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Abstract
Reinforcement Learning in large action spaces is
a challenging problem. Cooperative multi-agent
reinforcement learning (MARL) exacerbates mat-
ters by imposing various constraints on commu-
nication and observability. In this work, we con-
sider the fundamental hurdle affecting both value-
based and policy-gradient approaches: an expo-
nential blowup of the action space with the num-
ber of agents. For value-based methods, it poses
challenges in accurately representing the optimal
value function. For policy gradient methods, it
makes training the critic difficult and exacerbates
the problem of the lagging critic. We show that
from a learning theory perspective, both prob-
lems can be addressed by accurately represent-
ing the associated action-value function with a
low-complexity hypothesis class. This requires
accurately modelling the agent interactions in a
sample efficient way. To this end, we propose a
novel tensorised formulation of the Bellman equa-
tion. This gives rise to our method TESSERACT,
which views the Q-function as a tensor whose
modes correspond to the action spaces of differ-
ent agents. Algorithms derived from TESSERACT
decompose the Q-tensor across agents and utilise
low-rank tensor approximations to model agent
interactions relevant to the task. We provide PAC
analysis for TESSERACT-based algorithms and
highlight their relevance to the class of rich ob-
servation MDPs. Empirical results in different
domains confirm TESSERACT’s gains in sample
efficiency predicted by the theory.

1. Introduction
Many real-world problems, such as swarm robotics and
autonomous vehicles, can be formulated as multi-agent re-
inforcement learning (MARL) (Buşoniu et al., 2010) prob-
lems. MARL introduces several new challenges that do not
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arise in single-agent reinforcement learning (RL), includ-
ing exponential growth of the action space in the number
of agents. This affects multiple aspects of learning, such
as credit assignment (Foerster et al., 2018), gradient vari-
ance (Lowe et al., 2017) and exploration (Mahajan et al.,
2019). In addition, while the agents can typically be trained
in a centralised manner, practical constraints on observabil-
ity and communication after deployment imply that deci-
sion making must be decentralised, yielding the extensively
studied setting of centralised training with decentralised
execution (CTDE).

Recent work in CTDE-MARL can be broadly classified into
value-based methods and actor-critic methods. Value-based
methods (Sunehag et al., 2017; Rashid et al., 2018; Son et al.,
2019; Wang et al., 2020a; Yao et al., 2019) typically enforce
decentralisability by modelling the joint actionQ-value such
that the argmax over the joint action space can be tractably
computed by local maximisation of per-agent utilities. How-
ever, constraining the representation of the Q-function can
interfere with exploration, yielding provably suboptimal so-
lutions (Mahajan et al., 2019). Actor-critic methods (Lowe
et al., 2017; Foerster et al., 2018; Wei et al., 2018) typically
use a centralised critic to estimate the gradient for a set of
decentralised policies. In principle, actor-critic methods can
satisfy CTDE without incurring suboptimality, but in prac-
tice their performance is limited by the accuracy of the critic,
which is hard to learn given exponentially growing action
spaces. This can exacerbate the problem of the lagging critic
(Konda & Tsitsiklis, 2002). Moreover, unlike the single-
agent setting, this problem cannot be fixed by increasing
the critic’s learning rate and number of training iterations.
Similar to these approaches, an exponential blowup in the
action space also makes it difficult to choose the appropriate
class of models which strike the correct balance between
expressibility and learnability for the given task.

In this work, we present new theoretical results that show
how the aforementioned approaches can be improved such
that they accurately represent the joint action-value function
whilst keeping the complexity of the underlying hypothe-
sis class low. This translates to accurate, sample efficient
modelling of long-term agent interactions.

In particular, we propose TESSERACT (derived from ”Ten-
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sorised Actors”), a new framework that leverages tensors for
MARL. Tensors are high dimensional analogues of matrices
that offer rich insights into representing and transforming
data. The main idea of TESSERACT is to view the output of
a joint Q-function as a tensor whose modes correspond to
the actions of the different agents. We thus formulate the
Tensorised Bellman equation, which offers a novel perspec-
tive on the underlying structure of a multi-agent problem.
In addition, it enables the derivation of algorithms that de-
compose the Q-tensor across agents and utilise low rank
approximations to model relevant agent interactions.

Many real-world tasks (e.g., robot navigation) involve high
dimensional observations but can be completely described
by a low dimensional feature vector (e.g., a 2D map suf-
fices for navigation). For value-based TESSERACT methods,
maintaining a tensor approximation with rank matching the
intrinsic task dimensionality1 helps learn a compact approxi-
mation of the true Q-function (alternatively MDP-dynamics
for model based methods). In this way, we can avoid the
suboptimality of the learnt policy while remaining sam-
ple efficient. Similarly, for actor-critic methods, TESSER-
ACT reduces the critic’s learning complexity while retaining
its accuracy, thereby mitigating the lagging critic problem.
Thus, TESSERACT offers a natural spectrum for trading off
accuracy with computational/sample complexity.

