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Abstract

One of the ways that machine learning algorithms
can help control the spread of an infectious dis-
ease is by building models that predict who is
likely to become infected making them good can-
didates for preemptive interventions. In this work
we ask: can we build reliable infection prediction
models when the observed data is collected under
limited, and biased testing that prioritizes testing
symptomatic individuals? Our analysis suggests
that when the infection is highly transmissible,
incomplete testing might be sufficient to achieve
good out-of-sample prediction error. Guided by
this insight, we develop an algorithm that predicts
infections, and show that it outperforms baselines
on simulated data. We apply our model to data
from a large hospital to predict Clostridioides dif-
ficile infections; a communicable disease that is
characterized by both symptomatically infected
and asymptomatic (i.e., untested) carriers. Using a
proxy instead of the unobserved untested-infected
state, we show that our model outperforms bench-
marks in predicting infections.

1. Introduction
Preemptively identifying individuals at a high risk of con-
tracting a contagious (i.e., transmissible) infection is impor-
tant for guiding treatment decisions to mitigate symptoms,
and for preventing further spread of the infection through
appropriate isolation. In this paper, we study how to build
individual-level predictive models for contagious infections
while explicitly addressing the challenges inherent to conta-
gious diseases.

Building accurate infection prediction models is hindered by
two main factors. First, contagious infections defy the usual
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iid assumption central to most machine learning methods.
This is because an individual’s infection state is not inde-
pendent of their contacts’ infection states. Previous work
has often relied on expert knowledge to construct exposure
proxies (Wiens et al., 2012; Oh et al., 2018). It is then
assumed that conditional on the exposure proxy and indi-
vidual characteristics, individual outcomes are independent
of one another. Such an assumption is violated if the ex-
posure proxy is noisy or misspecified leading to inaccurate
prediction.

Second, the observed data is biased. The primary clinical
purpose of testing for a disease is to provide guidance for
treatment decisions for the individual being tested. There-
fore, there is a strong bias in who is tested—people for
whom knowing whether they have the disease will affect
treatment (e.g., symptomatic individuals) are far more likely
to be tested than other members of the population. But for
some infectious diseases, only a fraction of those individuals
carrying the pathogen experience noticeable symptoms. We
use the term “incomplete testing” to describe the scenario
where only a small, biased subset of individuals harboring a
pathogen are tested. Incomplete testing makes learning ac-
curate models difficult since the collected labels are missing
not at random, leading to biased and inconsistent estimates.

In this work, we leverage the non-independence of out-
comes to construct robust predictors. Specifically, we use
the knowledge that infections are caused by exposure to
the pathogen through contacts to impute missing infection
labels. Our proposed approach uses the fact that an individ-
ual’s infection state provides useful information about their
contacts’ true infection states. This information is used to
generate pseudo-labels for untested individuals, mitigating
issues caused by incomplete testing. The key idea behind
our approach is that highly structured patterns of disease
transmission can serve as a complementary signal to identify
even untested carriers. The stronger that signal is, the less
impact that incomplete testing will have. Our contributions
can be summarized as follows:

1. We identify two properties of collected data that can be
exploited to mitigate the effects of incomplete testing.

2. We present an algorithm that leverages that insight to
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predict the probability of an untested individual carry-
ing the disease.

3. We empirically evaluate the effectiveness of our
method on both simulated data and real data for a
common and morbid contagious disease. We show that
predictions from our model can be used to inform ef-
ficient testing and isolation policies. Using EHR data
from a large hospital, we show that our model outper-
forms baselines on the task of predicting a healthcare
associated infection.

