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A. Architecture and cross-validation

The core network architecture is kept constant for all models
and experiments outlined in the paper. All models have
a core recurrent neural network (RNN). The RNN takes
in the individual characteristics, the infection state from
the previous time point, and an estimate of the exposure
(except for the No exposure model, NEM, which ignores
exposure). For our model (MIINT), the exposure estimate is
based on the imputed values according to (), whereas for the
optimistic model (OM) it is the sum of observed neighbor
infection states from the previous time point (assuming
untested is uninfected). For the Oracle model (ORM), the
estimate of exposure is the sum of true neighbor infection
states from the previous time point.

The RNN inputs are passed through one fully dense layer
with a tanh activation, giving an intermediate layer of di-
mension = 64 units. The output is then passed to another
64-unit dense layer which is finally passed through a sig-
moid to give the final probability of infection.

For the simulation experiment, we found that different val-
ues of 7 did not affect the prediction much. So we set
T = .5, but pick A based on cross-validation using a grid
of values = Cross-validation is done to pick the value of A
from the candidate values [0, 1e71,1e72 1, 1et, 1€2, 1€3].
This is done via 2-fold cross validation. We pick the final
value to be the one that maximizes the AUROC defined with
respect to the observed labels in a held out validation set.

Cross-validation for the real data experiment is similar,
though her we found that values of 7 are important, so in
addition to A\, we also pick the value of 7 from the candidate
values [0.001,0.01,0.1,0.5].

'CSAIL, MIT “Infection Control Unit, Massachusetts Gen-
eral Hospital *Microsoft. Correspondence to: Maggie Makar
<mmakar @mit.edu>.

Proceedings of the 38" International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

Lauren West> David Hooper

Eric Horvitz® Erica Shenoy? John Guttag '

B Random
B ORM
|}
|}

=
3

NEM
oM
PL
®  GNN
B MIINT (Ours)
1 —— Weighted

&
=

15

----- Unweighted

o 2
[\ w

to the no-action policy
o
=

=
=

Reduction in infection rate relative

&
o

02 03 04 05 06 07 08 09 10
Proportion tested

Figure 4. Reduction in infection rates relative to a policy that does
not isolate infections (no-action policy) as the daily testing budget
varies. Our model achieves the highest reductions in policy relative
to all realistic (i.e., non-oracle) models.

B. Additional simulation results
B.1. Unweighted model results

Figures 4, 5, and 6 show the same results as figure 1, 2(left),
and 2(right) respectively but here all plots include the results
from unweighted variants of the models presented in the
main text.

B.2. Additional simulation settings

Impact of biased testing. To explore the impact of bi-
ased testing under favorable conditions, we create high
potency by setting Bir/B,, = 5 for k = {0,1}. We
set pops = .1, and sweep over the odds of testing con-
ditional on group membership. Results are shown in fig-
ure 7, where the x—axis shows the odds of testing (=
p(oilyi = 1) [p(o;|y; = 0)), and the y—axis shows the AUROC
on the held-out test set, averaged over 10 simulations. We
see that the weighted version of MIINT outperforms all
others. This happens because NEM completely ignores ex-
posure, OM assumes that 90% of the population (1 — pops)
has y; = 0 (which affects its estimate of e'), whereas MI-
INT tries to impute the labels for those 90% based on their
neighbors infection states. Here the difference between OM
and NEM is not large because po,s = .1, which is very low.
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Figure 5. Impact of varying levels of carrier potency controlled by
B1,k/B; ». Our model outperforms baselines, especially in cases
with high potency.
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Figure 6. Impact of high (=.9) and low (=.1) similarity between
the characteristics of the untested-healthy and untested-infected
populations. Our model outperforms baselines when the two popu-
lations are dissimilar.
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Figure 7. Impact of biased testing, x—axis shows the odds ratio of
testing given characteristics (= P(¢ilvi = 1) /p(o;|y; = 0)), 1 implies
randomized testing. Our model does better than baselines for most
levels of bias, and similar to baselines at extreme bias.

This means that the exposure estimate that OM relies on is
a poor estimate. Results from the subsequent experiment
highlight that.

In addition, we see that PL has very high variance for highly
biased testing. This makes sense because intuitively, PL as-
signs labels for the untested population by considering sim-
ilar patients in the tested population. Under highly biased
testing, the labeled and unlabeled population are drastically
different, making it difficult to generalize to the unlabeled
population without leveraging the rich structured data.

Impact of limited testing. The setup for this experiment
is similar to the previous one but here we fix the testing
odds, p(oilys = 1) /p(o,|y; = 0) = 5, and sweep over the level
of testing pops. Figure 8 shows the results, with p,s on the
x—axis and the AUROC on the y—axis, averaged over 10
simulations. We see that weighted MIINT performs as well
as the other models at the two extremes of testing levels, and
does better at all other levels of testing. Here we see that OM
outperforms NEW when the level of testing is sufficiently
high, which is expected since OM inherently assumes no
unobserved infections. As the testing levels increase, that
assumption becomes more correct. The performance of
NEM also improves with higher levels of testing since it
has access to a cleaner y label, however, it is never able to
perform as well as MIINT or OM because it does not take
exposure as an input.