To gain insight into how tensor decomposition helps im-
prove sample efficiency for MARL, we provide theoretical
results for model-based TESSERACT algorithms and show
that the underlying joint transition and reward functions can
be efficiently recovered under a PAC framework (in samples
polynomial in accuracy and confidence parameters). We
also introduce a tensor-based framework for CTDE-MARL
that opens new possibilities for developing efficient classes
of algorithms. Finally, we explore the relevance of our
framework to rich observation MDPs.

Our main contributions are:

1. A novel tensorised form of the Bellman equation;

2. TESSERACT, a method to factorise the action-value
function based on tensor decomposition, which can be
used for any factored action space;

3. PAC analysis and error bounds for model based
TESSERACT that show an exponential gain in sample
efficiency of O(|U |n/2); and

4. Empirical results illustrating the advantage of TESSER-
ACT over other methods and detailed techniques for
making tensor decomposition work for deep MARL.

1We define intrinsic task dimensionality (ITD) as the minimum
number of dimensions required to describe an environment

2. Background
Cooperative MARL settings In the most general set-
ting, a fully cooperative multi-agent task can be mod-
elled as a multi-agent partially observable MDP (M-
POMDP) (Messias et al., 2011). An M-POMDP is for-
mally defined as a tuple G = 〈S,U, P, r, Z,O, n, γ〉. S
is the state space of the environment. At each time step
t, every agent i ∈ A ≡ {1, ..., n} chooses an action
ui ∈ U which forms the joint action u ∈ U ≡ Un.
P (s′|s,u) : S × U × S → [0, 1] is the state transition
function. r(s,u) : S ×U → [0, 1] is the reward function
shared by all agents and γ ∈ [0, 1) is the discount factor.

Figure 1. Different settings in MARL

An M-POMDP is
partially observ-
able (Kaelbling
et al., 1998): each
agent does not
have access to
the full state and
instead samples
observations
z ∈ Z according
to observation
distribution
O(s) : S → P(Z). The action-observation history for
an agent i is τ i ∈ T ≡ (Z × U)∗. We use u−i to denote
the action of all the agents other than i and similarly
for the policies π−i. Settings where the agents cannot
exchange their action-observation histories with others
and must condition their policy solely on local trajectories,
πi(ui|τ i) : T × U → [0, 1], are referred to as a decen-
tralised partially observable MDP (Dec-POMDP) (Oliehoek
& Amato, 2016). When the observations have additional
structure, namely the joint observation space is partitioned
w.r.t. S, i.e., ∀s1, s2 ∈ S ∧ z ∈ Z,P (z|s1) > 0 ∧ s1 6=
s2 =⇒ P (z|s2) = 0, we classify the problem as a multi-
agent richly observed MDP (M-ROMDP) (Azizzadenesheli
et al., 2016). For both M-POMDP and M-ROMDP, we
assume |Z| >> |S|, thus for this work, we assume a setting
with no information loss due to observation but instead,
redundancy across different observation dimensions.
Such is the case for many real world tasks like 2D robot
navigation using observation data from different sensors.
Finally, when the observation function is a bijective map
O : S → Z, we refer to the scenario as a multi-agent MDP
(MMDP) (Boutilier, 1996), which can simply be denoted
by the tuple : 〈S,U, P, r, n, γ〉. Fig. 1 gives the relation
between different scenarios for the cooperative setting. For
ease of exposition, we present our theoretical results for the
MMDP case, though they can easily be extended to other
cases by incurring additional sample complexity.

The joint action-value function given a policy π is defined as:
Qπ(st,ut) = Est+1:∞,ut+1:∞

[∑∞
k=0 γ

krt+k|st,ut
]
. The
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goal is to find the optimal policy π∗ corresponding to the
optimal action value function Q∗. For the special learning
scenario called Centralised Training with Decentralised Ex-
ecution (CTDE), the learning algorithm has access to the
action-observation histories of all agents and the full state
during training phase. However, each agent can only con-
dition on its own local action-observation history τ i during
the decentralised execution phase.

