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Abstract

In the domain generalization literature, a common
objective is to learn representations independent
of the domain after conditioning on the class la-
bel. We show that this objective is not sufficient:
there exist counter-examples where a model fails
to generalize to unseen domains even after sat-
isfying class-conditional domain invariance. We
formalize this observation through a structural
causal model and show the importance of mod-
eling within-class variations for generalization.
Specifically, classes contain objects that charac-
terize specific causal features, and domains can
be interpreted as interventions on these objects
that change non-causal features. We highlight
an alternative condition: inputs across domains
should have the same representation if they are
derived from the same object. Based on this ob-
jective, we propose matching-based algorithms
when base objects are observed (e.g., through
data augmentation) and approximate the objec-
tive when objects are not observed (Mat chDG).
Our simple matching-based algorithms are com-
petitive to prior work on out-of-domain accu-
racy for rotated MNIST, Fashion-MNIST, PACS,
and Chest-Xray datasets. Our method Mat chDG
also recovers ground-truth object matches: on
MNIST and Fashion-MNIST, top-10 matches
from MatchDG have over 50% overlap with
ground-truth matches.

1. Introduction

Domain generalization is the task of learning a machine
learning model that can generalize to unseen data distribu-
tions, after training on more than one data distributions. For
example, a model trained on hospitals in one region may be
deployed to another, or an image classifier may be deployed
on slightly rotated images. Typically, it is assumed that
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the different domains share some “stable” features whose
relationship with the output is invariant across domains (Pi-
ratla et al., 2020) and the goal is to learn those features. A
popular class of methods aim to learn representations that
are independent of domain conditional on class (Li et al.,
2018c;d; Ghifary et al., 2016; Hu et al., 2019), based on
evidence of their superiority (Zhao et al., 2019) to methods
that learn representations that are marginally independent
of domain (Muandet et al., 2013; Ganin et al., 2016).

In this work, we show that the class-conditional domain-
invariant objective for representations is insufficient. We
provide counter-examples where a feature representation
satisfies the objective but still fails to generalize to new
domains, both theoretically and empirically. Specifically,
when the distribution of the stable features to be learnt varies
across domains, class-conditional objective is insufficient
to learn the stable features (they are optimal only when the
distribution of stable features is the same across domains).
Differing distributions of stable features within the same
class label is common in real-world datasets, e.g., in digit
recognition, the stable feature shape may differ based on
people’s handwriting, or medical images may differ based
on variation in body characteristics across people. Our
investigation reveals the importance of considering within-
class variation in the stable features.

To derive a better objective for domain generalization, we
represent the within-class variation in stable features using
a structural causal model, building on prior work (Heinze-
Deml & Meinshausen, 2019) from single-domain general-
ization. Specifically, we construct a model for the data gen-
eration process that assumes each input is constructed from
a mix of stable (causal) and domain-dependent (non-causal)
features, and only the stable features cause the output. We
consider domain as a special intervention that changes the
non-causal features of an input, and posit that an ideal clas-
sifier should be based only on the causal features. Using
d-separation, we show that the correct objective is to build a
representation that is invariant conditional on each object,
where an object is defined as a set of inputs that share the
same causal features (e.g., photos of the same person from
different viewpoints or augmentations of an image in dif-
ferent rotations, color or background). When the object
variable is observed (e.g., in self-collected data or by dataset
augmentation), we propose a perfect-match regularizer for
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domain generalization that minimizes the distance between
representations of the same object across domains.

In practice, however, the underlying objects are not always
known. We therefore propose an approximation that aims
to learn which inputs share the same object, under the as-
sumption that inputs from the same class have more sim-
ilar causal features than those from different classes. Our
algorithm, MatchDG is an iterative algorithm that starts
with randomly matched inputs from the same class and
builds a representation using contrastive learning such that
inputs sharing the same causal features are closer to one
another. While past work has used contrastive loss to regu-
larize the empirical risk minimization (ERM) objective (Dou
et al., 2019), we demonstrate the importance of a two-phase
method that first learns a representation independent of the
ERM loss, so that classification loss does not interfere with
the learning of stable features. In datasets with data augmen-
tations, we extend Mat chDG to also use the perfect object
matches obtained from pairs of original and augmented
images (MDGHybrid).

We evaluate our matching-based methods on rotated MNIST
and Fashion-MNIST, PACS and Chest X-ray datasets. On all
datasets, the simple methods Mat chDG and MDGHybrid
are competitive to state-of-the-art methods for out-of-
domain accuracy. On the rotated MNIST and Fashion-
MNIST datasets where the ground-truth objects are known,
Mat chDG learns to makes the representation more similar
to their ground-truth matches (about 50% overlap for top-10
matches), even though the method does not have access to
them. Our results with simple matching methods show the
importance of enforcing the correct invariance condition.

Contributions. To summarize, our contributions include:
1). An object-invariant condition for domain generalization
that highlights a key limitation of previous approaches,

2). When object information is not available, a two-phase,
iterative algorithm to approximate object-based matches.
Also, the code repository can be accessed at: https://
github.com/microsoft/robustdg

2. Related Work

Learning common representation. To learn a generaliz-
able classifier, several methods enforce the learnt repre-
sentation ®(x) to be independent of domain marginally or
conditional on class label, using divergence measures such
as maximum mean discrepancy (Muandet et al., 2013; Li
et al., 2018b;c), adversarial training with a domain discrim-
inator (Ganin et al., 2016; Li et al., 2018d; Albuquerque
et al., 2020a), discriminant analysis (Ghifary et al., 2016;
Hu et al., 2019), and other techniques (Ghifary et al., 2015).