2. Related work
Infectious disease modeling. Modeling the transmission
of infectious diseases has been extensively studied in the epi-
demiology literature using SIS/SIR models and several other
variants (Kermack & McKendrick, 1927). These epidemio-
logical models focus on the aggregate levels of infections
in a community. This is distinct from our approach, which
focuses on predicting individual level infections. In the
machine learning literature, previous work has has often
relied on expert knowledge to construct exposure proxies
(Wiens et al., 2012; Oh et al., 2018). It is then assumed that
conditional on the exposure proxy and individual character-
istics, individual outcomes are independent of one another.
Similar to our approach, (Fan et al., 2016) and (Makar et al.,
2018) take into account structured data, namely contact
networks to compute infection estimates (Fan et al., 2016;
Makar et al., 2018). We differ from these approaches in that
(1) we do not make parametric assumptions about the joint
distribution of the observed or latent variables, and instead
use nonparametric models (neural networks) to model the
infection states, (2) we do not assume all infections will
become symptomatic as is done in (Fan et al., 2016), and (3)
unlike the approach taken by (Makar et al., 2018), we model
time evolving sequences of infections taking into account
the exposure states of potential asymptomatic carriers.

Semi-supervised learning. Our proposed approach relies
on transductive reasoning to generate labels for untested
individuals. In that, it is closely related to semi-supervised
learning methods, such as pseudo-labeling (Lee, 2003), and
self-training (Robinson et al., 2020). In traditional pseudo-
labeling, the transductive power comes from the fact that
points similar to each other in the input space have similar
outputs. Here, the rich structure in the data allows for more:
we can construct pseudo-labels for untested individuals not
just by relying on their similarity to other labeled instances,
but also by observing their observed contacts’ infection
states. Our empirical results, and analysis are similar in
spirit to concepts presented in the semi-supervised literature,
specifically the cluster assumption (Seeger, 2000; Rigollet,
2007), which we discuss later.

Graph Neural Networks. Our proposed approach incorpo-
rates knowledge of the contact network. In that it is similar
to Graph Neural Networks (GNNs), which utilize relational
data to generate prediction estimates (Zhou et al., 2018).
GNNs fall into two categories. The first relies on transduc-
tive reasoning and cannot generalize to new communities
(e.g., (Kipf & Welling, 2017)). The second relies on in-
ductive reasoning, which can be used to generate estimates
for previously unseen graphs (e.g., (Hamilton et al., 2017)).
Our work is similar to the latter category, with an important
distinction: our approach leverages unlabeled data giving
more accurate, and robust estimates.

Our work can be viewed as combining the strengths of
semi-supervised learning, and GNNs to address limited test-
ing. Our approach augments the strengths of those two
approaches with ideas from domain shift and causal infer-
ence, such as importance weighting (Cortes et al., 2010) to
address biased testing.

3. Problem setting
Setup. Let yt ∈ {0, 1} denote an individual’s true infec-
tion/carrier state at time t, with yt = 1 if an individual is
symptomatically infected or asymptomatically carrying the
pathogen, and 0 otherwise. For brevity, we will refer to yt

as the true infection state at time t. We use xt ∈ X t to
denote a vector of the individual’s features at time t, and
define J ti to be the set of indices of i’s contacts at time t. We
assume that the contact network is fully observed, i.e., that
the contact indices are known. We note that the assumption
of fully observed networks is less likely to be violated in the
context of hospital associated infections, where the majority
of patients’ interactions and contacts are routinely recorded,
compared to community acquired infections. Our results
on real data show that even with incomplete networks, our
approach outperforms others.

Let eti ∈ R≥0 denote i’s exposure state at time t, with
eti =

∑
j∈Jt

i
ytj . The exposure state is fully observed only

when all of i’s contacts have been tested, but otherwise
either partially observed or unobserved. Define xt = xt||et,
where || is the concatenation operator, i.e., xt ∈ X t × R≥0.
Let ot ∈ {0, 1} denote the observation state, with ot = 1 if
an individual’s label is observed, i.e., if the individual has
been tested for the infection. We use the super-script :t to
denote variables from time t = 0 up to and including time t,
e.g., x:t = [x0, ...,xs, ...,xt].