Reinforcement Learning Methods Both value-based
and actor-critic methods for reinforcement learning (RL)
rely on an estimator for the action-value function Qπ given
a target policy π. Qπ satisfies the (scalar)-Bellman expec-
tation equation: Qπ(s,u) = r(s,u) + γEs′,u′ [Qπ(s′,u′)],
which can equivalently be written in vectorised form
as:

Qπ = R+ γPπQπ, (1)

where R is the mean reward vector of size S, Pπ is
the transition matrix. The operation on RHS T π(·) ,
R + γPπ(·) is the Bellman expectation operator for the
policy π. In Section 3 we generalise Eq. (1) to a novel
tensor form suitable for high-dimensional and multi-agent
settings. For large state-action spaces function approxi-
mation is used to estimate Qπ. A parametrised approxi-
mation Qφ is usually trained using the bootstrapped target
objective derived using the samples from π by minimising
the mean squared temporal difference error: Eπ[(r(s,u) +
γQφ(s′,u′) − Qφ(s,u))2]. Value based methods use the
Qπ estimate to derive a behaviour policy which is iter-
atively improved using the policy improvement theorem
(Sutton & Barto, 2011). Actor-critic methods seek to max-
imise the mean expected payoff of a policy πθ given by
Jθ =

∫
S
ρπ(s)

∫
U
πθ(u|s)Qπ(s,u)duds using gradient as-

cent on a suitable class of stochastic policies parametrised by
θ, where ρπ(s) is the stationary distribution over the states.
Updating the policy parameters in the direction of the gradi-
ent leads to policy improvement. The gradient of the above
objective is ∇Jθ =

∫
S
ρπ(s)

∫
U
∇πθ(u|s)Qπ(s,u)duds

(Sutton et al., 2000). An approximate action-value function
based critic Qφ is used when estimating the gradient as we
do not have access to the true Q-function. Since the critic is
learnt using finite number of samples, it may deviate from
the true Q-function, potentially causing incorrect policy
updates; this is called the lagging critic problem. The prob-
lem is exacerbated in multi-agent setting where state-action
spaces are very large.

Tensor Decomposition Tensors are high dimensional ana-
logues of matrices and tensor methods generalize matrix
algebraic operations to higher orders. Tensor decompo-
sition, in particular, generalizes the concept of low-rank
matrix factorization (Kolda & Bader, 2009; Janzamin et al.,
2020). In the rest of this paper, we use ·̂ to denote ten-

sors. Formally, an order n tensor T̂ has n index sets
Ij ,∀j ∈ {1..n} and has elements T (e),∀e ∈ ×IIj tak-
ing values in a given set S , where × is the set cross product
and we denote the set of index sets by I. Each dimension
{1..n} is also called a mode. An elegant way of repre-

Figure 2. Left: Tensor diagram for an order 3 tensor T̂ . Right:
Contraction between T̂ 1,T̂ 2 on common index sets I2, I3.

senting tensors and associated operations is via tensor dia-
grams as shown in Fig. 2. Tensor contraction generalizes
the concept of matrix with matrix multiplication. For any
two tensors T̂ 1 and T̂ 2 with I∩ = I1 ∩ I2 we define the
contraction operation as T̂ = T̂ 1�T̂ 2 with T̂ (e1, e2) =∑
e∈×I∩Ij

T̂ 1(e1, e) · T̂ 2(e2, e), ei ∈ ×Ii\I∩Ij . The con-
traction operation is associative and can be extended to an
arbitrary number of tensors. Using this building block, we
can define tensor decompositions, which factorizes a (low-
rank) tensor in a compact form. This can be done with
various decompositions (Kolda & Bader, 2009), such as
Tucker, Tensor-Train (also known as Matrix-Product-State),
or CP (for Canonical-Polyadic). In this paper, we focus on
the latter, which we briefly introduce here. Just as a matrix
can be factored as a sum of rank-1 matrices (each being
an outer product of vectors), a tensor can be factored as a
sum of rank-1 tensors, the latter being an outer product of
vectors. The number of vectors in the outer product is equal
to the rank of the tensor, and the number of terms in the
sum is called the rank of the decomposition (sometimes also
called CP-rank). Formally, a tensor T̂ can be factored using
a (rank–k) CP decomposition into a sum of k vector outer
products (denoted by ⊗), as,

T̂ =

k∑
r=1

wr ⊗n uir, i ∈ {1..n}, ||uir||2 = 1. (2)

3. Methodology
3.1. Tensorised Bellman equation
In this section, we provide the basic framework for Tesser-
act. We focus here on the discrete action space. The ex-
tension for continuous actions is similar and is deferred to
Appendix B.2 for clarity of exposition.

Proposition 1. Any real-valued function f of n arguments
(x1..xn) each taking values in a finite set xi ∈ Di can be
represented as a tensor f̂ with modes corresponding to the
domain sets Di and entries f̂(x1..xn) = f(x1..xn).
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Given a multi-agent problem G = 〈S,U, P, r, Z,O, n, γ〉,
let Q , {Q : S × Un → R} be the set of real-valued func-
tions on the state-action space. We are interested in the cur-
ried (Barendregt, 1984) form Q : S → Un → R, Q ∈ Q so
that Q(s) is an order n tensor (We use functions and tensors
interchangeably where it is clear from context). Algorithms
in Tesseract operate directly on the curried form and pre-
serve the structure implicit in the output tensor. (Currying
in the context of tensors implies fixing the value of some
index. Thus, Tesseract-based methods keep action indices
free and fix only state-dependent indices.)