Among them, several works (Zhao et al., 2019; Johansson
et al., 2019; Akuzawa et al., 2019) show that the class-

conditional methods (Li et al., 2018c;d; Ghifary et al., 2016;
Hu et al., 2019) are better than those that enforce marginal
domain-invariance of features (Muandet et al., 2013; Ganin
et al., 2016; Li et al., 2018b; Albuquerque et al., 2020a),
whenever there is a varying distribution of class labels across
domains. We show that the class-conditional invariant is
also not sufficient for generalizing to unseen domains.

Causality and domain generalization. Past work has
shown the connection between causality and generalizable
predictors (Peters et al., 2016; Christiansen et al., 2020).
There is work on use of causal reasoning for domain adap-
tation (Gong et al., 2016; Heinze-Deml & Meinshausen,
2019; Magliacane et al., 2018; Rojas-Carulla et al., 2018)
that assumes Y — X direction and other work (Arjovsky
et al., 2019; Peters et al., 2016) on connecting causality that
assumes X — Y. Our SCM model unites these streams
by introducing Y3, and labelled Y and develop an invari-
ance condition for domain generalization that is valid under
both interpretations. Perhaps the closest to our work is by
(Heinze-Deml & Meinshausen, 2019) who use the object
concept in single-domain datasets for better generalization.
We extend their SCM to the multi-domain setting and use
it to show the inconsistency of prior methods. In addition,
while (Heinze-Deml & Meinshausen, 2019) assume objects
are always observed, we also provide an algorithm for the
case when objects are unobserved.

Matching and Contrastive Loss. Regularizers based on
matching have been proposed for domain generalization.
(Motiian et al., 2017) proposed matching representations
of inputs from the same class. (Dou et al., 2019) used a
contrastive (triplet) loss to regularize the ERM objective.
In contrast to regularizing based on contrastive loss, our
algorithm Mat chDG proceeds in two phases and learns a
representation independent of the ERM objective. Such an
iterative 2-phase algorithm has empirical benefits, as we
will show in Suppl. D.4. Additionally, we propose an ideal
object-based matching algorithm when objects are observed.

Other work. Others approaches to domain generalization
include meta-learning (Li et al., 2018a; Balaji et al., 2018),
dataset augmentation (Volpi et al., 2018; Shankar et al.,
2018), parameter decomposition (Piratla et al., 2020; Li
etal., 2017), and enforcing domain-invariance of the optimal
P(Y|®(x)) (Arjovsky et al., 2019; Ahuja et al., 2020). We
empirically compare our algorithm to some of them.

3. Insufficiency of class-conditional invariance

Consider a classification task where the learning al-
gorithm has access to i.i.d. data from m domains,
{(di, %i,yi)}q ~ (D, X, V)" where d; € D,, and
D,, C D is a set of m domains. Each training in-
put (d,x,y) is sampled from an unknown distribution
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Figure 1. Two datasets showing the limitations of class-conditional domain-invariance objective. a) The CDM predictor is domain-invariant
given the class label but does not generalize to the target domain; b) Colors denote the two ground-truth class labels. For class prediction,
the linear feature exhibits varying level of noise across domains. The stable slab feature also has noise but it is invariant across domains.

Pmn(D,X,Y). The domain generalization task is to learn
a single classifier that generalizes well to unseen domains
d' & D,, and to new data from the same domains (Shankar
et al., 2018). The optimum classifier can be written
as: f* = argminger Egx ) op[l(y?, f(xD))], where
(d,x,y) ~ P over (D,X,)).

As mentioned above, a popular line of work enforces that
the learnt representation ®(x) be independent of domain
conditional on the class (Li et al., 2018c;d; Ghifary et al.,
2016; Hu et al., 2019), ®(x) 1L D|Y. Below we present
two counter-examples showing that the class-conditional
objective is not sufficient.

3.1. A simple counter-example

We construct an example where ®(x) 1L D|Y, but still the
classifier does not generalize to new domains. Consider a
two dimensional problem where z1 = x. + agq; T2 = ag
where x. and o4 are unobserved variables, and oy varies
with domain (Figure 1(a)). The true function depends only
on the stable feature z., y = f(z.) = I(z. > 0). Sup-
pose there are two training domains with oy 1 for
domain 1 and s = 2 for domain 2, and the test do-
main has as 0 (see Figure 1(a)). Suppose further
that the conditional distribution of X given Y is a uni-
form distribution that changes across domains: for do-
main 1, X |[Y = 1 ~ U(1,3); X |Y = 0 ~ U(-2,0);
and for domain 2, X.|Y =1 ~ U(0,2); X.|Y =0 ~
U(—3,—1). Note that the distributions are picked such
that ¢(x1,x2) = 7 satisfies the conditional distribution
invariant, ¢(z) 1L D|Y. The optimal ERM classifier based
on this representation, (I(z; > 1.5) has 100% train ac-
curacy on both domains. But for the test domain with
ag=0; XY =1~U(0,2); X.|Y =0~ U(-2,0), the
classifier fails to generalize. It obtains 62.5% test accuracy
(and 25% accuracy on the positive class), even though its
representation satisfies class-conditional domain invariance.
In comparison, the ideal representation is 1 — x2 which
attains 100% train accuracy and 100% test domain accuracy,

and does not satisfy the class-conditional invariant.