Throughout, we use capital letters to denote variables,
and small letters to denote their values. We use
P (Xt, Ot, Y t+1) to denote the unknown distribution
over the full joint. Under biased testing, we have that
P (Xt|Ot = 1) 6= P (Xt|Ot = 0) 6= P (Xt). We as-
sume that 0 < P (Ot = o|Xt = x) < 1, for all x ∈ X ,
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and o ∈ {0, 1}. This is the same as the overlap assump-
tion in the causality literature. In addition, we assume that
i’s outcome is conditionally independent of i’s contacts
given xi (which is itself a function of the contacts’ out-
comes). We consider the case where we have access to (1)
a labeled (i.e., tested) set of individuals D1 = {Dt1}Tt=0 =
{(xti, yti), . . . (xtnt

1
, ytnt

1
)} ∼ P (Xt, Y t+1|Ot = 1), and (2)

an unlabeled (untested) set of individuals D0 = {Dt0}Tt=0 =
{xti, . . . ,xtnt

0
} ∼ P (Xt|Ot = 0), such that for each

i ∈ D0∪D1, and each t ∈ [0, T ], we have that J ti ∈ D0∪D1.
We use U t to denote the set of indices of untested individuals
at time t.

Notation Meaning

yti i’s infection/carrier state at time t (true infection
state for short)

xti i’s features at time t
eti i’s (partially) observed exposure state at time t
xti The concatenation of xti, and eti
x:t
i The collection of an individual’s features, and

exposure states from time t = 0 until t = t, i.e.,
x:t
i − [x0

i , ...,x
s
i , ...,x

t
i]

J ti The set of indices of i’s contacts at time t
oti Observation state for the infection label. oti = 1

if i’s infection state is observed at time t (i.e., if
i was tested for the infection at time t), and 0
otherwise

D1 Data (x, y tuples) for tested individuals
D0 Data (x) for untested individuals
wt(xti) Probability that an individual with characteris-

tics xti gets tested
U t the set of indices of untested individuals at time

t.
Ati The set of ancestors of i at time t whose out-

comes are unobserved i.e., Ati = J t(i) ∩ U t

Table 1. Summary of notation

Learning objective. We want to learn f : x:T → yT+1.
To focus the discussion on the novel component of our
approach, we first consider a setting in which we predict
the outcomes for a single time step: making predictions
for t = 2, using data from t = 0, 1. We drop the time
superscript when it can be inferred from the context. We
present the full model predicting infection sequences over
time in section 5. Let ` be the logistic loss. Our goal is to
find f ∈ F , where F is some hypothesis space such that
the risk of incorrectly classifying the infection state R(f) =
EX,Y [`(f(X

t), Y t+1)] is minimized. We first consider
a scenario where we have oracle access to the infection
states of the untested population, but we return to the more
realistic, non-oracle scenario later. Note that having access
to the untested population’s infection states implies that

exposure states are also fully observed (by definition of
the exposure states). Under the conditional independence
assumption, we can view the risk as a sum of independent
losses. Define the inverse probability of being tested as
wt(X) = P (Ot = o)/P (Ot = o|Xt), following Robins (1998),
and Robins et al. (2000). Because of the overlap assumption,
under biased testing we have that:

R(f) = Rw
t

(f) = E[wt(X)`(f(X), Y )]. (1)

Rw
t

(f) cannot be directly computed since the expectation
is defined with respect to the unobserved distribution. How-
ever, the following reweighted empirical loss is an unbiased
estimator of Rw

t

(f):

ε(f) =
∑

i∈Dt
0∪Dt

1

wti`(f(x
t
i), y

t+1
i ),

where wti = p(Ot = oti)/g(oti|x
t
i), p(Ot = oti) is the empiri-

cal estimate of P (Ot = o), and g(oti|xti) is the estimated
probability of getting tested conditioned on individual char-
acteristics. Without oracle access to untested individuals’ in-
fection states, we cannot directly minimize ε(f) for i ∈ Dt0
since their labels are never observed. In addition, without
access to untested individuals’ infection states, the samples
xt ∼ P (Xt|Ot = 1) are incomplete. This is because xti
includes eti, which is a function of ytj : j ∈ J ti . We only
fully observe eti, and hence xti for individuals whose con-
tacts have all been tested. To address this, we define Q as
the set of all possible distributions over yti for i ∈ Dt0. Our
risk is now defined with respect to both Q, and f .

