not be possible
for general-purpose techniques that directly estimate the
r.h.s. of the system of ODEs.

6. Conclusion
We have considered the problem of estimating the dynamics
of a particular yet widely used set of dynamical systems,
consisting of interacting agents on Riemannian manifolds.
These are driven by a first-order system of ODEs on the
manifold, with a typically very high-dimensional state space
MN , whereN is the (typically large) number of agents. We
constructed estimators that converge optimally and avoid the
curse of dimensionality, by exploiting the multiple symme-
tries in these systems. Extensions to more complex systems
of interacting agents may be considered, in particular to
second-order systems, which will require the use of parallel
transport on M, to more general interaction kernels, de-
pending on other variables beyond pairwise distances, as
well as to systems interacting with a varying environment.
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8. Addressing Reviewers’ Comments
We thank the reviewers for providing such detailed reviews
and feedback on our paper. Due to the page limit, we are
not be able to provide detailed responses to every comment;
instead we address three groups of reviews briefly and high-
light the most important issues and how we are addressing
them. To all reviewers: we have fixed the typos, and made
the corresponding cosmetic changes, including using vector
graphics, repositioning figures and tables, etc. We have
added a section, namely Sec. D.1., in the Supplementary
Information (SI) to discuss the computing platform used to
run the simulations. The software package to reproduce the
results shown in this paper will be made available online
on GitHub (starting on June 10th); and a link to the soft-
ware package is also added in Sec. 3.3. We encourage the
reviewers to check out Sec. D in SI for detailed discussion
on how we set up the experiments and important learning
results, as well as the computing time needed to run our
experiments demonstrating the efficiency of our learning
methods. Our paper strives to keep a delicate balance of
theory and empirical findings.

To reviewers #5, #8, and #9: We have made the changes to
comply with most of your comments in order to make the
paper more accessible. We have already responded in our
first response letters to the major issues and we sincerely
appreciate the detailed reviews and feedback. We also en-
courage the reviewers to briefly go through the Sec. D in
SI for a detailed background introduction of the different
dynamical systems examined in the paper.

To reviewers #6, #7: We have gone through the introduc-
tion and hopefully cleared any possible confusion. We have
also merged sections 3.3 and 3.4, and improved their clar-
ity, so that the main idea of the computational complexity
stands out. A more detailed description of computational
complexity is now added as Sec. C.1. in SI. The overall
organization of the paper has been re-examined, and it has
been improved for a cleaner presentation.

To Meta Review: we have gone through the paper and

improved its overall organization, i.e. clean up the nota-
tions/organization/structure of our paper. As for baseline
comparisons, we have pointed out in the introduction, as it
had been already done in (Lu et al., 2019b), that most of
the current methods (sparse approximation such as SINDy,
neural network, etc.) have trouble dealing with the curse
of dimensionality from the observation data, as they infer
directly the right hand side of the ODE, Ẋt = f(Xt).
Our method, however, exploits the innate structure of the
ODE systems (e.g. invariances and symmetries), hence our
method is able to avoid the curse of dimensionality from
the observation data, and perform transfer of learning read-
ily. We have substantially improved notational clarity, and
enhanced the readability for an ML venue.
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