The above counter-example is due to the changing distribu-
tion of .. across domains. If P(X.|Y) stays the same across
domains, then class-conditional methods would not incor-
rectly pick x; as the representation. Following (Akuzawa
et al., 2019), we claim the following (proof in Suppl. B.3).

Proposition 1. Under the domain generalization setup as
above, if P(X.|Y') remains the same across domains where
T is the stable feature, then the class-conditional domain-
invariant objective for learning representations yields a
generalizable classifier such that the learnt representation
®(x) is independent of the domain given x.. Specifically,
the entropy H(d|xz.) = H(d|®, z.).

However, if P(X¢|Y) changes across domains, then we
cannot guarantee the same: H(d|z.) and H(d|®, z.) may
not be equal. For building generalizable classifiers in such
cases, this example shows that we need an additional con-
straint on ®, H(d|z.) = H(d|®, z.); i.e. domain and rep-
resentation should be independent conditioned on ..

3.2. An empirical study of class-conditional methods

As a more realistic example, consider the slab dataset intro-
duced for detecting simplicity bias in neural networks (Shah
et al., 2020) that contains a feature with spurious correlation.
It comprises of two features and a binary label; (x;) has a
linear relationship with the label and the other feature (z2)
has a piece-wise linear relationship with the label which
is a stable relationship. The relationship of the linear fea-
ture with the label changes with domains (A.1); we do so
by adding noise with probability € = 0 for domain 1 and
€ = 0.1 for domain 2. On the third (test) domain, we add
noise with probability 1 (see Figure 1(b)). We expect that
methods that rely on the spurious feature ;1 would not be
able to perform well on the out-of-domain data.

The results in Table 1 (implementation details in Appendix
A.1) show that ERM is unable to learn the slab feature,
as evident by poor generalization to the target domain, de-
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spite very good performance on the source domains. We
also show that methods based on learning invariant rep-
resentations by unconditional (DANN, MMD, CORAL)
and conditional distribution matching (CDANN, C-MMD,
C-CORAL), and matching same-class inputs (Random-
Match) (Motiian et al., 2017) fail to learn the stable slab
feature. Note that Proposition 1 suggested the failure of
conditional distribution matching (CDM) algorithms when
the distribution of stable feature (slab feature) is different
across the source domains. However, the slab dataset has
similar distribution of stable feature (slabs) across the source
domains, yet the CDM algorithms fail to generalize to the
target domain. It can be explained by considering the spuri-
ous linear feature, which can also satisfy the CDM constraint
by “shifting” the y-conditional distributions along the linear
feature. We conjecture that the model may first learn the lin-
ear feature due to its simplicity (Shah et al., 2020), and then
retain the spurious linear feature upon further optimization
since it satisfies the CDM constraint. This shows that the
CDM methods can empirically fail even when there is an
equal distribution of stable features across domains.

How can we ensure that a model learns the stable, general-
izable feature x5? We turn to our example above, where the
required invariant was that the representation ®(x) should
be independent of domain given the stable feature. We ap-
ply this intuition and construct a model that enforces that
the learnt representation be independent of domain given
9. We do so by minimizing the ¢2-norm of the representa-
tions for data points from different domains that share the
same slab value (details of the PerfectMatch method in Sec-
tion 4.3). The results improve substantially: out-of-domain
accuracy is now 78%.

In the next section, we formalize the intuition of condition-
ing on stable features . using a causal graph, and introduce
the concept of objects that act as proxies of stable features.

4. A Causal View of Domain Generalization
4.1. Data-generating process

Figure 2(a) shows a structural causal model (SCM) that
describes the data-generating process for the domain gener-
alization task. For intuition, consider a task of classifying
the type of item or screening an image for a medical con-
dition. Due to human variability or by design (using data
augmentation), the data generation process yields variety
of images for each class, sometimes multiple views for the
same object. Here each view can be considered as a differ-
ent domain D, the label for item type or medical condition
as the class Y, and the image pixels as the features X. Pho-
tos of the same item or the same person correspond to a
common object variable, denoted by O. To create an image,
the data-generating process first samples an object and view

Table 1. Slab Dataset: Source domains with noisy linear compo-
nent with probability 0.0 and 0.1, target domain with noise 1.0.
Mean and standard deviation over 10 different seed values for each
method. The results for DANN (Ganin et al., 2016), CDANN (Li
et al., 2018d), MMD, C-MMD (L. et al., 2018b), CORAL, C-
CORAL (Sun & Saenko, 2016) were computed by using their
implementations in DomainBed (Gulrajani & Lopez-Paz, 2020).

Method | Source 1 Source2 |  Target

ERM 100.0 (0.0) 96.0 (0.25) | 57.6 (6.58)
DANN 99.9 (0.07) 94.8(0.25) | 53.0(1.41)
MMD 99.9 (0.01) 95.9(0.27) | 62.9 (5.01)
CORAL 99.9 (0.01) 96.0(0.27) | 63.1(5.86)
RandMatch | 100.0 (0.0) 96.1 (0.22) | 59.5 (3.50)
CDANN 99.9 (0.01) 96.0(0.27) | 55.9(2.47)
C-MMD 99.9 (0.01)  96.0 (0.27) | 58.9 (3.43)
C-CORAL | 99.9(0.01) 96.0(0.27) | 64.7 (4.69)

PerfMatch | 99.9 (0.05) 97.8(0.28) | 77.8 (6.01)

(a) Image classification.