We are now ready to present the tensorised form of the Bell-
man equation shown in Eq. (1). Fig. 3 gives the equation
where Î is the identity tensor of size |S| × |S| × |S|. The
dependence of the action-value tensor Q̂π and the policy
tensor Ûπ on the policy is denoted by superscripts π. The
novel Tensorised Bellman equation provides a theoreti-
cally justified foundation for the approximation of the joint
Q-function, and the subsequent analysis (Theorems 1-3) for
learning using this approximation.

Figure 3. Tensorised Bellman Equation for n agents. There
is an edge for each agent i ∈ A in the corresponding nodes
Q̂π, Ûπ, R̂, P̂ with the index set U i.

3.2. TESSERACT Algorithms
For any k ∈ N let Qk , {Q : Q ∈ Q ∧ rank(Q(·, s)) ≤
k,∀s ∈ S}. Given any policy π we are interested
in projecting Qπ to Qk using the projection operator
Πk(·) = arg minQ∈Qk || · −Q||π,F . where ||X||π,F ,
Es∼ρπ(s)[||X(s)||F ] is the weighted Frobenius norm w.r.t.
policy visitation over states. Thus a simple planning based
algorithm for rank k TESSERACT would involve starting
with an arbitrary Q0 and successively applying the Bell-
man operator T π and the projection operator Πk so that
Qt+1 = ΠkT πQt.

As we show in Theorem 1, constraining the underlying
tensors for dynamics and rewards (P̂ , R̂) is sufficient to
bound the CP-rank of Q̂. From this insight, we propose a
model-based RL version for TESSERACT in Algorithm 1.
The algorithm proceeds by estimating the underlying MDP
dynamics using the sampled trajectories obtained by exe-
cuting the behaviour policy π = (πi)n1 (factorisable across
agents) satisfying Theorem 2. Specifically, we use a rank
k approximate CP-Decomposition to calculate the model

dynamicsR,P as we show in Section 4. Next π is evaluated
using the estimated dynamics, which is followed by policy
improvement, Algorithm 1 gives the pseudocode for the
model-based setting. The termination and policy improve-
ment decisions in Algorithm 1 admit a wide range of choices
used in practice in the RL community. Example choices for
internal iterations which broadly fall under approximate pol-
icy iteration include: 1) Fixing the number of applications of
Bellman operator 2) Using norm of difference between con-
secutive Q estimates etc., similarly for policy improvement
several options can be used like ε-greedy (for Q derived
policy), policy gradients (parametrized policy) (Sutton &
Barto, 2011)

Algorithm 1 Model-based Tesseract

1: Initialise rank k, π = (πi)n1 and Q̂: Theorem 2
2: Initialise model parameters P̂ , R̂
3: Learning rate← α,D ← {}
4: for each episodic iteration i do
5: Do episode rollout τi =

{
(st,ut, rt, st+1)L0

}
using

π
6: D ← D ∪ {τi}
7: Update P̂ , R̂ using CP-Decomposition on moments

from D (Theorem 2)
8: for each internal iteration j do
9: Q̂← T πQ̂

10: end for
11: Improve π using Q̂
12: end for
13: Return π, Q̂

For large state spaces where storage and planning using
model parameters is computationally difficult (they are
O(kn|U ||S|2) in number), we propose a model-free ap-
proach using a deep network where the rank constraint on
the Q-function is directly embedded into the network archi-
tecture. Fig. 4 gives the general network architecture for
this approach and Algorithm 2 the associated pseudo-code.
Each agent in Fig. 4 has a policy network parameterized by
θ which is used to take actions in a decentralised manner.
The observations of the individual agents along with the
actions are fed through representation function gφ whose
output is a set of k unit vectors of dimensionality |U | corre-
sponding to each rank. The output gφ,r(si) corresponding
to each agent i for factor r can be seen as an action-wise
contribution to the joint utility from the agent correspond-
ing to that factor. The joint utility here is a product over
individual agent utilities. For partially observable settings,
an additional RNN layer can be used to summarise agent
trajectories. The joint action-value estimate of the tensor
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Figure 4. Tesseract architecture

Q̂(s) by the centralized critic is:

Q̂(s) ≈ T =

k∑
r=1

wr ⊗n gφ,r(si), i ∈ {1..n}, (3)

where the weights wr are learnable parameters exclusive
to the centralized learner. In the case of value based meth-
ods where the policy is implicitly derived from utilities,
the policy parameters θ are merged with φ. The network
architecture is agnostic to the type of the action space (dis-
crete/continuous) and the action-value corresponding to a
particular joint-action (u1..un) is the inner product 〈T,A〉
where A = ⊗nui (This reduces to indexing using joint ac-
tion in Eq. (3) for discrete spaces). More representational
capacity can be added to the network by creating an ab-
stract representation for actions using fη , which can be any
arbitrary monotonic function (parametrised by η) of vec-
tor output of size m ≥ |U | and preserves relative order of
utilities across actions; this ensures that the optimal policy
is learnt as long as it belongs to the hypothesis space. In
this case A = ⊗nfη(ui) and the agents also carry a copy
of fη during the execution phase. Furthermore, the inner
product 〈T,A〉 can be computed efficiently using the prop-
erty