C. Real data

Inclusion Criteria. Similar to (Oh et al., 2018; Makar
et al., 2018), we exclude all hospitalizations of patients
younger than 18. We do so because predicting pediatric
C. difficile infection is a significantly different task from
that of the adult population. We also exclude patients with
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Figure 8. Impact of limited testing. Our model does better than
baselines at every level of testing. Our model achieves near oracle
accuracy at low levels of testing bias, and high proportion tested.

suspected community acquired infections, since predicting
nosocomial infections (i.e., hospital associated infections) is
a significantly different task that that of community-acquired
infections. Again, we follow (Oh et al., 2018; Makar et al.,
2018) in defining community acquired infections as those
who get the C. difficile infection diagnosis in the first 2 days
of their visit, and those who have had a C. difficile infection
infection in the 14 days prior to their hospitalization.

Patient Features. Similar to (Oh et al., 2018; Makar et al.,
2018), we include patient demographics, which are avail-
able upon admission such as age, gender, number and length
of previous hospitalizations, reason and source of visit (e.g.,
transferred from a Skilled Nursing Facility or admitted
through the emergency room). We capture medical history
by including all ICD-9 procedure and diagnosis codes from
prior visits that happened at most 90 days prior to the main
(index) visit. We collect data from the index visit up to one
day before the prediction date. This includes medications,
lab tests ordered and their results.

D. Additional real data results

The results from all weighted and unweighted models are
shown in table 3. Figure 9 shows the precision-recall curve.
The figure highlights that our model achieves higher preci-
sion at high recall values.

In addition, we also show the same performance metrics
defined with respect to the concordant EIA/GDH label only
(table 4) and the discordant EIA/GDH label, PCR labels
(table 5).
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Figure 9. Our model achieves the highest precision at high recall

values.

TPR@ AUROC
FPR=10%

POM 0.49 (0.014)  0.73 (0.003)
NEM 0.33 (0.008)  0.69 (0.006)
NEM-U | 0.45(0.009) 0.7 (0.006)
oM 0.44 (0.008)  0.74 (0.006)
OM-U 0.45(0.012) 0.7 (0.005)
ELR 0.53 (0.008)  0.82 (0.006)
GNN 0.24 (0.005)  0.59 (0.005)
GNN-U | 0.22(0.007)  0.55 (0.007)
PL 0.26 (0.008)  0.62 (0.005)
PL-U 0.58 (0.012)  0.78 (0.006)
MIINT-U | 0.6 (0.007)  0.81 (0.006)
MIINT 0.51 (0.007)  0.78 (0.007)

Table 3. Performance metrics for C. difficile infection prediction
on the test set, where the target label = 1 if an individual has a
non-discordant GDH/EIA test, or if they have a PCR. positive test.

TPR@ AUROC

FPR=10%
POM 0.48 (0.014)  0.72 (0.005)
NEM 0.39 (0.018)  0.69 (0.01)
NEM-U | 0.54(0.018)  0.69 (0.009)
OM 0.48 (0.018)  0.72 (0.006)
OM-U 0.52 (0.015)  0.69 (0.004)
ELR 0.6 (0.02) 0.85 (0.006)
GNN 0.34 (0.016)  0.62 (0.011)
GNN-U | 0.35(0.021)  0.59 (0.007)
PL 0.37 (0.017)  0.64 (0.011)
PL-U 0.57 (0.01)  0.75 (0.009)
MIINT-U | 0.63 (0.016) 0.82 (0.011)
MIINT 0.58 (0.015)  0.79 (0.011)

Table 4. Performance metrics for C. difficile infection prediction
on the test set, where the target label = 1 if an individual has

positive, concordant GDH/EIA test, and 0 otherwise.
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TPR@ AUROC
FPR=10%

POM 0.49 (0.02)  0.73 (0.009)
NEM 0.28 (0.01)  0.68 (0.007)
NEM-U | 0.38(0.01) 0.7 (0.007)
oM 0.4 (0.018)  0.75 (0.007)
OM-U 0.38 (0.019) 0.7 (0.007)
ELR 0.46 (0.014) 0.8 (0.007)
GNN 0.15(0.011)  0.57 (0.007)
GNN-U | 0.12(0.01)  0.52 (0.003)
PL 0.17 (0.013)  0.61 (0.006)
PL-U 0.57 (0.015)  0.81 (0.006)
MIINT-U | 0.57 (0.009) 0.8 (0.007)
MIINT 0.44 (0.013)  0.76 (0.005)

Table 5. Performance metrics for C. difficile infection prediction
on the test set, where the target label = 1 if an individual has a
discordant GDH/EIA test followed by a positive PCR test, and 0
otherwise.
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