(b) General SCM.

Figure 2. Structural causal models for the data-generating process.
Observed variables are shaded; dashed arrows denote correlated
nodes. Object may not be observed.

(domain) that may be correlated to each other (shown with
dashed arrows). The pixels in the photo are caused by both
the object and the view, as shown by the two incoming ar-
rows to X . The object also corresponds to high-level causal
features X that are common to any image of the same ob-
ject, which in turn are used by humans to label the class Y.
We call X as causal features because they directly cause
the class Y.

The above example is typical of a domain generalization
problem; a general SCM is shown in Figure 2(b), similar
to the graph in (Heinze-Deml & Meinshausen, 2019). In

general, the underlying object for each input xgd) may not

be observed. Analogous to the object-dependent (causal)
features X, we introduce a node for domain-dependent
high-level features of the object X 4. Changing the domain

. . d
can be seen as an intervention: for each observed XE ), there

are a set of (possibly unobserved) counterfactual inputs

ng/) where d # d’, such that all correspond to the same

object (and thus share the same X ). For completeness,
we also show the true unobserved label of the object which
led to its generation as Y3, (additional motivation for the
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causal graph is in Suppl. B.1). Like the object O, Y may
be correlated with the domain D. Extending the model in
(Heinze-Deml & Meinshausen, 2019), we allow that objects
can be correlated with the domain conditioned on Y, ye.
As we shall see, considering the relationship of the object
node becomes the key piece for developing the invariant
condition. The SCM corresponds to the following non-
parametric equations.

Xe = ue(0)
X 1= go(Xes Xa, €2)Y 1= h(Xe, €y)

0 := go(Ytrue; €o, €od)
Xa = Gaa(d, 0, €za)

where g,, grc» Jza» g and h are general non-parametric
functions. The error €,4 is correlated with domain d whereas
€05 €za> €z and €, are mutually independent error terms that
are independent of all other variables. Thus, noise in the
class label is independent of domain. Since x. is com-
mon to all inputs of the same object, g, is a deterministic
function of o. In addition, the SCM provides conditional-
independence conditions that all data distributions P must
satisfy, through the concept of d-separation (Suppl. B.2) and
the perfect map assumption (Pearl, 2009).

4.2. Identifying the invariance condition

From Figure 2(b), X¢ is the node that causes Y. Further,
by d-separation, the class label is independent of domain
conditioned on X¢, Y 1L D|X¢. Thus our goal is to learn
y as h(x.) where h : C — ). The ideal loss-minimizing
function f* can be rewritten as (assuming X, is known):

arg m}nE(d,xyy)l(y, f(x)) = arg m}}nIE[l(y7 h(xc))] ¢))

Since X is unobserved, this implies that we need to learn
it through a representation function ® : X — C. Together,
h(®(z)) leads to the desired classifer f : X — ).

Negative result on identification. Identification of causal
features is a non-trivial problem (Magliacane et al., 2018).
We first show that x¢ is unidentifiable given observed
data P(X,Y,D,0O) over multiple domains. Given the
same probability distribution P(X,Y, D, O), multiple val-
ues of X are possible. Substituting for o in the
SCM equations, we obtain, y = h(gsc(0),€y);x =
92(92¢(0), 9za(d, 0, €24), €,). By choosing g, and h ap-
propriately, different values of g,. (that determine z. from
o) can lead to the same observed values for (y, d, o, x). The
proof for the following proposition is in Supp. B.4.
Proposition 2. Given observed data distribution
P(Y,X,D,0) that may also include data obtained
from interventions on domain D, multiple values of X ¢
yield exactly the same observational and interventional
distributions and hence X is unidentifiable.

4.3. A “perfect-match” invariant

In the absence of identifiability, we proceed to find an invari-
ant that can characterize X.. By the d-separation criterion,

we see that X satisfies two conditions: 1) X¢ 1L D|O,
2) X¢ ML O; where O refers to the object variable and D
refers to a domain. The first is an invariance condition: X
does not change with different domains for the same object.
To enforce this, we stipulate that the average pairwise dis-
tance between ®(x) for inputs across domains for the same
object is 0, Y p—1aza dist(@(x\"), &(x(")) = 0.
Here Q : X x X — {0, 1} is a matching function that is
1 for pairs of inputs across domains corresponding to the
same object, and 0 otherwise.

However, just the above invariance will not work: we need
the representation to be informative of the object O (other-
wise even a constant  minimizes the above loss). Therefore,
the second condition stipulates that X should be informa-
tive of the object, and hence about Y. We add the standard
classification loss, leading to constrained optimization,

fperfectmatch = arg minh,q) zg;l Ld(h(q)(X))v Y)

s.t. Yo —varae dst(@E), 2" =0 (2)

where Ly(h(®(X),Y)) = 327 1(h(®(x\?V), y?V). Here
f represents the composition i o ®. E.g., a neural network
with ®(x) as its rth layer, and h being the rest of the layers.

Note that there can be multiple ®(x) (e.g., linear trans-
formations) that are equally good for the prediction task.
Since z. is unidentifiable, we focus on the set of stable
representations that are d-separated from D given O. Be-
ing independent of domain given the object, they cannot
have any association with X, the high-level features that
directly depend on domain (Figure 2b). The proof for the
next theorem is in Suppl. B.5.