〈T,A〉 =

k∑
r=1

wr

n∏
1

〈fη(ui)gφ,r(s
i)〉, i ∈ {1..n}

which is O(nkm) whereas a naive approach involving com-
putation of the tensors first would be O(kmn). Training the
Tesseract-basedQ-network involves minimising the squared
TD loss (Sutton & Barto, 2011):

LTD(φ, η) = Eπ[(Q(ut, st;φ, η)

−[r(ut, st) + γQ(ut+1, st+1;φ−, η−)])2],

where φ−, η− are target parameters. Policy updates in-
volve gradient ascent w.r.t. to the policy parameters θ on the

objective Jθ =
∫
S
ρπ(s)

∫
U
πθ(u|s)Qπ(s,u)duds. More

sophisticated targets can be used to reduce the policy gra-
dient variance (Greensmith et al., 2004; Zhao et al., 2016)
and propagate rewards efficiently (Sutton, 1988). Note that
Algorithm 2 does not require the individual-global max-
imisation principle (Son et al., 2019) typically assumed by
value-based MARL methods in the CTDE setting, as it is
an actor-critic method. In general, any form of function
approximation and compatible model-free approach can be
interleaved with Tesseract by appropriate use of the projec-
tion function Πk.

Algorithm 2 Model-free Tesseract

1: Initialise rank k, parameter vectors θ, φ, η
2: Learning rate← α,D ← {}
3: for each episodic iteration i do
4: Do episode rollout τi =

{
(st,ut, rt, st+1)L0

}
using

πθ
5: D ← D ∪ {τi}
6: Sample batch B ⊆ D.
7: Compute empirical estimates for LTD,Jθ
8: φ← φ− α∇φLTD (Rank k projection step)
9: η ← η − α∇ηLTD (Action representation update)

10: θ ← θ + α∇θJθ (Policy update)
11: end for
12: Return π, Q̂

3.3. Why Tesseract?
As discussed in Section 1, Q(s) is an object of prime inter-
est in MARL. Value based methods (Sunehag et al., 2017;
Rashid et al., 2018; Yao et al., 2019) that directly approx-
imate the optimal action values Q∗ place constraints on
Q(s) such that it is a monotonic combination of agent util-
ities. In terms of Tesseract this directly translates to find-
ing the best projection constraining Q(s) to be rank one
(Appendix B.1). Similarly, the following result demon-
strates containment of action-value functions representable
by FQL(Chen et al., 2018) which uses a learnt inner product
to model pairwise agent interactions (proof and additional
results in Appendix B.1):.

Proposition 2. The set of joint Q-functions representable
by FQL is a subset of that representable by TESSERACT.

MAVEN (Mahajan et al., 2019) illustrates how rank 1 pro-
jections can lead to insufficient exploration and provides
a method to avoid suboptimality by using mutual infor-
mation (MI) to learn a diverse set of rank 1 projections
that correspond to different joint behaviours. In Tesseract,
this can simply be achieved by finding the best approx-
imation constraining Q(s) to be rank k. Moreover, the
CP-decomposition problem, being a product form (Eq. (2)),
is well posed, whereas in MAVEN, the problem form is
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T̂ =
∑k
r=1 wr ⊕n uir, i ∈ {1..n}, ||uir||2 = 1, which re-

quires careful balancing of different factors {1..k} using MI
as otherwise all factors collapse to the same estimate. The
above improvements are equally important for the critic in
actor-critic frameworks. Note that TESSERACT is complete
in the sense that every possible joint Q-function is repre-
sentable by it given sufficient approximation rank. This
follows as every possible Q-tensor can be expressed as lin-
ear combination of one-hot tensors (which form a basis for
the set).

Many real world problems have high-dimensional obser-
vation spaces that are encapsulated in an underlying low
dimensional latent space that governs the transition and
reward dynamics (Azizzadenesheli et al., 2016). For ex-
ample, in the case of robot navigation, the observation is
high dimensional visual and sensory input but solving the
underlying problem requires only knowing the 2D position.
Standard RL algorithms that do not address modelling the
latent structure in such problems typically incur poor per-
formance and intractability. In Section 4 we show how
Tesseract can be leveraged for such scenarios. Finally, pro-
jection to a low rank offers a natural way of regularising the
approximate Q-functions and makes them easier to learn,
which is important for making value function approximation
amenable to multi-agent settings. Specifically for the case
of actor-critic methods, this provides a natural way to make
the critic learn more quickly. Additional discussion about
using Tesseract for continuous action spaces can be found
in Appendix B.2.

