
Nonparametric Hamiltonian Monte Carlo (Appendix)

A. Statistical PCF
In this section, we present a simply-typed statistical probabilistic programming language with (stochastic) branching and
recursion, and its operational semantics.

This language serves two purposes for the NP-HMC algorithm. First, it is a purified universal probabilistic programming
language (PPL) widely considered (Borgström et al., 2016; Vákár et al., 2019; Mak et al., 2021) which specifies tree-
representable functions that satisfies Ass. 1, 2 and 3 (Prop. 7 and Lem. 12) and hence NP-HMC can be applied. Second, its
(operational) semantics is used to prove correctness of NP-HMC in App. C.

A.1. Syntax

SPCF is a simply-typed higher-order universal PPL with branching and recursion. More formally, it is a statistical
probabilistic version of call-by-value PCF (Scott, 1993; Sieber, 1990) with reals as the ground type. The terms and part of
the typing system of SPCF are presented in Fig. 10. Free variables and closed terms are defined in the usual way. In the
interest of readability, we sometimes use pseudocode (e.g. Listing 1) in the style of Python to express SPCF terms.

There are two probabilistic constructs of SPCF: the sampling construct normal draws from N , the standard Gaussian
distribution with mean 0 and variance 1; the scoring construct score(M) enables conditioning on observed data by
multiplying the weight of the current execution with the real number denoted by M . Note this is not limiting as the standard
uniform distribution with endpoints 0 and 1 can be described as cdfNormal(normal) where cdfNormal is the cumulative
distribution function (cdf) of the standard normal distribution. And any real-valued distribution with inverse cdf f can be
described as f(cdfNormal(normal)).

Remark 6. The main difference between our variant of SPCF and the others (Vákár et al., 2019; Mak et al., 2021) is that our
sampling construct draws from the standard normal distribution instead of the standard uniform distribution. This does not
restrict nor extend our language and is only considered since the target (parameter) space of the standard HMC algorithm
matches that of the support of a standard n-dimensional normal distribution.

Types (typically denoted σ, τ ) and terms (typically M,N,L):

σ, τ ∶∶= R ∣ σ⇒ τ

M,N,L ∶∶= y ∣ r ∣ λy.M ∣MN ∣ if(L ≤ 0,M,N) ∣ f(M1, . . . ,M`) ∣ YM ∣ normal ∣ score(M)

Typing system:

Γ ⊢ normal ∶ R
Γ ⊢M ∶ R

Γ ⊢ score(M) ∶ R
Γ ⊢M ∶ (σ⇒ τ) ⇒ (σ⇒ τ)

Γ ⊢ YM ∶ σ⇒ τ

Figure 10. Syntax of SPCF, where r ∈ R, x, y are variables, and f ∶ Rn → R ranges over a set F of partial, measurable primitive
functions.

A.2. Operational Semantics

The small-step reduction of SPCF is standard (see Borgström et al. (2016)). We present it as a rewrite system of configura-
tions, which are triples of the form ⟨M,w, t⟩ where M is a closed SPCF term, w ∈ R≥0 is a weight, and t ∈ T a trace, as
defined in Fig. 11.
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Values (typically denoted V ), redexes (typically R) and evaluation contexts (typically E):

V ∶∶= r ∣ λy.M

R ∶∶= (λy.M)V ∣ if(r ≤ 0,M,N) ∣ f(r1, . . . , r`) ∣ Y(λy.M) ∣ normal ∣ score(r)

E ∶∶= [] ∣ EM ∣ (λy.M)E ∣ if(E ≤ 0,M,N) ∣ f(r1, . . . , ri−1,E,Mi+1, . . . ,M`) ∣ YE ∣ score(E)

Redex contractions:

⟨(λy.M)V,w, t⟩ Ð→ ⟨M[V /y],w, t⟩

⟨f(r1, . . . , r`),w, t⟩ Ð→

⎧
⎪⎪
⎨
⎪⎪
⎩

⟨f(r1, . . . , r`),w, t⟩ if (r1, . . . , r`) ∈ Dom(f),

fail otherwise.

⟨Y(λy.M),w, t⟩ Ð→ ⟨λz.M[Y(λy.M)/y] z,w, t⟩ (for fresh variable z)

⟨if(r ≤ 0,M,N),w, t⟩ Ð→

⎧
⎪⎪
⎨
⎪⎪
⎩

⟨M,w, t⟩ if r ≤ 0,

⟨N,w, t⟩ otherwise.

⟨normal,w, t⟩ Ð→ ⟨r,w, t ++ [r]⟩ (for some r ∈ R)

⟨score(r),w, t⟩ Ð→

⎧
⎪⎪
⎨
⎪⎪
⎩

⟨r, r ⋅w, t⟩ if r > 0,

fail otherwise.

Evaluation contexts:
⟨R,w, t⟩ Ð→ ⟨R′,w′, t′⟩

⟨E[R],w, t⟩ Ð→ ⟨E[R′
],w′, t′⟩

⟨R,w, t⟩ Ð→ fail

⟨E[R],w, t⟩ Ð→ fail

Figure 11. Operational small-step semantics of SPCF

In the rule for normal, a random value r ∈ R is generated and recorded in the trace, while the weight remains unchanged:
even though the program samples from a normal distribution, the weight does not factor in Gaussian densities as they are
already accounted for by µT. In the rule for score(r), the current weight is multiplied by r ∈ R: typically this reflects the
likelihood of the current execution given some observed data. Similarly to (Borgström et al., 2016) we reduce terms which
cannot be reduced in a reasonable way (i.e. scoring with nonpositive constants or evaluating functions outside their domain)
to fail.

We write Ð→+ for the transitive closure ofÐ→, and Ð→∗ for the reflexive and transitive closure of Ð→.

A.2.1. VALUE AND WEIGHT FUNCTIONS.

Recall the measure space of traces T ∶= ⋃n∈NRn is equipped with the standard disjoint union σ-algebra ΣT ∶= {⋃n∈NUn ∣

Un ∈ Bn}, with measure given by summing the respective (higher-dimensional) normals µT(⋃n∈NUn) ∶= ∑n∈NNn(Un).
Following Borgström et al. (2016), we write Λ to denote the set of all SPCF terms and view it as ⋃n∈N(SKn ×Rn) where
SKn is the set of SPCF terms with exactly n numerals place-holders. The measurable space of terms is equipped with the
σ-algebra ΣΛ that is the Borel algebra of the countable disjoint union topology of the product topology of the discrete
topology on SKn and the standard topology on Rn. Similarly the subspace Λ0

v of closed values inherits the Borel algebra on
Λ.

Let M be a closed SPCF term. Its value function valueM ∶ T → Λ0
v ∪ {�} returns, given a trace, the output value of the

program, if the program terminates in a value. The weight function weightM ∶ T → R≥0 returns the final weight of the
corresponding execution. Formally:

valueM(t) ∶=

⎧
⎪⎪
⎨
⎪⎪
⎩

V if ⟨M,1, []⟩ Ð→∗
⟨V,w, t⟩

� otherwise
weightM(t) ∶=

⎧
⎪⎪
⎨
⎪⎪
⎩

w if ⟨M,1, []⟩ Ð→∗
⟨V,w, t⟩

0 otherwise

It follows already from (Borgström et al., 2016) that the functions valueM and weightM are measurable.
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Finally, every closed SPCF term M has an associated value measure

JMK ∶ ΣΛ0
v
Ð→ R≥0

U z→ ∫
valueM

−1(U)
weightM dµT

This corresponds to the denotational semantics of SPCF in the ω-quasi-Borel space model via computational adequacy
(Vákár et al., 2019).

Proposition 7. Every closed SPCF term has a tree representable weight function.

Proof. Assume M is a closed SPCF term and q ∈ Suppn(weightM). The reduction of M must be ⟨M,1, []⟩ Ð→∗
⟨V,w,q⟩

for some value V and weightw > 0. Assume for contradiction that there is some k < nwhere ⟨M,1, []⟩ Ð→∗
⟨V ′,w′,q1...k

⟩

for some value V ′ and weight w′
> 0. Since q1...k is a prefix of q and Ð→ is deterministic if the trace is given, we must

have ⟨M,1, []⟩ Ð→+
⟨V ′,w′,q1...k

⟩ Ð→
+
⟨V,w,q⟩ , which contradicts the fact that V ′ is a value.

A.3. Almost-sure Termination

Definition 8. We say that a SPCF term M terminates almost surely if M is closed and µT({t ∈ T ∣ ∃V,w . ⟨M,1, []⟩ Ð→∗

⟨V,w, t⟩}) = 1;

The following proposition is used in Prop. 24 to support the correctness proof.

Proposition 9. The value measure JMK of a closed almost surely terminating SPCF term M which does not contain
score(−) as a subterm is probabilistic.

One of the main contribution of (Mak et al., 2021) is to find a suitable class of primitive functions such that their main
theorem (Lem. 10) holds.

For our purposes, we take the set of analytic functions with co-domain R as our class F of primitive functions which, as
shown in Example 3 of (Mak et al., 2021), satisfies the conditions for which the following lemma holds.

Lemma 10 (Mak et al. (2021), Theorem 3). Let M be an SPCF term which terminates almost surely. Then its weight
function weightM and value function valueM are differentiable almost everywhere.

Definition 11. We say that a SPCF term M is integrable if M is closed and its value measure is finite, i.e. JMK(Λ0
v) < ∞;

We conclude with the following lemma which shows that NP-HMC is an adequate inference algorithm for closed SPCF
terms.

Lemma 12. The weight function of a closed integrable almost surely terminating SPCF term satisfies Assumptions 1, 2 and
3 of the NP-HMC algorithm.

Proof. Let M be a closed integrable almost surely terminating SPCF term, and w be its weight function. w is tree
representable by Prop. 7. Integrability of w (Assumption 1) is given as an assumption, and w is almost everywhere
continuously differentiable (Assumption 2) by Lem. 10.