Theorem 1. For a finite number of domains m, as the num-
ber of examples in each domain ng — oo,

1. The set of representations that satisfy the condition
200 k)= dtd dist(tb(x;d)), @(x,&d,))) = 0 contains the
optimal ®(x) = X¢ that minimizes the domain generaliza-
tion loss in (1).

2. Assuming that P(X,|O,D) < 1 for every high-level
feature X, that is directly caused by domain, and for
P-admissible loss functions (Miller et al., 1993) whose
minimization is conditional expectation (e.g., {5 or cross-
entropy), a loss-minimizing classifier for the following loss
is the true function f*, for some value of \.

fperfectmatch = arg minh,d) Z:inzl Ld(h(‘:p(X))v Y)+

A aGa—taza dist(@(), e(x(")  (3)

4.4. Past work: Learning common representation

Using the SCM, we now compare the proposed invari-
ance condition to domain-invariant and class-conditional
domain-invariant objectives. d-separation results show that
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both these objectives are incorrect: in particular, the class-
conditional objective ®(x) LL D|Y is not satisfied by X¢,
(Xc A D|Y;rue) due to a path through O. Even with infi-
nite data across domains, they will not learn the true X¢.
The proof is in Suppl. B.6.

Proposition 3. The conditions enforced by domain-
invariant (®(x) 1L D) or class-conditional domain-
invariant (®(z) 1L DI|Y) methods are not satisfied by
the causal representation X¢. Thus, without additional
assumptions, the set of representations that satisfy any of
these conditions does not contain X, even as n — oo.

5. MatchDG: Matching without objects

When object information is available, Eq. (3) provides
a loss objective to build a classifer using causal features.
However, object information is not always available, and in
many datasets there may not be a perfect “counterfactual”
match based on same object across domains. Therefore, we
propose a two-phase, iterative contrastive learning method
to approximate object matches.

The object-invariant condition from Section 4.2 can be inter-
preted as matching pairs of inputs from different domains
that share the same X . To approximate it, our goal is to
learn a matching ) : X x X — {0, 1} such that pairs having
Q(x,x’) = 1 have low difference in x. and x.. We make
the following assumption.

id/), y) be any two points
that belong to the same class, and let (Xk )y) be any
other point that has a different class label. Then the dis-

tance in causal features between x; and X; is smaller than
d) (& ))

i 0]

(d )) < dist(x () x(d ))

cy’

Assumption 1. Let (x (d),y) (x

that between x; and X, or X; and xy,: dist(z
dist(z (d) Ed,;)) and dist(z (d)

017 cg’

5.1. Two-phase method with iterative matches

To learn a matching function €2, we use unsupervised con-
trastive learning from (Chen et al., 2020; He et al., 2019)
and adapt it to construct an iterative Mat chDG algorithm
that updates the both the representation and matches after
each epoch. The algorithm relies on the property that two
inputs from the same class have more similar causal features
than inputs from different classes.

Contrastive Loss. To find matches, we optimize a con-
trastive representation learning loss that minimizes distance
between same-class inputs from different domains in com-
parison to inputs from different classes across domains.
Adapting the contrastive loss for a single domain (Chen
et al., 2020), we consider positive matches as two inputs
with the same class but different domains, and negative
matches as pairs with different classes. For every posi-
tive match pair (x;,xj), we propose a loss where 7 is

Algorithm 1 MatchDG

In: Dataset (d;, x;, ¥;)j—; from m domains, 7, t
Out: Function f : X — Y
Create random match pairs Qy-.
Build a p * ¢ data matrix M.
Phase 1
while notconverged do
for batch ~ M do
Minimize contrastive loss (4).
end for
if epoch % t == 0 then
Update match pairs using ®epoch-
end if
end while
Phase 11
Compute matching based on ®.
Minimize the loss (3) with learnt match function ® to obtain f.

a hyperparameter, B is the batch size, and sim(a,b) =
D (x,)T®(xp)/ || P(x4)]| ||®(x3p)]| is the cosine similarity.

; ) esim(j,k)/f
) = — 4
(vaxk) og esim(j,k) /T + ZZ 0,0i v esim(j,1)/7 ( )

Iterative matching. Our key insight is to update the posi-
tive matches during training. We start training with a ran-
dom set of positive matches based on the classes, but after
every t epochs, we update the positive matches based on the
nearest same-class pairs in representation space and iterate
until convergence. Hence for each anchor point, starting
with an initial set of positive matches, in each epoch a rep-
resentation is learnt using contrastive learning; after which
the positive matches are themselves updated based on the
closest same-class data points across domains in the repre-
sentation. As a result, the method differentiates between
data points of the same class instead of treating all of them as
a single unit. With iterative updates to the positive matches,
the aim is to account for intra-class variance across domains
and match data points across domains that are more likely to
share the same base object. In Suppl. D.6, we compare the
gains due to the proposed iterative matching versus standard
contrastive training.

Obtaining the final representation completes Phase I of the
algorithm. In Phase II, we use this representation to compute
a new match function based on closest same-class pairs and
apply Eq. (3) to obtain a classifier regularized on those
matches.

The importance of using two phases. We implement
MatchDG as a 2-phase method, unlike previous meth-
ods (Motiian et al., 2017; Dou et al., 2019) that employed
class-based contrastive loss as a regularizer with ERM. This
is to avoid the classification loss interfering with the goal of
learning an invariant representation across domains (e.g., in
datasets where one of the domains has many more samples
than others). Therefore, we first learn the match function
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using only the contrastive loss. Our results in Suppl. D.4
show that the two-phase method provides better overlap with
ground-truth perfect matches than optimizing classification
and matching simultaneously.