4. Analysis
In this section we provide a PAC analysis of model-based
Tesseract (Algorithm 1). We focus on the MMDP set-
ting (Section 2) for the simplicity of notation and expo-
sition; guidelines for other settings are provided in Ap-
pendix A.

The objective of the analysis is twofold: Firstly it provides
concrete quantification of the sample efficiency gained by
model-based policy evaluation. Secondly, it provides in-
sights into how Tesseract can similarly reduce sample com-
plexity for model-free methods. Proofs for the results
stated can be found in Appendix A. We begin with the
assumptions used for the analysis:

Assumption 1. For the given MMDP G =
〈S,U, P, r, n, γ〉, the reward tensor R̂(s),∀s ∈ S
has bounded rank k1 ∈ N.

Intuitively, a small k1 in Assumption 1 implies that the
reward is dependent only on a small number of intrinsic
factors characterising the actions.

Assumption 2. For the given MMDP G =

〈S,U, P, r, n, γ〉, the transition tensor P̂ (s, s′),∀s, s′ ∈ S
has bounded rank k2 ∈ N.

Intuitively a small k2 in Assumption 2 implies that only a
small number of intrinsic factors characterising the actions
lead to meaningful change in the joint state. Assumption 1-2
always hold for a finite MMDP as CP-rank is upper bounded
by Πn

j=1|Uj |, where Uj are the action sets.

Assumption 3. The underlying MMDP is ergodic for any
policy π so that there is a stationary distribution ρπ .

Next, we define coherence parameters, which are quan-
tities of interest for our theoretical results: for reward
decomposition R̂(s) =

∑
r wr,s ⊗n vr,i,s, let µs =√

nmaxi,r,j |vr,i,s(j)|, wmax
s = maxi,r wr,s, wmin

s =
mini,r wr,s. Similarly define the corresponding quantities
for µs,s′ , wmax

s,s′ , w
min
s,s′ for transition tensors P̂ (s, s′). A low

coherence implies that the tensor’s mass is evenly spread
and helps bound the possibility of never seeing an entry with
very high mass (large absolute value of an entry).

Theorem 1. For a finite MMDP the action-value tensor
satisfies rank(Q̂π(s)) ≤ k1 + k2|S|,∀s ∈ S, ∀π.

Proof. We first unroll the Tensor Bellman equation in Fig. 3.
The first term R̂ has bounded rank k1 by Assumption 1.
Next, each contraction term on the RHS is a linear combina-
tion of {P̂ (s, s′)}s′∈S each of which has bounded rank k2

(Assumption 2). The result follows from the sub-additivity
of CP-rank.

Theorem 1 implies that for approximations with enough
factors, policy evaluation converges:

Corollary 1.1. For all k ≥ k1 + k2|S|, the procedure
Qt+1 ← ΠkT πQt converges to Qπ for all Q0, π.

Corollary 1.1 is especially useful for the case of M-POMDP
and M-ROMDP with |Z| >> |S|, i.e., where the intrin-
sic state space dimensionality is small in comparison to
the dimensionality of the observations (like robot naviga-
tion Section 3.3). In these cases the Tensorised Bellman
equation Fig. 3 can be augmented by padding the transition
tensor P̂ with the observation matrix and the lower bound
in Corollary 1.1 can be improved using the intrinsic state
dimensionality.

We next give a PAC result on the number of samples required
to infer the reward and state transition dynamics for finite
MDPs with high probability using sufficient approximate
rank k ≥ k1, k2:

Theorem 2 (Model based estimation of R̂, P̂ error bounds).
Given any ε > 0, 1 > δ > 0, for a policy π with the policy
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tensor satisfying π(u|s) ≥ ∆, where

∆ = max
s

C1µ
6
sk

5(wmax
s )4 log(|U |)4 log(3k||R(s)||F /ε)

|U |n/2(wmin
s )4

and C1 is a problem dependent positive constant. There ex-
ists N0 which is O(|U |n2 ) and polynomial in 1

δ ,
1
ε , k and rel-

evant spectral properties of the underlying MDP dynamics
such that for samples ≥ N0, we can compute the estimates
R̄(s), P̄ (s, s′) such that w.p. ≥ 1− δ, ||R̄(s)− R̂(s)||F ≤
ε, ||P̄ (s, s′)− P̂ (s, s′)||F ≤ ε,∀s, s′ ∈ S.