Assume for contradiction that Assumption 3 does not hold. i.e. There is a non-null set U of infinite real-valued sequence
where w is zero on all prefixes of sequences in U . Let Up ∶= {q1...k

∣ q ∈ U,k ∈ N} be the set of prefixes of sequences in
U . Since U is non-null, Up must also be non-null. Moreover, w is zero on all traces in Up. By the definition of weight
function, q ∈ Up implies ⟨M,1, []⟩ /Ð→

∗
⟨V,w′,q⟩ for some V and w′. Hence, the probability of a non-terminating run of

M is non-zero and M is not almost surely terminating.

Remark 13. The weight function as defined in App. A.2.1 is the input density function of the target distribution to which an
inference algorithm typically samples from. In this paper, we call this function the “weight function” when considering
semantics following (Culpepper & Cobb, 2017; Vákár et al., 2019; Mak et al., 2021), and use the notion “density” when
referring it in an inference algorithm similar to (Zhou et al., 2019; 2020; Cusumano-Towner et al., 2020).
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B. Hamiltonian Monte Carlo Algorithm and its Variants
Hamiltonian Monte Carlo (HMC) algorithm (Duane et al., 1987; Cances et al., 2007; Neal, 2011) is a Markov chain
Monte Carlo inference algorithm that generates samples from a continuous (finite) distribution ν on the measure space
(Rn,Bn,Lebn), where Bn denotes the Borel σ-algebra.

B.1. HMC Algorithm

To generate a Markov chain {qi}i∈N of samples from ν, HMC simulates the Hamiltonian motion of a particle on the negative
logarithm of the density function of ν with some auxiliary momentum. Hence regions with high probability in ν have low
potential energy and are more likely to be visited by the simulated particle. In each iteration, the particle is given some
random momentum. We formalise the algorithm here.

B.1.1. HAMILTONIAN DYNAMICS

Say ρ ∶ Rn → R is the (not necessarily normalized) probability density function of ν. The simulated particle has two
types of energies: potential energy U ∶ Rn → R given by U(q) ∶= − log ρ(q) and kinetic energy K ∶ Rn → R given
by K(p) ∶= − log pdfD(p) where D is some momentum distribution, typically a n-dimensional normal distribution.
Henceforth, we take K(p) ∶= ∑

n
i=1

p2
i

2
.

The Hamiltonian H ∶ Rn ×Rn → R≥0 of a system is defined quite simply to be the sum of the potential and kinetic energies,
i.e.

H(q,p) ∶= U(q) +K(p).

The trajectories {(qt,pt)}t≥0, where qt and pt are the position and momentum of the particle at time t respectively, defined
by the Hamiltonian H , can be determined by the Hamiltonian equations:

dq(t)
dt

∶=
∂H

∂p
(q(t),p(t)) = ∇K(p(t)) = p(t) and

dp(t)
dt

∶= −
∂H

∂q
(q(t),p(t)) = −∇U(q(t)).

with initial conditions (q(0),p(0)) = (q0,p0
).

The canonical distribution (also called Boltzmann-Gibbs distribution) π on the measure space (Rn ×Rn,ΣRn×Rn ,Leb2n)

corresponding to H is given by the probability density function

ζ(q,p) ∶=
1

Z
exp (−H(q,p)) =

1

Z
exp (−U(q) −K(p)) where Z ∶= ∫

Rn
ρ dLebn

B.1.2. THE ALGORITHM

Since computers cannot simulate continuous motions like Hamiltonian, the equations of motion are generally numerically
integrated by the leapfrog method (also called the velocity-Verlet algorithm (Verlet, 1967)):

pn+1/2
= pn − ε/2 ⋅ ∇U(qn)

qn+1
= qn + ε ⋅ pn+1/2

pn+1
= p(n+1)/2

− ε/2 ⋅ ∇U(qn+1
)

where ε is the time step.

The integrator Ψn ∶ Rn ×Rn → Rn ×Rn as given in Alg. 4, takes a state (q,p) and performs L leapfrog steps with initial
condition (q0,p0

) ∶= (q,p) and time step ε, and return the state (qL,−pL).

Proposition 14 (Bou-Rabee & Sanz-Serna (2018), Theorem 4.1 and 4.2). The integrator Ψn is volume preserving
(i.e. Ψn∗Leb2n = Leb2n) and reversible (i.e. Ψn = Ψn

−1) on Rn ×Rn.

Proof. Let φPk , φ
Q
k ∶ R2n

→ R2n be the transition of momentum and position variables with step size k respectively,
i.e. φPk (q,p) = (q,p − k∇U(q)), and φQk (q,p) = (q + k∇K(p),p). Hence, we can write the integrator Ψn as the
composition S ○ φPε/2 ○ φ

Q
ε ○ φ

P
ε/2, where S(q,p) ∶= (q,−p).
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Algorithm 4 HMC Integrator Ψn

Input: current state (q0,p0), potential energy U ,
step size ε, number of steps L
Output: new state (q,p)

(q,p) = (q0,p0) {initialise}
for i = 0 to L do
p = p − ε

2
∇U(q) {1/2 momentum step}

q = q + εp {1 position step}
p = p − ε

2
∇U(q) {1/2 momentum step}

end for
p = −p
return (q,p)

Algorithm 5 HMC Step
Input: current sample q0, potential energy U , step
size ε, number of steps L
Output: next sample q
p0 ∼ Nn {Kick}
(q,p) = Ψn((q0,p0), U, ε,L) {Integrate}
if U(0,1)a

< min{1, ζ(q,p)
ζ(q0,p0)} then

return q {MH acceptance ratio}
else

return q0
end if

aU(0,1) is the standard uniform distribution.

It is easy to see that (φPk )
−1

= S ○ φPk ○ S and (φQk )

−1
= S ○ φQk ○ S. Hence, Ψn

−1
= (φPε/2)

−1
○ (φQε )

−1
○ (φPε/2)

−1
○ S =

S ○ φPε/2 ○ φ
Q
ε ○ φ

P
ε/2 = Ψn and Ψn is reversible.

Similarly it is easy to see that the shear transformations φPk , φQk and momentum flip S preserves measure on R2n,
i.e. φPk (D), φQk (D), S(D) and D have the same measure for all measurable set D in R2n. Hence, (Ψn∗Leb2n)(D) =

Leb2n(Ψn
−1

(D)) = Leb2n(Ψn(D)) = Leb2n(D) and Ψn is volume preserving.

Alg. 5 shows how HMC generates a sample from the current one q0. It first performs leapfrog steps on (q0,p0) via the
integrator Ψn with a randomly chosen initial momentum p0. The result (q,p) of Ψn is then accepted with probability
min{1, ζ(q,p)

ζ(q0,p0)}. Note that if Hamiltonian is preserved (i.e. H(q,p) =H(q0,p0)), the acceptance probability is one and
the proposal will always be accepted.

A Markov chain {qi}i∈N is generated by iterating Alg. 5.

B.1.3. CORRECTNESS

The HMC algorithm is only effective if its generated Markov chain {qi}i∈N does converge to the target distribution ν. Here
we consider the typical convergence result of the total variation norm for the probability measure generated.

Formally, we say a Markov chain {qi}i∈N converges to the target distribution ν on Rn if

∀q ∈ Rn, lim
m→∞

∥Qm(q,−) − ν∥ = 0,

where Qm(q,A) is the probability for which the Markov chain is in A ∈ Bn after m steps starting at q ∈ Rn and ∥−∥ denotes
the total variation norm on Rn (i.e. ∥µ∥ ∶= supA∈Bn

µ(A) − infA∈Bn µ(A)).

Here we present the necessary conditions to prove such a result for the HMC algorithm. Let Q ∶ Rn × Bn → R≥0 be the
transition kernel specified by Alg. 5, so that Q(q,A) is the probability for which the next sample returned by Alg. 5 is in
A ∈ Bn given the current sample is q ∈ Rn. We write Qm to be m compositions of Q. (i.e. Q0

(q,A) ∶= [q ∈ A]; for k > 0,
Qk+1

(q,A) ∶= ∫Rn Q
k
(q′,A) Q(q,dq′)).

First, we make sure that ν is the invariant distribution of the Markov chain.
Proposition 15 (Bou-Rabee & Sanz-Serna (2018), Theorem 5.2). ν is invariant against Q.

While showing ν is the invariant distribution for the Markov chain is relatively simple, we would be wrong to think that
convergence follows trivially. In fact, as shown in the following example, the Markov chain can easily be periodic.
Example 16 (Bou-Rabee & Sanz-Serna (2018), Example 5.1). Consider the case where the target distribution is a
(unnormalised) one-dim. normal distribution. In particular say the potential energy is U(q) ∶= q2

/2. Then, the Hamiltonian
flow (H(q, p) = U(q)+K(p) = q2

/2+p2
/2) is a rotation in the (q, p)-plane with period 2π. If the duration of the simulation

is π, the exact flow returns q1 = −q0.

There are known conditions for which HMC converges to the right distribution (Schütte, 1999). Here we follow the treatment
given by Cances et al. (2007).
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Results from (Tierney, 1994; Borgström et al., 2016) tell us that it is enough to show that the transition kernel Q is strongly
ν-irreducible: for all a and B, ν(B) > 0 implies Q(a,B) > 0.

Lemma 17 (Cances et al. (2007), Lemma 2 and 3 (Strong irreducibility)). Assume U is continuously differentiable, bounded
above on Rn and ∇U is globally Lipschitz. Then the transition kernel Q is strongly ν-irreducible.

Lemma 18 (Borgström et al. (2016), Lemma 33 (Aperiodicity)). A strongly ν-irreducible transition kernel is also ν-
aperiodic.

Lemma 19 (Tierney (1994), Theorem 1 and Corollary 2). If the transition kernel Q with invariant distribution ν is
ν-irreducible and ν-aperiodic, then for all q, limn→∞∥Qn(q,−) − ν∥ = 0.

Theorem 20. If U is continuously differentiable, bounded above on Rn and ∇U is globally Lipschitz, the Markov chain
generated by iterating Alg. 5 converges to the target distribution ν.