Let ŷi ∼ Q, êti =
∑
j∈Jt(i) 1{j : otj = 1}·ytj+1{j : otj =

0} · ŷtj , x̂i = xti||êti, and ŵti = p(O = oi)/g(x̂i, oi), our task
is to find Q and f , such that the following empirical risk is
minimized:

ε(f,Q) =
∑
i∈Dt

1

ŵti`(f(x̂
t
i), y

t+1
i ) (2)

+
∑
i∈Dt

0

ŵti`(f(x̂
t
i), ŷ

t+1
i ).

We next consider how to leverage properties of the problem
to efficiently minimize ε(f,Q).

4. Exploiting structure as a regularizer
We seek to constrain the candidate sets F and Q to avoid
overfitting. To do so, we exploit both the interdependence
among individuals’ infection states and the availability of
unlabeled data. Recall that the exposure state of an individ-
ual is the sum of that individual’s contacts’ infection states.
This means that when we draw ŷti from Q, we are implicitly
drawing the exposure states for i’s contacts’, by definition
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of êti. This becomes obvious if we decompose êti as follows:
êti =

∑
j∈Jt(i) 1{j : otj = 1} · ytj + 1{j : otj = 0} · ŷtj ,

and ŷtj ∼ Q. This decomposition immediately implies
two properties that should hold for “good” Q’s. First, Q
should assign infection states, ŷti , that are consistent with i’s
contacts’ infection states. Consider the case where two indi-
viduals i, and j came into contact with each other at time t.
Suppose that j tests positive at time t + 1. For simplicity,
suppose that i, and j have no contacts other than each other.
Here Q should assign i a high probability of infection be-
cause in order to become infected j must have been exposed
to the pathogen through i. Second, note that Q is assigning
pseudo-labels for the infection states of untested contacts,
this means that Q’s imputed labels should be similar to the
labels predicted by f . A good regularization method should
then explicitly encourage the pseudo-labels to be similar to
the estimated labels from f . This intuition is encoded in the
main loss in our proposed approach:

f∗, Q∗ = min
f,Q

1

nt1

∑
i:oti=1

ŵti`(f(x̂
t
i), y

t+1
i ) (3)

+
λ

|J ti ∩ U t|
∑

j∈Jt
i∩Ut

ŵt−1j `(1{f(xt−1j ) > τ}, ŷtj)

where |.| denotes the set cardinality, λ ≥ 0, and τ are pa-
rameters to be picked using cross validation, ŷtj ∼ Q∗, and
êti =

∑
j∈Jt(i) 1{j : otj = 1} · ytj + 1{j : otj = 0} · ŷtj .

When λ > 0, this objective is somewhat similar to pseudo-
labeling (Lee, 2003), it would encourage the imputed infec-
tion states, ŷtj ∼ Q, to conform with the prediction from f .
When λ = 0, equation 3 prioritizes finding good predictions
for the labeled samples, ignoring possible structure implied
by the data. Note that in the second term in equation 3,
we have f(xt−1j ), rather than f(x̂t−1j ), meaning we assume
no imputed exposure component for contacts at time t− 1.
This is because we are considering the simple setting where
t − 1 = 0, i.e., t − 1 is the beginning of the observation
period and no exposure has happened yet. We later consider
more complicated settings where the contacts’ inputs also
include an exposure state.