To implement Mat chDG we build a p X ¢ data matrix con-
taining ¢ — 1 positive matches for each input and then sam-
ple mini-batches from this matrix. The last layer of the
contrastive loss network is considered as the learnt represen-
tation (see Algorithm 1; details are in Suppl. C.1).

5.2. MDG Hybrid

While Mat chDG assumes no information about objects, it
can be easily augmented to incorporate information about
known objects. For example, in computer vision, a stan-
dard practice is to augment data by performing rotations,
horizontal flips, color jitter, etc. These self-augmentations
provide us with access to known objects, which can in-
cluded as perfect-matches in Mat chDG Phase-II by adding
another regularizer to the loss from Eq 3. We name this
method MDGHybrid and evaluate it alongside Mat chDG
for datasets where we can perform self augmentations.

6. Evaluation

We evaluate out-of-domain accuracy of MatchDG on two
simulated benchmarks by Piratla et al. (2020), Rotated
MNIST and Fashion-MNIST, on PACS dataset (Li et al.,
2017), and on a novel Chest X-rays dataset. In addition,
using the simulated datasets, we inspect the quality of
matches learnt by Mat chDG by comparing them to ground-
truth object-based matches. For PACS and Chest X-rays,
we also implement MDGHybrid that uses augmentations
commonly done while training neural networks. We com-
pare to 1) ERM: Standard empirical risk minimization,
2) ERM-RandMatch that implements the loss from Eq.
(3) but with randomly selected matches from the same
class (Motiian et al., 2017), 3) other state-of-the-art methods
for each dataset. For all matching-based methods, we use
the cross-entropy loss for L, and /5 distance for dist in
Eq.(3). Details of implementation and the datasets are in
Suppl. C.1. All the numbers are averaged over 3 runs with
standard deviation in brackets.

Rotated MNIST & Fashion-MNIST. The datasets contain
rotations of grayscale MNIST handwritten digits and fashion
article images from 0° to 90° with an interval of 15° (Ghi-
fary et al., 2015), where each rotation angle represents a
domain and the task is to predict the class label. Since dif-
ferent domains’ images are generated from the same base
image (object), there exist perfect matches across domains.
Following CSD, we report accuracy on 0° and 90° together
as the test domain and the rest as the train domains; since
these test angles, being extreme, are the hardest to generalize

to (standard setting results are in Suppl. D.1, D.2).

PACS. This dataset contains total 9991 images from four do-
mains: Photos (P), Art painting (A), Cartoon (C) and Sketch
(S). The task is to classify objects over 7 classes. Follow-
ing (Dou et al., 2019), we train 4 models with each domain
as the target using Resnet-18, Resnet-50 and Alexnet.

Chest X-rays. We introduce a harder real-world dataset
based on Chest X-ray images from three different sources:
NIH (Wang et al., 2017), ChexPert (Irvin et al., 2019) and
RSNA (rsn, 2018). The task is to detect whether the image
corresponds to a patient with Pneumonia (1) or not (0).
To create spurious correlation, all images of class 0 in the
training domains are translated vertically downwards; while
no such translation is done for the test domain.

Model Selection. While using a validation set from the test
domain may improve classification accuracy, it goes against
the problem motivation of generalization to unseen domains.
Hence, we use only data from source domains to construct a
validation set (except when explicitly mentioned in Table 4,
to compare to past methods that use test domain validation).

6.1. Rotated MNIST and Fashion MNIST

Table 2 shows classification accuracy on rotMNIST and
rotFashionMNIST for test domains 0° & 90° using
Resnet-18 model. On both datasets, Mat chDG outper-
forms all baselines. The last column shows the accu-
racy for an oracle method, ERM-PerfMatch that has
access to ground-truth perfect matches across domains.
MatchDG’s accuracy lies between ERM—-RandMatch and
ERM-PerfMatch, indicating the benefit of learning a
matching function. As the number of training domains
decrease, the gap between Mat chDG and baselines is high-
lighted: with 3 source domains for rotFashionMNIST,
MatchDG achieves accuracy of 43.8% whereas the next
best method ERM-RandMat ch achieves 38.4%.

We also evaluate on a simpler 2-layer LeNet (Motiian et al.,
2017), and the model from (Gulrajani & Lopez-Paz, 2020)
to compare MatchDG to prior works (Ilse et al., 2020;
Ganin et al., 2016; Shankar et al., 2018; Goodfellow et al.,
2014); the results are in Suppl. D.1, D.2.

Why MatchDG works? We compare the matches returned
by Mat chDG Phase I (on Resnet-18 network) to the ground-
truth perfect matches and find that it has significantly higher
overlap than matching based on ERM loss (Table 3). We
report three metrics on the representation learnt: percentage
of Mat chDG matches that are perfect matches, %-age of in-
puts for which the perfect match is within the top-10 ranked
Mat chDG matches, and mean rank of perfect matches mea-
sured by distance over the Mat chDG representation.

On all three metrics, Mat chDG finds a representation whose



Domain Generalization using Causal Matching

Table 2. Accuracy for Rotated MNIST & Fashion-MNIST datasets on target domains of 0° and 90°. Accuracy for CSD (Piratla et al.,
2020), MASF (Dou et al., 2019), IRM (Arjovsky et al., 2019) are reproduced from their code. Results for the other versions of Rotated
MNIST with all test angles (LetNet (Motiian et al., 2017), DomainBed (Gulrajani & Lopez-Paz, 2020)) are in Suppl. D.1, D.2.