B.2. HMC Variants

B.2.1. REFLECTIVE/REFRACTIVE HMC

Reflective/refractive HMC (RHMC) (Afshar & Domke, 2015) is an extension of HMC that improves its behaviour for
discontinuous density functions. Standard HMC is correct for such distributions as well, but the acceptance probability may
be very low and convergence extremely slow.

We need to quickly discuss what discontinuities mean in our setting: In addition to discontinuities of each Un ∶ Rn → R
itself, we also regard it as a discontinuity when q leaves the support of Un, since this means that a different branch in the
tree representing function is chosen. The set of these discontinuities is ∂Supp(w), i.e. the boundary of the support of the
density function.

Fortunately, the extension of RHMC to our nonparametric setting is straightforward. The algorithm is described in Alg. 6.
The only relevant difference is the need for an extend call in the algorithm.

The rest of the algorithm is the same as (Afshar & Domke, 2015): It uses two additional functions that deal with the
discontinuities of U : decompose and nextBoundary. Just like in (Afshar & Domke, 2015), we assume that these are given
to the algorithm because their implementation depends on the kind of discontinuities in the density function. In the original
paper, they only consider discontinuities that are given by affine subspaces.

The function nextBoundary(q,p, T,U) takes a position q ∈ Rn, a momentum p ∈ Rn, a time limit T > 0, and family of
potential energies {Un}n∈N. It then checks whether a particle starting at q moving with momentum p will hit a discontinuity
of U in time ≤ T . If so, it returns the time t of “impact”, the position q< just before the discontinuity and q> just after the
discontinuity.

The function decompose(q,p, U) takes a position q on the discontinuity, a momentum p, and U as before. It then
decomposes the momentum p into a component p∥ that is parallel to the discontinuity and p⊥ that is perpendicular to it.

The basic idea of the algorithm is inspired by reflection and refraction in physics. We simulate the trajectory of a particle
according to Hamiltonian dynamics. When hitting a discontinuity, we compute the potential difference. If the kinetic energy
is big enough to overcome it, refraction occurs: the perpendicular component of p is scaled down. Otherwise, the particle is
reflected.

The only difference to the original algorithm in (Afshar & Domke, 2015) is the call to extend. Why is it necessary? When
hitting a discontinuity (and only then!), we may have to switch to a different branch on the tree representing the density
function. Hence we may have to extend the position q> just after the discontinuity, which is why we call extend on it.

B.2.2. LAPLACE MOMENTUM AND DISCONTINUOUS HMC

The Hamiltonian Monte Carlo method usually uses Gaussian momentum because it corresponds to the physical interpretation
of kinetic energy being 1

2 ∑i
p2
i for a momentum vector p. Nishimura et al. (2020) propose to use Laplace momentum

where the kinetic energy for a momentum vector p is given by ∑i ∣pi∣. This means that the momentum vector must follow
a Laplace distribution, denoted as L(0,1), with density proportional to ∏i exp(−∣pi∣). Hamilton’s equations have to be
changed to

dq
dt

= sign(p),
dp
dt

= −∇qU.
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Algorithm 6 NP-RHMC Integrator ΨNP−R
Input: current state (q0,p0), family of potential energies
{Un}n∈N, step size ε, number of steps L
Output: new state (q,p) computed according to Hamil-
tonian dynamics, extended initial state (q0,p0)

(q,p) = (q0,p0) {initialise}
for i = 0 to L do
p = p − ε

2
∇U∣q0∣(q) {1/2 momentum step}

t = 0 {start of position step}
while nextBoundary(q,p, ε − t,U) exists do

(t′,q<,q>) = nextBoundary(q,p, ε − t,U)

t = t + t′

((q′,p′), (q′0,p
′
0)) = extend((q>,p), (q0,p0), iε +

t,U)

∆U = (U∣q′∣(q
′
) −U∣q<∣(q<))

if ∥p⊥∥2
> 2∆U then

(p∥,p⊥) = decompose(q′,p′, U)

p⊥ =
√

∥p⊥∥
2
− 2∆U

p⊥
∥p⊥∥

{refraction}
q = q′

else
(p∥,p⊥) = decompose(q<,p, U)

p⊥ = −p⊥ {reflection}
q = q<

end if
p = p⊥ + p∥

end while
q = q + (ε − t)p {rest of position step}
p = p − ε

2
∇U∣q∣(q) {1/2 momentum step}

end for
p = −p
return ((q,p), (q0,p0))

Algorithm 7 extend for NP-DHMC
Input: current state (q,p), initial state (q0,p0), time
t, family of potential energies U = {Un}n∈N family of
potential energies {Un}n∈N, step size ε, number of steps L
Output: extended current state (q,p), extended initial
state (q0,p0)

while q /∈ Dom(U∣q∣) do
x0 ∼ N(0,1)
if ∣q∣ + 1 ∈ C then
y0 ∼ N(0,1) {Gaussian for continuous params}

else
y0 ∼ L(0,1) {Laplace for discontinuous ones}

end if
(x, y) = (x0 + t y0, y0) {update to current time t}
(q0,p0) = (q0 ++ [x0],p0 ++ [y0])

(q,p) = (q ++ [x],p ++ [y]) {increment dimension}
end while
return ((q,p), (q0,p0))

Algorithm 8 NP-DHMC Integrator ΨNP−Dis

Input: current state (q0,p0), family of potential energies
{Un}n∈N, step size ε, number of steps L, discontinuous
coordinates D
Output: new state (q,p) computed according to Hamil-
tonian dynamics, extended initial state (q0,p0)

(q,p) = (q0,p0) {initialise}
q′ = q0

p′ = p0

N = ∣q0∣

for i = 0 to L do
pC = pC −

ε
2
∇qC

UN(q)
qC = qC +

ε
2
pC

for j ∈ randomlyPermute(D) do
if j < ∣q∣ then
{∣q∣ may have changed, so must check j < ∣q∣}
((q,p), (q′,p′)) =

coordIntegrator((q,p), (q′,p′), j, iε, ε)
end if

end for
N = ∣q∣
qC = qC +

ε
2
pC

pC = pC −
ε
2
∇qC

UN(q)
end for
p = −p
return ((q,p), (q′,p′))

function coordIntegrator((q,p), (q′,p′), j, t, ε)
q∗ = q
q∗j = q

∗
j + εsign(pj)

((q∗,p∗), (q′
∗
,p′

∗
)) = extend((q∗,p∗), (q′,p′), t, U)

∆U = U(q∗) −U(q)
if ∣pi∣ > ∆U then

(q,p) = (q∗,p∗) {enough kinetic energy to jump}
(q′,p′) = (q′

∗
,p′

∗
)

pi = pi − sign(pi)∆U
else
pi = −pi {not enough kinetic energy, reflect}

end if
return ((q,p), (q′,p′))
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Note that the time derivative of q only depends on the sign of the pi’s. Hence, if the sign does not change, the change of q
can be computed, irrespective of the intermediate values of U∣q∣(q). The integrator of discontinuous HMC (Nishimura et al.,
2020) takes advantage of this for “discontinuous parameters”, i.e. parameters that U is not continuous in. Thus it can jump
through multiple discontinuities of U without evaluating it at every boundary.

We adapt the integrator from (Nishimura et al., 2020) to NP-HMC. Following them, we assume for simplicity that each
coordinate of the position space either corresponds to a continuous or discontinuous parameter, irrespective of which
path is chosen. The set C records all the continuous parameters and D = N ∖ C the discontinuous ones. We use a
Gaussian distribution for the continuous parameters of the momentum vector and a Laplace distribution for the discontinuous
parameters. Our integrator updates the continuous coordinates by half a step size just as before, but then the discontinuous
ones are updated coordinate by coordinate, a technique called operator splitting. Afterwards, the continuous coordinates are
updated by half a step size again. Algorithm 8 contains all the details.

Again, the main difference to the original algorithm is a call to extend. Note we also have to modify the extend function
itself (given in Alg. 7) because some momentum coordinates have to be sampled from a Laplace distribution, and not a
Gaussian as before.

B.3. Efficiency Improvements

As touched upon in the main text, our implementation includes various performance improvements compared to the
pseudocode presentation of NP-HMC.

(i) The extend function (Alg. 3) as presented may seem inefficient. While it terminates almost surely (thanks to Assump-
tion 3), the expected number of iterations may be infinite. In practice, however, the density function w will arise from a
probabilistic program, such as Listing 1. Therefore, to evaluate w, it would be natural to run the program. The length of q
returned by extend is exactly the number of sample statements encountered during the program’s execution. In particular, if
the program has finite expected running time, then the same is true of extend.

(ii) On top of that, efficient implementations of NP-HMC will interleave the execution of the program with extend, by
gradually extending q (if necessary) at every encountered sample statement. This way, extend increases the running time
only by a small constant factor.

(iii) In a similar vein, we do not have to compute the sum w≤n(q) = ∑
n
k=1w(q1...k

) each time Un = − logw≤n is accessed.
By the prefix property, only one of the summands of w≤n(q) is actually nonzero. Moreover, if w is given by a probabilistic
program, then the weight computed during the execution of the program on q is exactly this nonzero summand, assuming
that the trace q is long enough for a successful run (which the extend function ensures).

(iv) Another notable way our implementation differs from the algorithm presented above is that it not only extends a trace q
in extend (if necessary), but also trims it (if necessary) to the unique prefix q′ of q with positive w(q′). The dimension of p
is adjusted accordingly. This seems to work much better for certain examples, such as the geometric distribution described
in Sec. 5. The reason is most likely that the unused suffix (which may have been adapted to the state before the current call
of extend) is a hindrance when trying to extend to a different state later on.

C. Proof of Correctness
In this section, we show that the NP-HMC algorithm is correct, in the sense that the Markov chain generated by iterating
Alg. 1 converges to the target distribution ν ∶ A↦ 1

Z ∫A
w dµT where Z ∶= ∫Tw dµT.

Henceforth, we assume that the density function w of the target distribution ν is tree-representable and satisfies Assumptions
1, 2 and 3.