4.1. When does structure work as a regularizer?

We now ask: when do we expect equation 3 to yield models
superior to those that ignore structure? First, if the untested-
infected individuals’ contacts are more likely to become
infected compared to the untested-uninfected individuals’
contacts. We stress that we do not need all of the untested-
uninfected individuals’ contacts to be infected and all of the
untested-uninfected contacted to be uninfected. We only
require that there is separation between the likely outcomes
of two groups’ contacts. Intuitively, in such a setting, the
contacts’ outcomes provide a signal revealing the untested
individuals’ true infection states. In practice, high sepa-

rability should occur, even in settings of low and biased
testing, assuming the observed data satisfies a property we
refer to as the potency property. The potency property
can be viewed as an extension of the margin condition in
classification (Tsybakov et al., 2004; Audibert et al., 2007).
It implies that infections cluster so that infected-untested
individuals tend to have more infected contacts than do
uninfected-untested individuals. Such a condition will be
satisfied if the infection is sufficiently transmissible.

Second, even if there is high separability but x̂ makes it
difficult to identify a learnable mapping from x̂ to the im-
puted ŷ, minimizing equation 3 instead of the objective on
only the labeled data does not help. Such is the case when
untested-healthy and untested-infected individuals “look”
the same, meaning they have very similar characteristics
and exposure states. This property is often referred to as
the cluster assumption in semi-supervised learning litera-
ture (Rigollet, 2007; Seeger, 2000). The cluster assumption
states that individual characteristics, and exposure states
tend to form near discrete clusters, with homogeneous la-
bels within each cluster. Intuitively, it means that we can
learn the correct clustering of individuals that separates in-
fected from uninfected individuals, up to a permutation of
the labeling. We refer to this property as the dissimilarity
property.

The degree to which these two properties are satisfied in
the observed data will depend largely upon the infection
being studied and the environment in which it is spreading.
However, as we show in section 6, even when these proper-
ties do not hold, our proposed approach performs as well as
the best baseline. I.e., even in the worst case scenario, the
regularization “does no harm.”

5. Proposed method
Our proposed model, a Model for Infections under Incom-
plete Testing (MIINT) leverages labeled and unlabeled data
to predict infections over time. MIINT minimizes a variant
of equation 3, which is modified to predict the spread of
infection over an arbitrary time horizon. Let Ati, be the set
of ancestors of i at time t whose outcomes are unobserved,
i.e., Ati = J t(i) ∩ U t, At−1 =

⋃
j∈At

i

J t−1(j) ∩ U t−1, etc.

The loss at time t is defined as:

Lt = 1

nt1

∑
i∈D1

ŵti`(f(x̂
t
i), y

t+1
i ) (4)

+

t∑
s=0

λ

|Ati|
∑
j∈As

i

ŵsj`(1{f(x̂sj) > τ}, ŷsj ),

and the objective is to find f∗, Q∗, such that:

f∗, Q∗ = min
f,Q

1

T

∑
t

Lt.
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It is possible to consider the family of candidate functions
F to be any family of non-parametric estimators. For our
implementation, we take F to be the space of recurrent neu-
ral networks (RNNs). We assume that f does not vary over
time (though that is an assumption that could be relaxed).
We propagate the predicted state forward in time, meaning
in practice f takes in xt, et and ŷt to predict ŷt+1. This
ensures that exposures at time < t are taken into account
when predicting infections at time t. Note that equation 4
can be decomposed into the independent sums of individual
losses, as well as their ancestors’ losses. This means we
can use stochastic gradient descent, with gradient updates
defined with respect to mini-batches, as is typically done.
One limitation is that equation 4 as stated would require
keeping track of all the ancestors’ states since t = 0, which
can be prohibitive for long observation periods. In practice,
one would consider a subset ofAti based upon the properties
of the disease being studied.

The algorithm used to train MIINT, similar to pseudo-
labeling (Lee, 2003), is an expectation maximization al-
gorithm, where we iterate between computing the expected
label for the untested samples (i.e., finding the optimal Q̂),
and finding the optimal f that maximize the likelihood of
the observed labels under Q̂ until convergence. Conver-
gence is achieved when the change in loss defined over the
samples with observed labels in a held out validation set is
< ε for some small ε. For our purposes, we find it sufficient
to let Q be a deterministic function rather than an actual dis-
tribution. However, our approach is extendable to allow Q
to be a distribution, for example using techniques described
in (Tran et al., 2017).