Dataset | Source | ERM | MASF | CSD | IRM | RandMatch| MatchDG| PerfMatch (Oracle)
15, 30, 45,
Rotated | 60,75 93.0 (0.11) 93.2(0.2)| 94.5(0.35) 92.8 (0.53) 93.4(0.26) | 95.1(0.25) 96.0 (0.41)
MNIST 1730, 45,60 | 762 (1.27) 69.4 (1.32) 77.7 (1.88) 757 (111} 783 (0.55) | 83.6 (1.44) 89.7 (1.68)
| 30,45 | 59.7 (1.75) 60.8 (1.53) 62.0 (1.31) 59.5(2.61) 63.8(3.92) | 69.7 (1.30)| 80.4 (1.79)
Rotated ég ;2 45, 77.9(0.13) 72.4(2.9)| 78.7(0.38) 77.8 (0.02) 77.0(0.42) | 80.9 (0.26) 81.6 (0.46)
Fashion ’
MNIST | 30,45,60 | 36.1 (1.91) 29.7 (1.73) 36.3 (2.65) 37.8 (1.85] 38.4(2.73) | 43.8(1.33) 54.0 (2.79)
| 30,45 | 26.1 (1.10) 22.8 (1.26) 24.2 (1.69) 26.6 (1.06) 26.9 (0.34) | 33.0 (0.72)| 41.8 (1.78)
Rot MNIST Fashion MNIST
Table 3. Overlap with perfect matches. top-10 overlap and the ﬁ; 1 / T - I
mean rank for perfect matches for Mat chDG and ERM over all im f 20
training domains. Lower is better for mean rank. 2|/ ©
Dataset | Method Overlap (%) OVZ‘r’l‘;;(()% , Mean Rank E ) D
0 10 20 0 10 20
ERM 15.8(0.42)  48.8(0.78)  27.4(0.89) Training Epochs Treining Epochs
—— ERM e ERM: Perfect Train Acc
T ety | 2890124 642042 186159 MaichDG - MatchDG: Petect Tain Acc
E/i)a;ftﬁifh) 474(225)  $38(146)  6.19(0.61) (a) MatchDG Penalty during training
Fashion | ERM 2.1(0.12)  11.1(0.63) 2243 (8.73) sl RoL MNST 0.020 feshion HRIST
MatchDG 2
MNIST (Default) 17.9 (0.62) 43.1 (0.83) 89.0 (3.15) 50015 0.015 \
Mat chDG oow 0] \
(PerfMatch) 56.2(1.79) 87.2(1.48) 7.3 (1.18) £ 0.005 0.005 \\\
0.000 ~——+ T -

matches are more consistent with ground-truth perfect
matches. For both rotMNIST and rotFashionMNIST
datasets, about 50% of the inputs have their perfect match
within top-10 ranked matches based on the representation
learnt by Mat chDG Phase 1. About 25% of all matches
learnt by Mat chDG are perfect matches. For comparison,
we also show metrics for an (oracle) MatchDG method that
is initialized with perfect matches: it achieves better overall
and Top-10 values. Similar results for Mat chDG Phase 2
are in Suppl. D.4. Mean rank for rotFashionMNIST
may be higher because of the larger sample size 10, 000
per domain; metrics for training with 2000 samples are in
Suppl. D.5. To see how the overlap with perfect matches af-
fects accuracy, we simulate random matches with 25%, 50%
and 75% overlap with perfect matches (Suppl. Tbl. D.3).
Accuracy increases with the fraction of perfect matches,
indicating the importance of capturing good matches.

MatchDG vs. IRM on zero training error. Since neural
networks often achieve zero training error, we also evaluate
the effectiveness of the Mat chDG regularization under this
regime. Fig. 3 shows the matching loss term as training
proceeds for rotMNIST and rotFashionMNIST. Even

0.000
0 0

10 20 10 20
Training Epochs Training Epochs

ERM - ERM: Perfect Train Acc
IRM oo IRM: Perfect Train Acc

(b) IRM Penalty during training

Figure 3. MatchDG regularization penalty is not trivially mini-
mized even as the training error goes to zero.

after the model achieves zero training error, we see that
plain ERM objective is unable to minimize the matching
loss (and thus MatchDG penalty is needed). This is because
MatchDG regularization depends on comparing the (last
layer) representations, and zero training error does not mean
that the representations within each class are the same. In
contrast, regularizations that are based on comparing loss
between training domains such as the IRM penalty can be
satisfied by plain ERM as the training error goes to zero
(Fig. 3(b)); similar to Fig. (5) from (Krueger et al., 2020)
where ERM can minimize IRM penalty on Colored MNIST.