C.1. An Equivalent Algorithm

We write Alg. 1 as the program NPHMCstep (Alg. 2 as NPint and Alg. 3 as extend) in Listing 2. We present input sample as
q0; the density function as w and define potential energy U , which is a family of partial functions, as a function U, such that
U(n) is a partial function denoting Un; step size as ep; and number of steps as L. We also assume the following primitive
functions are implemented: normal is the sampling construct in the language which samples a real number from the standard
normal distribution N1. domain(f) gives the domain of the partial function f. pdfN(x,n) gives the probability density of x
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on the standard n-dimensional normal distribution. cdfN(x) gives the cumulative distribution of x on the standard normal
distribution. grad(f,x) gives the gradient of the partial function f at x if defined and None if not.

The program NPHMC generates a Markov chain on T by iterating NPHMCstep .

Instead of a direct proof, we consider an auxiliary program eNPHMC equivalent to NPHMC (in the sense of Prop. 22), which
does not increase the dimension dynamically; instead it finds the smallest N such that all intermediate positions during the
L leapfrog steps stay in the domain of UN , and performs leapfrog steps as in standard HMC.

The program eNPHMC is given in Listing 4, which iterates eNPHMCstep to generate a Markov chain on states and then
marginalise it using the helper function supported to obtain a Markov chain on T. The program validstate determines
whether the input state (q0,p0) goes beyond the domain of the potential energy U in L leapfrog steps, and the program
HMCint is the leapfrog integrator of the standard HMC algorithm.
Remark 21. Programs in Listings 2 to 4 are given in Python syntax, but they can be translated into SPCF. First, note we can
represent pairs and lists using Church encoding as follows:

Pair(σ, τ) ∶= σ → τ → (σ → τ → R) → R List(σ) ∶= (σ → R→ R) → (R→ R)

⟨M,N⟩ ≡ λz.zM N [M1, . . . ,M`] ≡ λfx.f M1(f M2 . . . (f M` 0))

Hence a state (q,p) ∈ R` ×R` can be encoded as a value [⟨q1,p1⟩, . . . , ⟨q`,p`⟩] with type List(Pair(R,R)).

Now we look at all the primitive functions used in the programs. It is easy to see that cdfN, pdfN and log are analytic
functions. len, append and sum can be defined on Church lists. grad can be defined using the simple numerical differentiation
method using analytic functions like subtraction and division. We can change domain in such a way that it takes q and
w as inputs and tests whether sum([w(q[:i]) for i in range(len(q))]) is zero (instead of testing whether q is in the
domain of U(len(q))).

Now we give a formal definition of equivalence. We say two SPCF programs are equivalent if they induce the same value
and weight functions, as specified in App. A.2.1.

Proposition 22. NPHMC and eNPHMC are equivalent.

Proof. We give an informal explanation here.

First note that NPHMCstep is a Markov process on samples, and eNPHMCstep on states. However, it is easy to see that some
minor changes to NPHMCstep and NPHMC make NPHMCstep a Markov process on states. Precisely, the following does not
alter the meaning of program NPHMC:

(1) Given a state (q0,p0) in NPHMCstep , apply supported to q0 at the start of initialisation and return the state (q0,p0) or
(q,p) at the MH acceptance step.

(2) In NPHMC, add the marginalisation step just like in eNPHMC.

Hence, it is enough to show that all steps in programs NPHMCstep and eNPHMCstep are equivalent, i.e. they give the same
weight and value functions.

After the modification, NPHMCstep and eNPHMCstep have the same initialisation and MH acceptance step. So it remains to
show that the NP-HMC integration as described in NPint behaves the same as searching for a valid initial state (step 2) and
HMC integration (step 3) in eNPHMCstep .

In NPHMCstep , ((q,p),(q0,p0)) = NPint((q0,p0),U,ep,L) “integrates” from the initial state (q0,p0) until it goes
beyond the domain of U(len(q0)), at which moment it extends.

While in eNPHMCstep , it increments the dimension of the state (q0,p0) until it has just enough dimension to “integrate” for
time ep*L through U(len(q0)) without going beyond the domain of U(len(q0)). This ensures the state (q0,p0) is safe to
be an input to the standard HMC integrator HMCint.

Notice that given the same values for the samples, the resulting initial state (q0,p0) in NPHMCstep would be the same as
that in eNPHMCstep . Hence, the proposal state (q,p) in both programs would be the same.

Remark 23. The discussion in the proof of Prop. 22 argues informally that NPHMC and eNPHMC are equivalent. We outline a
formal proof here. To show that NPHMC and eNPHMC are equivalent, we first demonstrate that one program can be obtained
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Listing 2. Python code for NPHMC
def extend((q,p),(q0,p0),t,U):
while q not in domain(U(len(q))):
x0 = normal
y0 = normal
x = x0 + t*y0
y = y0
q0.append(x0)
p0.append(y0)
q.append(x)
p.append(y)

return ((q,p),(q0,p0))

def NPint((q0,p0),U,ep,L):
q = q0
p = p0
for i in range(L):
p = p − ep/2*grad(U(len(q0)),q)
q = q + ep*p
((q,p),(q0,p0)) =
extend((q,p),(q0,p0),i*ep,U)

p = p − ep/2*grad(U(len(q0)),q)
return ((q,p),(q0,p0))

def NPHMCstep(q0,w,ep,L):
# initialisation
p0 = [normal for i in range(len(q0))]
U = lambda n: lambda q:

−log(sum([w(q[:i]) for i in range(n)]))
# NP−HMC integration
((q,p),(q0,p0)) = NPint((q0,p0),U,ep,L)
# MH acceptance
if cdfN(normal) < accept((q,p),(q0,p0),w):
return supported(q,w)

else:
return supported(q0,w)

def NPHMC(q0,w,ep,L,M):
S = [q0]
for i in range(M):
S.append(NPHMCstep(S[i],w,ep,L))

return S

Listing 3. Python code for helper functions
# the MH acceptance ratio
def accept((q,p),(q0,p0),w):
N = len(q)
N trunc = lambda q’:
sum([w(q’[:i]) for i in range(N)])

weight = (N trunc(q)*pdfN((q,p),2N))/
(N trunc(q0)*pdfN((q0,p0),2N))

return min(1,weight)

# the w−supported prefix of q
def supported(q,w):
k = 1
while w(q[:k]) == 0 and k < len(q):
k += 1

return q[:k]

Listing 4. Python code for eNPHMC
def validstate((q0,p0),U,ep,L):
q = q0
p = p0
for i in range(L):
p = p − ep/2*grad(U,q)
q = q + ep*p
if q not in domain(U):
return False

p = p − ep/2*grad(U,q)
return True

def HMCint((q0,p0),U,ep,L):
q = q0
p = p0
for i in range(L):
p = p − ep/2*grad(U,q)
q = q + ep*p
p = p − ep/2*grad(U,q)

# momentum flip
p = −p
return (q,p)

def eNPHMCstep((q0,p0),w,ep,L):
# initialisation (step 1)
q0 = supported(q0,w)
p0 = [normal for i in range(len(q0))]
U = lambda n: lambda q:

−log(sum([w(q[:i]) for i in range(n)]))
# search (step 2)
while not validstate((q0,p0),U(len(q0)),ep

,L):
x0 = normal
y0 = normal
q0.append(x0)
p0.append(y0)

# HMC integration (step 3)
(q,p) = HMCint((q0,p0),U(len(q0)),ep,L)
# MH acceptance (step 4)
if cdfN(normal) < accept((q,p),(q0,p0),w):
return (q,p)

else:
return (q0,p0)

def eNPHMC(q0,w,ep,L,M):
mc = [(q0,0)]
for i in range(M):
mc.append(eNPHMCstep(mc[i],w,ep,L))

# marginalisation
S = [supported(q,w) for (q,p) in mc]
return S
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form another by a series of meaning-preserving transformations (i.e. transformations that preserves the value and weight
functions). After that we show that the convergence result (Thm. 5) is invariant over equivalent programs.

Since NPHMC and eNPHMC are equivalent, it is enough to show that eNPHMC is correct, i.e. generates a Markov chain that
converges to the target distribution. We present a three-step proof.

1. We first identify the invariant distribution π of the Markov chain {(q(i),p(i))}i∈N generated by iterating eNPHMCstep .
(Eq. (1))

2. We then show that the marginalised chain {f(q(i),p(i))}i∈N is invariant under the target distribution ν, where f(q,p) is
the unique prefix of q that has positive weight according to w. (Thm. 4)

3. Finally, we show this chain converges for a small enough step size ε. (Thm. 5)

C.2. Invariant Distribution

By iterating eNPHMCstep , a Markov chain {(q(i),p(i))}i∈N is generated. We now analyse this Markov chain by studying its
invariant distribution π and transition kernel.

Let (S,ΣS, µS) be the state space where S ∶= ⊎n∈N(Rn × Rn), ΣS ∶= {⊎n∈NUn ∣ Un ∈ B2n} and µS(⊎n∈NUn) ∶=

∑n∈N(Nn ×Nn)(Un). It is easy to see that all output states in eNPHMCstep , and hence all elements of the Markov chain, is
in S.

However not all states have a positive weight. In fact not even the union of the support of invariant distributions of the fixed
dimension HMC on each of the truncations works. This is because if eNPHMCstep returns (q,p) ∈ R2k, then it cannot return
states of the form (q ++ q′,p ++ p′) ∈ R2n, which is a valid returning state for the fixed dimension HMC. Hence we define a
subset of states which precisely capture all possible returning states of eNPHMCstep , and define a distribution on it.

We say a state (q,p) is (ε,L)-valid (or simply valid whenever the parameters ε and L are clear from the context) if a
particle starting from the state (q,p) does not “fall beyond” the domain of U∣q∣ ∶= − logw≤∣q∣ in the course of L discrete
leapfrog steps of size ε, and the states (q1...k,p1...k

) are not (ε,L)-valid for all k < n.

Let Svalid denote the set of all valid states and Svalid
n ∶= Svalid

∩ (Rn ×Rn) denote the the set of all n-dimension valid states.
The program validstate verifies valid states, i.e validstate always returns True when the input state is valid.