Theorem 2 gives the relation between the order of the num-
ber of samples required to estimate dynamics and the toler-
ance for approximation. Theorem 2 states that aside from
allowing efficient PAC learning of the reward and transition
dynamics of the multi-agent MDP, Algorithm 1 requires
only O(|U |n2 ) to do so, which is a vanishing fraction of
|U |n, the total number of joint actions in any given state.
This also hints at why a tensor based approximation of the
Q-function helps with sample efficiency. Methods that do
not use the tensor structure typically use O(|U |n) samples.
The bound is also useful for off-policy scenarios, where
only the behaviour policy needs to satisfy the bound. Given
the result in Theorem 2, it is natural to ask what is the er-
ror associated with computing the action-values of a policy
using the estimated transition and reward dynamics. We
address this in our next result, but first we present a lemma
bounding the total variation distance between the estimated
and true transition distributions:

Lemma 1. For transition tensor estimates satisfying
||P̄ (s, s′) − P̂ (s, s′)||F ≤ ε, we have for any given
state-action pair (s, a), the distribution over the next
states follows: TV (P ′(·|s, a), P (·|s, a)) ≤ 1

2 (|1 − f | +
f |S|ε) where 1

1+ε|S| ≤ f ≤ 1
1−ε|S| , where TV is

the total variation distance. Similarly for any policy
π, TV (P̄π(·|s), Pπ(·|s)), TV (P̄π(s′, a′|s), Pπ(s′, a′|s)) ≤
1
2 (|1− f |+ f |S|ε)

We now bound the error of model-based evaluation using
approximate dynamics in Theorem 3. The first component
on the RHS of the upper bound comes from the tensor
analysis of the transition dynamics, whereas the second
component can be attributed to error propagation for the
rewards.

Theorem 3 (Error bound on policy evaluation). Given a
behaviour policy πb satisfying the conditions in Theorem 2
and executed for steps ≥ N0, for any policy π the model
based policy evaluation Qπ

P̄ ,R̄
satisfies:

|QπP,R(s, a)−QπP̄ ,R̄(s, a)| ≤(|1− f |+ f |S|ε) γ

2(1− γ)2

+
ε

1− γ
,∀(s, a) ∈ S × Un

where f is as defined in Lemma 1.

Additional theoretical discussion can be found in Ap-
pendix B.3

5. Experiments
In this section we present the empirical results on the Star-
Craft domain. Experiments for a more didactic domain of
Tensor games can be found in Appendix C.3. We use the
model-free version of TESSERACT (Algorithm 2) for all the
experiments.

StarCraft II We consider a challenging set of coopera-
tive scenarios from the StarCraft Multi-Agent Challenge
(SMAC) (Samvelyan et al., 2019). Scenarios in SMAC have
been classified as Easy, Hard and Super-hard according
to the performance of exiting algorithms on them. We com-
pare TESSERACT (TAC in plots) to, QMIX (Rashid et al.,
2018), VDN (Sunehag et al., 2017), FQL (Chen et al., 2018),
and IQL (Tan, 1993). VDN and QMIX use monotonic ap-
proximations for learning the Q-function. FQL uses a pair-
wise factorized model to capture effects of agent interactions
in joint Q-function, this is done by learning an inner product
space for summarising agent trajectories. IQL ignores the
multi-agentness of the problem and learns an independent
per agent policy for the resulting non-stationary problem.
Fig. 5 gives the win rate of the different algorithms averaged
across five random runs. Fig. 5(c) features 2c vs 64zg, a
hard scenario that contains two allied agents but 64 enemy
units (the largest in the SMAC domain) making the action
space of the agents much larger than in the other scenarios.
TESSERACT gains a huge lead over all the other algorithms
in just one million steps. For the asymmetric scenario of
5m vs 6m Fig. 5(d), TESSERACT, QMIX, and VDN learn
effective policies, similar behavior occurs in the heteroge-
neous scenarios of 3s5z Fig. 5(a) and MMM2Fig. 5(e) with
the exception of VDN for the latter. In 2s vs 1sc in Fig. 5(b),
which requires a ‘kiting’ strategy to defeat the spine crawler,
TESSERACT learns an optimal policy in just 100k steps. In
the super-hard scenario of 27m vs 30m Fig. 5(f) having
largest ally team of 27 marines, TESSERACT again shows
improved sample efficiency; this map also shows TESSER-
ACT’s ability to scale with the number of agents. Finally
in the super-hard scenarios of 6 hydralisks vs 8 zealots
Fig. 5(g) and Corridor Fig. 5(h) which require careful ex-
ploration, TESSERACT is the only algorithm which is able
to find a good policy. We observe that IQL doesn’t per-
form well on any of the maps as it doesn’t model agent
interactions/non-stationarity explicitly. FQL loses perfor-
mance possibly because modelling just pairwise interactions
with a single dot product might not be expressive enough
for joint-Q. Finally, VDN and QMIX are unable to perform
well on many of the challenging scenarios possibly due
to the monotonic approximation affecting the exploration
adversely (Mahajan et al., 2019). Additional plots and exper-
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(a) 3s5z Easy (b) 2s vs 1sc Easy (c) 2c vs 64zg Hard

(d) 5m vs 6m Hard (e) MMM2 Super Hard (f) 27m vs 30m Super Hard

(g) 6h vs 8z Super Hard (h) Corridor Super Hard

Figure 5. Performance of different algorithms on different SMAC scenarios: TAC, QMIX, VDN, FQL, IQL.

iment details can be found in Appendix C.1 with compar-
ison with other baselines in Appendix C.1.1 including
QPLEX(Wang et al., 2020a), QTRAN(Son et al., 2019),
HQL(Matignon et al., 2007), COMA(Foerster et al., 2018) .
We detail the techniques used for stabilising the learning of
tensor decomposed critic in Appendix C.2.