6.2. PACS dataset

ResNet-18. On the PACS dataset with ResNet-18 architec-
ture (Table 4), our methods are competitive to state-of-the-
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Table 4. Accuracy on PACS with ResNet 18 (default), and Resnet
18 with test domain validation. The results for JiGen (Carlucci
et al., 2019), DDAIG (Zhou et al., 2020), SagNet (Nam et al.,
2019), DDEC (Asadi et al., 2019), were taken from the Do-
mainBed (Gulrajani & Lopez-Paz, 2020) paper. For G2DM (Al-
buquerque et al., 2020a), CSD (Piratla et al., 2020), RSC (Huang
et al., 2020) it was taken from the respective paper. Extensive com-
parison with other works and std. dev. in results is in Supp E.1.

| P | A | C | S | Average.
ERM 95.38 | 77.68 | 78.98 | 74.75 81.70
JiGen 96.0 79.42 | 75.25 | 71.35 80.41
G2DM 93.75 | 77.78 | 75.54 | 77.58 81.16
CSD 94.1 78.9 75.8 76.7 81.4
DDAIG 95.30 | 84.20 | 78.10 | 74.70 83.10
SagNet 95.47 | 83.58 | 77.66 | 76.30 83.25
DDEC 96.93 | 83.01 | 79.39 | 78.62 84.46
RSC 95.99 | 83.43 | 80.31 | 80.85 85.15
RandMatch 95.37 | 78.16 | 78.83 | 75.13 81.87
MatchDG 9593 | 79.77 | 80.03 | 77.11 83.21
MDGHybrid 96.15 | 81.71 | 80.75 | 78.79 84.35
G2DM (Test) 94.63 | 81.44 | 79.35 | 79.52 83.34
RandMatch (Test) 95.57 | 79.09 | 79.37 | 77.60 82.91
Mat chDG (Test) 96.53 | 81.32 | 80.70 | 79.72 84.56
MDGHybrid (Test) 96.67 | 82.80 | 81.61 | 81.05 85.53

Table 5. Accuracy on PACS with architecture ResNet 50. The
results for IRM (Arjovsky et al., 2019), CORAL (Sun & Saenko,
2016), were taken from the DomainBed (Gulrajani & Lopez-Paz,
2020) paper. The result for RSC (Huang et al., 2020) was taken
from their paper. Comparison with other works in Supp E.1.

| P | A | C | S | Average.
DomainBed (ResNet50) | 97.8 88.1 77.9 79.1 85.7
IRM (ResNet50) 96.7 85.0 77.6 78.5 84.4

CORAL (ResNet50) 976 | 877 | 792 | 794 86.0

RSC (ResNet50) 97.92 | 87.89 | 82.16 | 83.35 87.83
RandMatch (ResNet50) 97.89 | 82.16 | 81.68 | 80.45 85.54
Mat chDG (ResNet50) 97.94 | 85.61 | 82.12 | 78.76 86.11
MDGHybrid (ResNet50) 98.36 | 86.74 | 82.32 | 82.66 87.52

art results averaged over all domains. The MDGHybrid
has the highest average accuracy across domains, except
compared to DDEC and RSC. These works do not disclose
their model selection strategy (whether the results are us-
ing source or test domain validation). Therefore, we also
report results of Mat chDG and MDGHybrid using test do-
main validation, where MDGHybrid obtains comparable
results to the best-performing method. In addition, with
DDEC (Asadi et al., 2019), it is not a fair comparison since
they use additional style transfer data from Behance BAM!
dataset during training.

ResNet-50. We implement Mat chDG on Resnet50 model
(Table 5) used by the ERM in DomainBed. Adding
MatchDG loss regularization improves the accuracy of
DomainBed, from 85.7 to 87.5 with MDGHybrid. Also,
MDGHybrid performs better than the prior approaches us-

Table 6. Chest X-Rays data. As an upper bound, training ERM on
the target domain itself yields 73.8%, 66.5%, and 59.9% accuracy
for RSNA, ChexPert, and NIH respectively.

| RSNA | ChexPert | NIH
ERM 55.1(2.93) | 60.9 (0.51) | 53.4(1.36)
IRM 57.0(0.75) | 63.3(0.25) | 54.6 (0.88)
CSD 58.6 (1.63) | 64.4 (0.88) | 54.7 (0.13)
RandMatch | 563 (3.38) | 55.3(2.25) | 53.1 (0.13)
MatchDG 58.2 (1.25) | 59.0 (0.25) | 53.2 (0.65)
MDGHybrid | 64.3(0.75) | 60.6(0.25) | 57.6(0.13)

ing Resnet50 architecture, except RSC (Huang et al., 2020),
whose results (87.83) are close to ours (87.52). Note that we
chose a subset of the best-performing baselines for Table 4,
5; an extensive comparison with other works is in Suppl. E.1.
Suppl. E.2 gives the results using AlexNet network, and a
t-SNE plot (Figure 5) to show the quality of representation
learnt by MatchDG.

6.3. Chest X-rays dataset

Table 6 provides results for the Chest X-rays dataset, where
the spurious correlation of vertical translation with the class
label in source domains may lead the models to learn an
unstable relationship. With RSNA as the target domain,
ERM obtains 79.8%, 81.8% accuracy on the source domains
while its accuracy drops to 55.1% for the target domain. In
contrast, MDGHybrid obtain the highest classification ac-
curacy (8 % above ERM), followed by CSD and Mat chDG;
while methods like ERM and IRM are more susceptible to
spurious correlation. However, on ChexPert as the target
domain, CSD and IRM do better than ERM while matching-
based methods are not effective. We conjecture these vary-
ing trends might be due to the inherent variability in images
in the source domains, indicating the challenges of building
domain generalization methods for real-world datasets.

7. Conclusion

We presented a causal view of domain generalization that
provides an object-conditional objective. Simple matching-
based methods perform competitively to state-of-the-art
methods on PACS, indicating the importance of choosing
the right invariance. The proposed MatchDG uses certain
assumptions when objects are unknown. More work needs
to be done to develop better matching methods, as indicated
by the mixed results on the Chest-Xrays dataset.
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