Let π be a distribution on S with density ζ (with respect to µS) given by

ζ(q,p) ∶=

⎧
⎪⎪
⎨
⎪⎪
⎩

1
Z
w≤∣q∣(q) if (q,p) ∈ Svalid,

0 otherwise.
(1)

Since the the position component of all valid states must have a w-supported prefix, the set of valid states can be written as

Svalid
=

∞
⋃

n=1

∞
⋃

m=n
{(q ++x,y) ∈ Svalid

m ∣ q ∈ Suppn(w),x ∈ Rm−n,y ∈ Rm},

and hence the distribution π can be written as

π ∶X ↦ ∫
X

[(q,p) ∈ Svalid
] ⋅

1

Z
w≤∣q∣(q) µS(d(q,p)) = ∫

X
[(q,p) ∈ Svalid

] ⋅
1

Z

∣q∣
∑

n=1

w(q1...n
) µS(d(q,p))

=

∞
∑

n=1

∞
∑

m=n
∫
Rn
∫
Rm−n

∫
Rm

[(q ++x,y) ∈X ∩ Svalid
m ] ⋅

1

Z
w(q) Nm(dy) Nm−n(dx) Nn(dq) (2)

We claim that π is the invariant distribution of the Markov chain determined by eNPHMCstep . The rest of this subsection is
devoted to a proof of the claim.

For any state (q,p) ∈ S, we write V(q,p)W to be the term [⟨q1,p1⟩, . . . , ⟨q∣q∣,p∣q∣⟩] of type List(Pair(R,R)). Take a
SPCF term M of type {x ∶ List(Pair(R,R))} ⊢ M ∶ List(Pair(R,R)). We define a function vM ∶ S × T → S such that
VvM(s, t)W = valueM[VsW/x](t). Then, the transition kernel kM ∶ S ×ΣS → S of M given by

kM(s, U) ∶= ∫
vM (s,−)−1(U)

weightM[VsW/x] dµT.
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returns the probability of M returning a state in U given the input s.

We say M leaves the distribution µ on S invariant if for all U ∈ ΣS, ∫S kM(s, U) µ(ds) = µ(U).

C.2.1. INITIALISATION AND SEARCH (STEPS 1 AND 2)

Given (q0,p0) ∈ Svalid and X ∈ ΣS, where w(q0
1...n

) > 0, the initialisation (step 1) of eNPHMCstep returns a pair of the
w-supported prefix of q0 and a randomly drawn momentum. Hence, its transition kernel k1 is given by k1((q0,p0),X) ∶=

∫T [(q0
1...n, t) ∈X] µT(dt). Note that p0 (of the input state (q0,p0)) is ignored by eNPHMCstep .

If the input state (q0,p0) is not a valid state, we have k1((q0,p0),X) = 0. This is required for technical reasons but is
excluded in the program eNPHMCstep for ease of readability. At it stands in Listing 4, eNPHMCstep does not care whether the
input state is valid as long as it has a prefix which is w-supported. To define such a transition kernel for eNPHMCstep , we can
simply call validstate on the input state at the start of initialisation and fail this execution if the input state is not valid.

After that, given (q0,p0) ∈ S and X ∈ ΣS where w(q0
1...n

) > 0, step 2 of eNPHMCstep searches for a valid state by
repeating drawing from the standard normal distribution. We can write its transition kernel k2 as k2((q0,p0),X) ∶=

∫T [(q0 ++ t
odd,p0 ++ t

even
) ∈X ∩ Svalid

] µT(dt) where todd and teven are subsequences of t containing the values of odd
and even indexes respectively.

For any X ∈ ΣT, the (combined) transition kernel k1,2 of steps 1 and 2 of eNPHMCstep is given by

k1,2((q0,p0),X) = ∫
T
∫
T

[(q0
1...n

++ t′
odd
, t ++ t′

even
) ∈X ∩ Svalid

] µT(dt′) µT(dt)

= ∫
Rn

∞
∑

m=n
∫
Rm−n

∫
Rm−n

[(q0
1...n

++ t′′, t ++ t′) ∈X ∩ Svalid
] Nm−n(dt′′) Nm−n(dt′) Nn(dt)

=

∞
∑

m=n
∫
Rm

∫
Rm−n

[(q0
1...n

++x,y) ∈X ∩ Svalid
] Nm−n(dx) Nm(dy)

if (q0,p0) ∈ Svalid; and k1,2((q0,p0),X) = 0 otherwise.

Proposition 24. The transition kernel is probabilistic, i.e. k1,2((q0,p0),S) = k1,2((q0,p0),Svalid
) = 1 for any valid state

(q0,p0) ∈ Svalid.

Proof. Let (q0,p0) ∈ Svalid. We can see k1,2((q0,p0),−) as the value measure of steps 1 and 2 of eNPHMCstep (with the
initial states substituted by V(q0,p0)W) which does not contain score(−) as a subterm. Moreover, Assumption 3 ensures
step 2 almost always terminates and returns a valid state. Hence, Prop. 9 tells us that k1,2((q0,p0),−) is probabilistic and
k1,2((q0,p0),S) = k1,2((q0,p0),Svalid

) = 1.

Proposition 25. π is invariant with respect to step 1 and 2 of eNPHMCstep .

Proof. We aim to show: ∫S k1,2((q0,p0),X) π(d(q0,p0)) = π(X) for any measurable set X ∈ ΣS.

∫
S
k1,2((q0,p0),X) π(d(q0,p0)) = ∫

Svalid
k1,2((q0,p0),X) π(d(q0,p0))

= { Eq. (2), definition of k1,2 and writing (q0,p0) ∈ Svalid as (q ++x,y) where q ∈ Supp(w) }

∞
∑

n=1

∞
∑

m=n
∫
Rn
∫
Rm−n

∫
Rm

(

∞
∑

k=n
∫
Rk
∫
Rk−n

[(q ++x′,y′) ∈X ∩ Svalid
] Nk−n(dx′) Nk(dy′))⋅

([(q ++x,y) ∈ Svalid
] ⋅

1

Z
w(q)) Nm(dy)Nm−n(dx)Nn(dq)

= { Rearranging (allowed because everything is nonnegative) }

∞
∑

n=1

∞
∑

k=n
∫
Rn
∫
Rk−n

∫
Rk

[(q ++x′,y′) ∈X ∩ Svalid
] ⋅

1

Z
w(q)

(

∞
∑

m=n
∫
Rm−n

∫
Rm

[(q ++x,y) ∈ Svalid
] Nm(dy) Nm−n(dx)) Nk(dy′)Nk−n(dx′)Nn(dq)

= { Definition of k1,2 where (q̂, p̂) is an arbitrary valid state such that q̂1...n
= q }
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∞
∑

n=1

∞
∑

k=n
∫
Rn
∫
Rk−n

∫
Rk

[(q ++x′,y′) ∈X ∩ Svalid
] ⋅

1

Z
w(q) ⋅ k1,2((q̂, p̂),Svalid

) Nk(dy′) Nk−n(dx′) Nn(dq)

= { Definition of ζ and Prop. 24 for some valid state (q̂, p̂) }

∫
X
ζ dµS

C.2.2. INTEGRATION AND ACCEPTANCE (STEPS 3 AND 4)

Let (q0,p0) ∈ S and X ∈ ΣS. Now we check that the HMC integration (step 3) and acceptance (step 4) preserve the invariant
distribution π.

Similar to HMC, the transition kernel for steps 3 and 4 is given by

k3,4((q0,p0),X) =

⎧
⎪⎪
⎨
⎪⎪
⎩

α(q0,p0) ⋅ [Ψ∣q0∣(q0,p0) ∈X] + (1 − α(q0,p0)) ⋅ [(q0,p0) ∈X] if (q0,p0) ∈ Svalid,

0 otherwise.

where α(q0,p0) = min{1, w≤N (q)⋅ϕ2N (q,p)
w≤N (q0)⋅ϕ2N (q0,p0)} for N = ∣q0∣ and (q,p) = ΨN(q0,p0).

Proposition 26. The HMC integrator Ψn with respect to the potential energy Un is volume preserving with respect to Leb2n

(i.e. Ψn∗Leb2n = Leb2n) and reversible (i.e. Ψn = Ψn
−1) on Svalid

n .

Proof. Since measurable subsets of and states in Svalid
n are also in the n-dimension Euclidean Space, and Ψn always map

valid states to valid states, Prop. 14 is sufficient.

Proposition 27. π is invariant against integration and acceptance (steps 3 and 4) of eNPHMCstep .

Proof. We aim to show: ∫S k3,4(x,X) π(dx) = π(X) for all X ∈ ΣS. By Prop. 26, for all n, HMC integrator Ψn is volume
preserving against Leb2n and reversible on Svalid

n . Hence, we have

∫
S
k3,4(x,X) π(dx) = ∫

Svalid
k3,4(x,X) π(dx) =

∞
∑

n=1
∫
Svalid
n

k3,4(x,X) ⋅ ζ(x) (Nn ×Nn)(dx)

= ∫
X
ζ dµS +

∞
∑

n=1

(∫
Svalid
n

[Ψn(x) ∈X ∩ Svalid
n ] ⋅ α(x) ⋅ ζ(x) ⋅ ϕ2n(x) Leb2n(dx)

− ∫
Svalid
n

[x ∈X ∩ Svalid
n ] ⋅ α(x) ⋅ ζ(x) ⋅ ϕ2n(x) Leb2n(dx))

The second and third integrals are the same since the pushforward measure of Leb2n along the integrator Ψn is the same as
Leb2n (Ψn is volume preserving on Svalid

n ) for all n and α(x) ⋅ ζ(x) ⋅ϕ2n(x) = α(Ψn(x)) ⋅ ζ(Ψn(x)) ⋅ϕ2n(Ψn(x)) for all
x ∈ Svalid

n (all Ψn are reversible on Svalid
n ).

Since the transition kernel P of eNPHMCstep is the composition of k1,2 and k3,4, i.e. P (x,X) ∶= ∫S k3,4(x
′,X) k1,2(x,dx′)

for x ∈ S and X ∈ ΣS, and both k1,2 and k3,4 are invariant against π (Propositions 25 and 27), we conclude with the
following lemma.
Lemma 28. π is the invariant distribution of the Markov chain generated by iterating eNPHMCstep .