6. Related Work
Previous methods for modelling multi-agent interactions
include those that use coordination graph methods for learn-
ing a factored joint action-value estimation (Guestrin et al.,
2002a;b; Bargiacchi et al., 2018), however typically re-
quire knowledge of the underlying coordination graph. To
handle the exponentially growing complexity of the joint
action-value functions with the number of agents, a series of
value-based methods have explored different forms of value

function factorisation. VDN (Sunehag et al., 2017) and
QMIX (Rashid et al., 2018) use monotonic approximation
with latter using a mixing network conditioned on global
state. QTRAN (Son et al., 2019) avoids the weight con-
straints imposed by QMIX by formulating multi-agent learn-
ing as an optimisation problem with linear constraints and
relaxing it with L2 penalties. MAVEN (Mahajan et al., 2019)
learns a diverse ensemble of monotonic approximations by
conditioning agent Q-functions on a latent space which
helps overcome the detrimental effects of QMIX’s mono-
tonicity constraint on exploration. Similarly, Uneven (Gupta
et al., 2020) uses universal successor features for efficient
exploration in the joint action space. Qatten (Yang et al.,
2020) makes use of a multi-head attention mechanism to
decompose Qtot into a linear combination of per-agent
terms. RODE (Wang et al., 2020b) learns an action ef-
fect based role decomposition for sample efficient learning.
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Policy gradient methods, on the other hand, often utilise the
actor-critic framework to cope with decentralisation. MAD-
DPG (Lowe et al., 2017) trains a centralised critic for each
agent. COMA (Foerster et al., 2018) employs a centralised
critic and a counterfactual advantage function. These actor-
critic methods, however, suffer from poor sample efficiency
compared to value-based methods and often converge to
sub-optimal local minima. While sample efficiency has
been an important goal for single agent reinforcement learn-
ing methods (Mahajan & Tulabandhula, 2017a;b; Kakade,
2003; Lattimore et al., 2013), in this work we shed light
on attaining sample efficiency for cooperative multi-agent
systems using low rank tensor approximation.

Tensor methods have been used in machine learning, in the
context of learning latent variable models (Anandkumar
et al., 2014), signal processing (Sidiropoulos et al., 2017),
deep learning and computer vision (Panagakis et al., 2021).
They provide powerful analytical tools that have been used
for various applications, including the theoretical analysis
of deep neural networks (Cohen et al., 2016). Model com-
pression using tensors (Cheng et al., 2017) has recently
gained momentum owing to the large sizes of deep neural
nets. Using tensor decomposition within deep networks, it
is possible to both compress and speed them up (Cichocki
et al., 2017; Kossaifi et al., 2019). They allow generalization
to higher orders (Kossaifi et al., 2020) and have also been
used for multi-task learning and domain adaptation (Bulat
et al., 2020). In contrast to prior work on value function
factorisation, TESSERACT provides a natural spectrum for
approximation of action-values based on the rank of approx-
imation and provides theoretical guarantees derived from
tensor analysis. Multi-view methods utilising tensor decom-
position have previously been used in the context of partially
observable single-agent RL (Azizzadenesheli et al., 2016;
Azizzadenesheli, 2019). There the goal is to efficiently infer
the underlying MDP parameters for planning under rich
observation settings (Krishnamurthy et al., 2016). Simi-
larly (Bromuri, 2012) use four dimensional factorization to
generalise across Q-tables whereas here we use them for
modelling interactions across multiple agents.

7. Conclusions & Future Work
We introduced TESSERACT, a novel framework utilising the
insight that the joint action value function for MARL can be
seen as a tensor. TESSERACT provides a means for devel-
oping new sample efficient algorithms and obtain essential
guarantees about convergence and recovery of the underly-
ing dynamics. We further showed novel PAC bounds for
learning under the framework using model-based algorithms.
We also provided a model-free approach to implicitly induce
low rank tensor approximation for better sample efficiency
and showed that it outperforms current state of art meth-
ods. There are several interesting open questions to address

in future work, such as convergence and error analysis for
rank insufficient approximation, and analysis of the learning
framework under different types of tensor decompositions
like Tucker and tensor-train (Kolda & Bader, 2009) and
augmentations such as tensor dropout (Kolbeinsson et al.,
2021).
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