C.3. Marginalised Markov Chains

It is important to notice that the Markov chain {(qi,pi)}i∈N generated by iterating eNPHMCstep with invariant distribution
π is not the samples we are seeking. The chain we are in fact interested in is the marginalised chain {f(qi,pi)}i∈N where
the measurable10 function f finds the prefix of q which is w-supported, formally defined as

f ∶ Svalid
Ð→ T

(q,p) z→ q1...n for q1...n
∈ Supp(w).

10For any measurable set A ∈ ΣT, f−1(A) = (⋃∞n=1⋃∞m=n((A ∩Rn) ×Rm−n) ×Rm) ∩ Svalid is measurable in S.
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This function is realised by the supported program in Listing 3.

In this section we show that this marginalised chain has the target distribution ν as its invariant distribution. Let Q ∶

Supp(w) ×ΣT → R≥0 be the transition kernel of this marginalised chain. We can write it as Q(f(x),A) = P (x, f−1
(A))

for x ∈ Svalid and A ∈ ΣT.
Remark 29. In the standard HMC algorithm, the function f would simply be the first projection, and it is trivial to check
that the pushforward of the invariant distribution along the first projection is exactly the target distribution. Hence this step
tends to be skipped in the correctness proof of HMC (Neal, 2011; Bou-Rabee & Sanz-Serna, 2018).

Lemma 30. Writing Svalid
≤n ∶= ⋃

n
k=1 Svalid

k , we let πn be a probability distribution on measurable space (R2n,B2n,N2n)

given by

πn(X) ∶= ∫
X

1

Zn
w≤n(q) N2n(d(q,p)) where Zn ∶= ∫

Rn
w≤n dNn and X ∈ B2n.

(1) π(S ∖ Svalid
≤n ) → 0 as n→∞.

(2) For m ≥ n, Zn ⋅πn = Zm ⋅ e
(m,n)
∗ πm on Svalid

n where e(m,n) ∶ Rm ×Rm → Rn ×Rn with e(m,n)(q,p) = (q1...n,p1...n
).

(3) Z ⋅ π = Zn ⋅ g
(n)
∗ πn on Svalid

≤n where g(n) ∶ Rn ×Rn ⇀ Svalid
≤n such that g(n)(q,p) = (q1...k,p1...k

) ∈ Svalid
≤n .

Proof. (1) π is an invariant distribution, and hence it is probabilistic. The sum∑∞
n=1 π(Svalid

n ) which equals π(⋃∞n=1 Svalid
n ) =

π(Svalid
) must converge. Hence π(S ∖ Svalid

≤n ) = ∑
∞
i=n+1 π(Svalid

i ) → 0 as n→∞.
(2) Simple to show.
(3) Let X be a measurable subset of Svalid

≤n . Then,

Z ⋅ π(X) =

n

∑

k=1

Zk ⋅ πk(X ∩ Svalid
k ) = Zn

n

∑

k=1

e
(n,k)
∗ πn(X ∩ Svalid

k )

= Zn ⋅ πn(
n

⋃

k=1

{(q,p) ∈ R2n
∣ (q1...k,p1...k

) ∈X ∩ Svalid
k })

= Zn ⋅ g
(n)
∗ πn(X).

Theorem 4. Given Assumptions 1, 2 and 3, the target distribution ν is the invariant distribution of the Markov chain
generated by iterating Alg. 1.

Proof. For any A ∈ ΣT, if (1) ν = f∗π on T and (2) µT = f∗µS on Supp(w), then

ν(A) = f∗π(A) = ∫
S
P (x, f−1

(A)) µS(dx) (Lem. 28)

= ∫
Svalid

P (x, f−1
(A)) µS(dx) = ∫

Svalid
Q(f(x),A) µS(dx)

= ∫
Supp(w)

Q(q,A) f∗µS(dq) = ∫
Supp(w)

Q(q,A) µT(dq) = ∫
T
Q(q,A) µT(dq).

Hence it is enough to show (1) and (2).

(1) Let A ⊆ Rn be a measurable set on T and δ > 0. Then partitioning f−1
(A) = {(q,p) ∈ Svalid

∣ q1...n
∈ A} using Svalid

k ,
we have for sufficiently large m,

f∗π(A) = π (

m

⋃

k=1

f−1
(A) ∩ Svalid

k ) + π (

∞
⋃

k=m+1

f−1
(A) ∩ Svalid

k )

<
Zm
Z

⋅ g
(m)
∗ πm (

m

⋃

k=1

f−1
(A) ∩ Svalid

k ) + δ (by Lem. 30 (1) and (3))

≤
Zm
Z

⋅ πm(A ×Rm−n
×Rm) + δ

= ν(A) + δ.
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For any measurable set A ∈ ΣT, we have f∗π(A) = ∑
∞
n=1 f∗π(A ∩Rn) ≤ ∑∞

n=1 ν(A ∩Rn) = ν(A). Since both ν and
π are probability distributions, we also have ν(A) = 1 − ν(T ∖A) ≤ 1 − f∗π(T ∖A) = 1 − (1 − f∗π(A)) = f∗π(A).
Hence f∗π = ν on T.

(2) Similarly, let A ⊆ Suppn(w) be a measurable set on T and δ > 0. Then for sufficiently large m, we must have
µS(⋃

∞
k=m+1 Svalid

k ) = µS(Svalid
∖ Svalid

≤m ) < δ. Hence,

f∗µS(A) = µS (
m

⋃

k=1

f−1
(A) ∩ Svalid

k ) + µS (
∞
⋃

k=m+1

f−1
(A) ∩ Svalid

k )

<

m

∑

k=1

N2k(f
−1

(A) ∩ Svalid
k ) + δ

=

m

∑

k=1

N2m({(q,p) ∈ R2m
∣ (q1...k,p1...k

) ∈ f−1
(A) ∩ Svalid

k }) + δ

= N2m(

m

⋃

k=1

{(q,p) ∈ R2m
∣ (q1...k,p1...k

) ∈ f−1
(A) ∩ Svalid

k }) + δ

≤ N2m(A ×Rm−n
×Rm) + δ

= µT(A) + δ.

Then the proof proceeds as in (1).

C.4. Convergence

Last but not least, we check for the convergence of the marginalised chain to the target distribution ν.

As shown in Ex. 16, it is not trivial that the standard HMC algorithm converges. The same can be said of the NP-HMC
algorithm. Recall the conditions on the transition kernel to ensure convergence.
Lemma 19 (Tierney (1994), Theorem 1 and Corollary 2). If the transition kernel Q with invariant distribution ν is
ν-irreducible and ν-aperiodic, then for all q, limn→∞∥Qn(q,−) − ν∥ = 0.

Recall Q is the transition kernel of the Markov chain generated by iterating Alg. 1 on Supp(w). In Thm. 4, we have shown
that Q has invariant distribution ν. Hence, most of this section is devoted to searching for sufficient conditions (Def. 35) in
order to show that the transition kernel Q is ν-irreducible (Lem. 36) and aperiodic (Lem. 37). We conclude in Thm. 5 that
this Markov chain converges to the target distribution ν.

We start by extending the result in (Cances et al., 2007) in two ways:

1. The density function is only continuously differentiable almost everywhere.
2. The position space is the target space T.

Let U be the collection of measurable subsets of T with the property that their boundary has measure zero. Formally,
U ∶= {A ∈ ΣT ∣ µT(∂A) = 0}. Not every set in ΣT satisfies this property. A typical example would be the fat Cantor set. It is
easy to see that U is closed under complementation. Moreover, for any non-null set A in U , its interior Å is non-empty.

We assume the density function w ∶ T→ R≥0 is continuously differentiable on a non-null set A ∈ U . We start by showing
that the Markov chain can almost surely move between w-supported elements in A.
Lemma 31. Assume w is continuously differentiable on a non-null set A ∈ U and {Un} is uniformly bounded above
(i.e. there is an upper bound M , where Un(q) <M for all q ∈ Dom(Un) for all n ∈ N). For almost all a,b ∈ A ∩ Supp(w),
there exists some k ≥ max{∣a∣, ∣b∣} and p ∈ Rk such that proj1(Ψk(a ++ 01...k−∣a∣,p))1...∣b∣

= b, where proj1(q,p) = q.

Proof. Define a function V on the sequence space Rω, which is a Fréchet space with a family of semi-norms {∥−∥k}k∈N
where ∥x∥k = ∣xk ∣, as

V ∶ Rω Ð→ R≥0

xz→ − log
∞
∑

k=1

w(x1...k
).
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V is well-defined thanks to Assumption 3. Since w is continuously differentiable on A, V is continuously differentiable on
the non-empty open set Â ∶= ⋃

∞
n=1(Å ∩Rn) ×Rω . Moreover, V must be bounded above, say by some M .

Now we consider the minimization of the function Sε ∶ (Rω)L+1
→ Rω where ε is the leapfrog step size,

(Sε(q
0, . . . ,qL))k ∶= ε

L−1

∑

i=0

(
1

2
(
qi+1
k − qik
ε

)

2

−
V (qi+1

) + V (qi)

2
) for all k ∈ N

where q0
= a++0 and qL = b++0. Since V is bounded above by M , for all φ ∈ (Rω)L+1, each component of Sε(φ) ∈ Rω is

bounded below by −ε(L − 1)M (i.e. ∀k ∈ N, Sε(φ)k > −ε(L − 1)M ). Hence, Sε is bounded below. By the completeness of
Rω , inf Sε ∈ Rω exists.

Consider a minimising sequence {φn}n∈N on (Rω)L+1 where Sε(φn+1)k < Sε(φn)k for all n, k ∈ N and Sε(φn) → inf Sε
as n → ∞. Writing the sequence as {(q0,n, . . . ,qL,n)}n∈N, we say it is bounded on (Rω)L+1 if and only if for each
i = 0, . . . , L, {qi,n}n∈N is a bounded set on Rω which is equivalent to saying that for each i = 0, . . . , L and for all k ∈ N,
{∥qi,n∥k}n∈N is bounded on R. It is easy to see that for all n ∈ N and i = 1, . . . , L, ∥qi+1,n

− qi,n∥k ≤ 2εSε(φ0) + 2ε2LM
and ∥q1,n

∥k ≤ 2εSε(φ0) + 2ε2LM + ∥q0
∥k, so for any i = 0, . . . , L and k ∈ N, {∥qi,n∥k}n∈N is bounded and hence the

sequence {φn}n∈N is bounded. Moreover, its closure Φ ∶= {φn}n∈N is bounded and closed.

Note that the Fréchet space Rω is a quasi-complete nuclear space and has the Heine–Borel property, i.e. all closed and
bounded set is compact. So, the set Φ is compact. Moreover, since Rω is completely metrisable, the compact set Φ is also
sequentially compact, i.e. every sequence in Φ has a subsequence converging to a point in Φ. Hence {φn}n∈N ⊆ Φ must
have a subsequence {φnk

}k∈N which converges to some point φ̄ in Φ.

We claim that φ̄ is almost surely in ÂL+1. We show that the set (Rω)L+1
∖ ÂL+1 has measure zero. First note that by

Assumption 2, w is continuously differentiable almost everywhere and hence T ∖A is a null set. Moreover, by the definition
of A ∈ U , T ∖ Å is also a null set. Then this implies the set of infinite sequences with no prefixes in Å has measure zero,
i.e. Rω∖Â is a null set. Hence (Rω)L+1

∖ÂL+1
= {(q0, . . . ,qL) ∈ (Rω)L+1

∣ ∃i . qi /∈ Â} = ⋃
L
i=0(Rω)i×(Rω∖Â)×(Rω)L−i

has zero measure.

Since φ̄ is constrained by q0
= a++0 and qL = b++0, there can only be a null set of a,b ∈ A∩Supp(w) which induces φ̄ in

the null set (Rω)L+1
∖ ÂL+1. Hence φ̄ is almost surely in ÂL+1.

Assume φ̄ is in ÂL+1. Since V is continuously differentiable on Â, so is Sε on ÂL+1. By the continuity of Sε, we have
inf Sε = limk→∞ Sε(φnk

) = Sε(limk→∞ φnk
) = Sε(φ̄), so Sε attains its infimum on ÂL+1.

By Prop. 32, the gradient of Sε at its infimum φ̄ = (q̄0, . . . , q̄L) is 0. Hence q̄0
= a ++ 0, q̄L = b ++ 0 and

q̄i+1
= 2q̄i − q̄i−1

− ε2∇V (q̄i) for i = 1, . . . , L − 1

which is the solution to the leapfrog steps. In other words, the infimum φ̄ gives a path from a ++ 0 to b ++ 0 via the leapfrog
trajectory with initial momentum p = 1

ε
(q̄1

− a ++ 0) + ε
2
∇V (a ++ 0).

Last but not least, let k be the maximum of ki’s where w(q̄i
1...ki

) > 0 for all i = 0, . . . , L. Then it is easy to see that
proj1(Ψk(a ++ 01...k−∣a∣

),p1...k
)
1...∣b∣

= b.

Proposition 32. Let f ∶ Rω → Rω be a function with infimumat x0 ∈ Rω and is continuously differentiable on A ⊆ Rω
where x0 ∈ A, then ∇f(x0) is the zero map, i.e. ∇f(x0)(h) = 0 for all h ∈ Rω .

Proof. First note that f is continuously differentiable at x0 ∈ A means that for any ε > 0 there exists an δ > 0 such that for
any k ∈ N and x ∈ Rω such that ∥x − x0∥k < δ implies ∥f(x)−f(x0)−L(x−x0)∥`

∥x−x0∥k < ε for all ` ∈ N, where L ∶ Rω → Rω is the
bounded linear map defined as L ∶= (Df)(x0). 11

Assume for contradiction that L is not a zero map. i.e. There exists some h ∈ Rω such that Lh /= 0. Let k be the coordinate
such that (Lh)k /= 0 and ε > 0.

Since x0 is an infimum of f , f(x)` ≥ f(x0)` for all ` ∈ N and x ∈ Rω. Moreover, f is continuously differentiable at x0 so
there exists an δ > 0 such that for any x ∈ Rω , ∥x − x0∥k < δ implies ∥f(x)−f(x0)−L(x−x0)∥`

∥x−x0∥k < ε for all ` ∈ N.

11This can be easily seen by substituting h by x−x0
∥x−x0∥k in the standard definition of continuously differentiable functions f on A ⊆ Rω .
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Consider the sequence {yn}n∈N defined as yn ∶= x0 −
1
n

Lh
∥Lh∥k ⋅ h. The distance between yn and x0 is ∥yn − x0∥k =

∥
−1
n

Lh
∥Lh∥k ⋅ h∥k =

1
n
∥h∥k. So for large enough n, ∥yn − x0∥k < δ.

Hence,

0 ≤
(f(yn) − f(x0))k

∥yn − x0∥k
<

L(yn − x0)k

∥yn − x0∥k
+ ε =

n

∥h∥k
⋅ (
−1

n

(Lh)2

∥Lh∥k
)

k

+ ε = −
∥Lh∥k
∥h∥k

+ ε

which implies ∥Lh∥k < ∥h∥kε. Since ε is arbitrary, we have ∥Lh∥k ≤ 0 which implies (Lh)k = 0 and contradicts our
assumption.

Now we show that the Markov chain can move to any measurable set with positive measure onA from almost allw-supported
element in A.

Lemma 33. Assuming w is continuously differentiable on a non-null set A ∈ U and {Un} is uniformly bounded above
(i.e. there is an upper bound M , where Un(q) < M for all q ∈ Dom(Un) for all n ∈ N) and ∇Un is Lipschitz on
A ∩Dom(Un). For almost all a ∈ A ∩ Supp(w) and measurable subset B ⊆ A, ν(B) > 0 implies Q(a,B) > 0.

Proof. It is enough to prove the statement for a non-null measurable set B ⊆ A ∩Rn where all elements of B have positive
weight since all measurable subset B of A with ν(B) > 0 must contains such a subset. Moreover we restrict B to the
elements where the statement in Lem. 31 always hold w.r.t. a.

Say m = ∣a∣ and M = max{m,n}. Let Ia(B) = {p ∈ Rk ∣ k ≥M and all intermediate leapfrog steps starting from
(a ++ 01...k−m,p) ∈ Svalid are in A ∩ Dom(Uk) and proj1(Ψk(a ++ 01...k−m,p))1...n

∈ B}. It is enough to show that
∑
∞
k=M Lebk(Ia(B) ∩Rk) > 0.

Let θ ∶ Ia(B) → B be the function where θ(p) gives the next sample in B after L HMC leapfrog steps starting with initial
state (a ++ 01...∣p∣−m,p). By Lem. 31, θ is subjective.

We write Ika(B) = Ia(B) ∩Rk and show that θk ∶ Ika(B) → B is Lipschitz. By assumption for any p0
∈ Ika(B), all the

intermediate positions are in Dom(Uk) ∩A. Hence, we can write θk(p) ∶= proj1(Ψk(a ++ 01...k−m,p)) = qL as

q0
+ εLp0

− ε2(
L

2
∇Uk(q

0
) +

L−1

∑

k=1

k∇Uk(q
L−k

)).

Let p,p′ ∈ Ika(B), and qi,q′i be the position of the state after i leapfrog steps with momentum kick p,p′ respectively.
Then,

∣θk(p) − θk(p
′
)∣ = ∣qL − q′

L
∣ ≤ εL∣p − p′∣ + ε2

L−1

∑

i=1

i∣∇Uk(q
L−i

) − ∇Uk(q
′L−i

)∣

≤ εL∣p − p′∣ + ε2
L−1

∑

i=1

i∣qL−i − q′
L−i

∣ (Uk is Lipschitz on A ∩Dom(Uk))

hence ∣θk(p) − θk(p
′
)∣ ≤ c∣p − p′∣ for some constant c and θk is Lipschitz.

Assume for contradiction that ∑∞
k=M Lebk(Ia(B) ∩Rk) = 0 which means that for all k ≥M , Lebk(Ika(B)) = 0. However,

Lebn(B) = Lebn(θ(Ia(B))) = Lebn(θ(
∞
⋃

k=M
Ika(B))) = Lebn(

∞
⋃

k=M
θk(I

k
a(B)))

≤

∞
∑

k=M
Lebn(θk(I

k
a(B))) ≤

∞
∑

k=M
Lip(θk)

3N
⋅ Lebn(I

k
a(B)) = 0

implies that Lebn(B) = 0 which gives a contradiction.

Lemma 34. Assuming w is continuously differentiable on a non-null set A where A ∈ U and {∇Un} is uniformly bounded
above and below (i.e. there are bounds M1,M2, where M1 ≤ ∇Un(q) ≤M2 for all q ∈ Dom(∇Un) for all n ∈ N). Then
there exists a step size ε such that for any sequence q ∈ Supp(w), ν(A) > 0 implies Q(q,A) > 0.
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Proof. Let q ∈ Rm be w-supported. Since A ∈ U , its interior Å is an non-empty open set. Hence for some n, there is an
non-empty open subset ∏n

i=1(ai, bi) of A ∩Rn.

Now we consider the conditions on the starting momentum p0 in order for the position qL at the end of the trajectory of
the leapfrog steps to be in A assuming that the position of the intermediate states never leave the domain of Uk for some
k ≥M ∶= max{m,n}.

qL ∈

n

∏

i=1

(ai, bi) ×Rk−n ⇔ ∀i = 1, . . . , n q0
i + εLp

0
i − ε

2
(
L

2
∇Uk(q

0
) +

L−1

∑

k=1

k∇Uk(q
L−k

)) ∈ (ai, bi)

⇐ ∀i = 1, . . . , n p0
i ∈ (

1

εL
(ai − q

0
i +

(εL)2

2
M2),

1

εL
(bi − q

0
i +

(εL)2

2
M1)) =∶ Ii

For any p ∈ ∏n
i=1 Ii, the union⋃∞k=M{p′ ∈ Rk−n ∣ (q++0k−m,p++p′) ∈ Svalid

} is non-null. This is because the measure of the
union can be seen as the value measure of the almost surely terminating probabilistic program which given q ∈ Suppm(w)

and p ∈ ∏n
i=1 Ii returns p′ ∈ Rk−n such that (q ++ 0k−m,p ++ p′) is a valid state,

For ε < 1
L

√
2(bi−ai)
M2−M1

for all i, the intervals {Ii} are non-empty and henceQ(q,A) ≥ ∑
∞
k=M Nk({p

′
∈ Rk−n ∣ (q++0k−m,p++

p′) ∈ Svalid,p ∈ ∏
n
i=1 Ii}) > 0.

Definition 35. We gather all the conditions so far.

(C1) w is continuously differentiable on a non-null set A with measure-zero boundary.
(C2) w∣Supp(w) is bounded below by a positive constant.
(C3) For each n, the function ∇w≤n

w≤n
is uniformly bounded from above and below on Supp(w≤n) ∩A.

(C4) For each n, the function ∇w≤n

w≤n
is Lipschitz continuous on Supp(w≤n) ∩A.

Note that

(C1) implies w is continuously differentiable on a non-null set A ∈ U .
(C2) implies {Un} is uniformly bounded above (i.e. there is an upper bound M , where Un(q) <M for all q ∈ Dom(Un)

for all n ∈ N).
(C3) implies {∇Un} is uniformly bounded above and below (i.e. there are bounds M1,M2, where M1 ≤ ∇Un(q) ≤M2

for all q ∈ Dom(∇Un) for all n ∈ N).
(C4) implies ∇Un is Lipschitz on A ∩Dom(Un).

Now we are ready to prove irreducibility.

Lemma 36 (Irreducible). If Assumptions (C1)–(C4) are satisfied, there exists a step size ε such that for any sequence
q ∈ Supp(w) and measurable set B ∈ ΣT, ν(B) > 0 implies Qi(q,B) > 0 for i ∈ {1,2}.

Proof. Let A be the non-null set in U where w is continuously differentiable on A and µT(T ∖A) = 0 and Lem. 33 holds
for all elements in A. Such A must exist by Assumption 2 and (C1).

First note that ν(A∩B) > 0. Otherwise, we must have ν((T∖A)∩B) > 0. But this implies µT(T∖A) ≥ µT((T∖A)∩B) > 0
which contradicts the assumption.

We do case analysis on q ∈ T.

• If q ∈ A, then by Lem. 33, Q(q,A ∩B) > 0.

• If q /∈ A, then by Lem. 34, Q(q,A) > 0 and so

Q2
(q,B) ≥ Q2

(q,A ∩B)

= ∫
T
Q(q′,A ∩B) Q(q,dq′)

≥ ∫
A
Q(q′,A ∩B) Q(q,dq′) > 0.
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Lemma 37 (Aperiodic). If Assumptions (C1)–(C4) are satisfied, Q is aperiodic.

Proof. Assume for contradiction thatQ is not aperiodic. Then, there exists disjointB0, . . . ,Bd for d ≥ 1 such that ν(B0) > 0
and x ∈ Bi implies Q(x,B(i+1) mod (d+1)) = 1 for all i = 0, . . . , d.

Let A be the non-null set in U where w is continuously differentiable on A and µT(T ∖A) = 0 and Lem. 34 holds for all
elements in A. Such A must exist by Assumption 2 and (C1). Let Ci ∶= Bi ∩A for all i = 0, . . . , d. Hence, ν(C0) > 0 and
x ∈ Ci implies Q(x,C(i+1) mod (d+1)) = 1 for all i = 0, . . . , d.

Let x ∈ C0 be a w-supported sequence. Such an x must exist as ν(C0) > 0. Then, Q(x,C1) = 1 implies Q(x,C0) ≤

Q(x,T ∖C1) = 0 which contradicts with Lem. 36 as x ∈ A.

Finally by Tierney’s Theorem (Lem. 19), the ν-irreducible (Lem. 36) and ν-aperiodic (Lem. 37) transition kernel Q with
invariant distribution ν (Thm. 4) converges to ν.

Theorem 5. If Assumptions (C1)–(C4) are satisfied in addition to Assumptions 1, 2 and 3, the Markov chain generated by
iterating Alg. 1 converges to the target distribution ν.

D. Experiments
D.1. Details on the Experimental Setup

For our experimental evaluation, we implemented the algorithms in Python, using PyTorch for tensor and gradient com-
putations. The source code for our implementation and experiments is available at https://github.com/fzaiser/
nonparametric-hmc and archived as (Zaiser & Mak, 2021).

Inference algorithms The four inference algorithms we compared were:

1. NP-DHMC (ours): the nonparametric adaptation of (Nishimura et al., 2020), explained in App. B.2, using the efficiency
improvements from App. B.3.

2. Lightweight Metropolis-Hastings (LMH),

3. Particle Gibbs (PGibbs) and

4. Random walk lightweight Metropolis-Hastings (RMH).

We used the Anglican implementations of the latter three algorithms.

Models For NP-DHMC, the models were given to the algorithm as probabilistic programs in the form of a Python function
with a context argument for NP-DHMC. The context allows probabilistic primitives and records the trace and weight for the
inference algorithms. This way, evaluating the density function w amounts to running the probabilistic programs. For LMH,
PGibbs, and RMH, the Python models were translated to Clojure programs using Anglican’s probabilistic programming
constructs. The pseudocode for the geometric example and the random walk example can be found in the main text.
The Gaussian and Dirichlet process mixture model is explained there as well, using statistical notation. Sampling from
DP(α,Uniform([0,1]3)) is implemented using the stick-breaking procedure (Sethuraman, 1994). We use a cutoff of
ε = 0.01 for the stick size as explained in the text. In pseudocode, it looks as follows:

def dp(alpha, H):
stick = 1.0
beta = 0.0
cumulative product = 1.0
weights = []
means = []
while stick > 0.01:

cumulative product *= 1 − beta
beta = sample(Beta(1, alpha))
theta = sample(H)
weights.append(beta * cumulative product)

https://github.com/fzaiser/nonparametric-hmc
https://github.com/fzaiser/nonparametric-hmc
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Figure 12. ESS for the random walk example in terms of number of samples

means.append(theta)
stick −= beta * cumulative product

return weights, means

ESS computation For the random walk example, we computed the effective sample size. For this we used NumPyro’s
(Bingham et al., 2019) diagnostics. effective sample size function. It is designed to estimate the effective sample
size for MCMC samplers using autocorrelation (Gelman et al., 2014). For importance samples used as the ground truth, we
used the importance weights directly to compute the ESS: given importance weights w1, . . . ,wn, the ESS is (∑n

i=1wi)2
∑n

i=1w
2
i

. We
also computed the (autocorrelation-based) MCMC ESS for the importance samples and we obtained very similar results.

Hyperparameter choices We produced 10 runs with 1000 samples each for every example except the last, Dirichlet
process mixture model (DPMM). For the DPMM example, we only produced 100 samples in each run because of the
forbidding computational cost. We set the number of burn-in samples that are discarded to 10% of the total number of
samples, i.e. 100 samples for each run. Since each run of the DPMM only had 100 samples, we set the burn-in higher there,
namely to 50. We did not vary this hyperparameter much because higher values did not seem to make a difference. For the
number of leapfrog steps we tried values L ∈ {5,20,50,100}, and for the step size we tried values ε ∈ {0.01,0.05,0.1,0.5}.
Generally, the simple geometric distribution example already works for very rough hyperparameters (L = 5, ε = 0.1).
Finer steps work as well, but are not necessary. However, more complex models generally require finer steps (GMM:
L = 50, ε = 0.05). The other inference algorithms we tested don’t have any hyperparameters that need to be set.

Thinning Since NP-DHMC performs more computation than its competitors for each sample because it evaluates the
density function in each of the L leapfrog steps, not just once like the other inference algorithms. To equalise the computation
budgets, we generate L times as many samples for each competitor algorithm, and apply thinning (taking every L-th sample)
to get a comparable sample size.

D.2. Additional Plots and Data

In addition to the ESS and LPPD computations, we also plotted both as a variable of the number of samples computed.
The results can be seen in Fig. 12 and 13. As we can see, NP-DHMC performs the best consistently over the course of the
inference, not just in terms of the final result.

Running time We report the wall-clock times for the different algorithms. Experiments were carried out on a computer
with an Intel Core i7-8700 CPU @ 3.20 GHz x 12 and 16 GB RAM, running Ubuntu 20.04. The results are presented in
Table 2.
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Figure 13. LPPD for the GMM and DP mixture model in terms of the number of samples from 10 runs. The shaded area is one standard
deviation. These are the full plots of Fig. 8 and 9, respectively.

Table 2. Running times for the different inference algorithms in seconds per sample.

method ours LMH PGibbs RMH Pyro HMC Pyro NUTS

geometric example 0.0418 0.0003 0.0001 0.0005 n/a n/a
random walk example 0.2266 0.0077 0.0051 0.0095 ≈ 0.41 ≈ 5.7
GMM example 0.1879 1.6572 1.6835 1.6376 n/a n/a
DPMM example 1.8516 2.1491 1.7855 2.0584 n/a n/a

NP-DHMC is significantly slower than the competition in the geometric and random walk examples, faster for GMM and
comparable for DPMM. Due to the nature of the coordinate integrator of discontinuous HMC (Nishimura et al., 2020),
NP-DHMC has to run the model L × d times per sample where d is the number of discontinuous variables in the model. We
could improve the algorithm by only updating a subset of the discontinuous variables per iteration. In addition, NP-DHMC
computes gradients and simulates Hamiltonian dynamics, which is computationally expensive. On the random walk example
we also ran Pyro HMC and NUTS, as mentioned before. Both of them were a lot slower than our implementation, which
speaks to the fact that HMC methods simply have an unavoidable performance overhead. Finally, the implementation of
NP-DHMC is a research prototype, so it is not optimal and there is a lot of room for improvement.