Finally, recall that we need to estimate ŵti =
p(O = oi)/g(x̂i, oi). We follow (Chernozhukov et al., 2017) in
using an independent sample to estimate g. Importantly, g
depends on x̂. So we follow an iterative process: after every
epoch of training, we use the most updated f to estimate the
unobserved labels in the independent weighting set. This
in turn gives us an estimate for ê and x̂ for the independent
weighting sample. We use these imputed values to learn an
updated g. The updated g provides estimates for the weights
of the training samples of the main prediction model, which
are used to reweight the loss function for the next epoch,
and so forth.

6. Experiments
We evaluate our model on a simulated and a real data setting.
All models presented in this paper are implemented using
Tensorflow (Abadi et al., 2016). Our code is available at
github.com/mymakar/miint.

In the simulated setting, unlike the real data setting, we have
access to the true infection state, which allows us to evaluate

the performance of the model and baselines under different
patterns of infection. In both settings, we present results
from our model (MIINT) and five baselines:

1. Optimistic Model (OM): a model that assumes that all
unobserved labels are equal to 0,

2. No Exposure Model (NEM): a model that ignores ex-
posure, and attempts to predict infections solely based
on the individual characteristics,

3. GraphSAGE (GNN): a graph neural network that takes
into account the contact network, and observed infec-
tion states (Hamilton et al., 2017) but ignores untested
individuals,

4. Pseudo-Labeling (PL): a semi-supervised learning
method that takes into account untested individuals
but ignores the graph structure (Lee, 2003),

5. ORacle Model (ORM): an unattainable model that has
oracle access to the true labels for the whole popula-
tion.

For all baselines, we weight the loss from each individual
by the inverse of their estimated propensity to be tested, wti ,
which is estimated using an independent sample following
Chernozhukov et al. (2017). For our model, we use the
iterative weighting technique outlined in section 5. For all
baselines as well as our approach (MIINT), we keep the neu-
ral network architecture fixed. We use cross-validatation to
get the values of λ, and τ . Results from unweighted models
and details about cross-validation and network architecture
are included in the supplement.

6.1. Simulation experiments

The simulation experiments demonstrate how MIINT can
be used to inform testing and isolation policies that lead
to reduction in infection rates, as well as empirically vali-
date our conjectures regarding the conditions under which
MIINT is expected to perform better than other methods.

Setup. We simulate a world in which there are three types of
people: symptomatic and infected if exposed (G0), asymp-
tomatic (but carrier) if exposed (G1), and non-infected/non-
carriers (G2). If exposed, individuals in group G0 become
infected and symptomatic, hence they are more likely to get
tested. If exposed, individuals in group G1 become infected
without displaying symptoms. This group is unlikely to get
tested. Finally, individuals in G2 are unlikely to get the
infection or carry the pathogen even if exposed. To simulate
individuals’ characteristics (i.e., x), we map the distinct
groups to distinct MNIST digits. We use MNIST images
because they can be easily classified as visually similar or
dissimilar, which enables us to design experiments where

github.com/mymakar/miint
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the dissimilarity property can be manipulated, as described
later.

Let νi denote the pixels of an MNIST image i. For G0

we randomly sample without replacement n/3 · T elements
from the set {νi}i:di=0 , where n is the total sample size.
We do the same for G1, and G2 but here we sample from
{νi}i:di=1, and {νi}i:di=2, respectively. Note that the in-
fection states will be different within each group, since
infection also depends on the exposure state. We draw the
edge sets {J t(i)}i∈n,t∈[0,T ] according to a stochastic block
model, parameterized by the matrix B, where Bk,l is the
probability that an individual from Gk forms an edge with
an individual from Gl. B is important in simulating differ-
ent levels of carrier potency. When B1,k/B1,2 for k = {0, 1}
approaches 1, members of the asymptomatic carrier group
are equally likely to form an edge with individuals who
are susceptible to symptomatic infections (G0) as with in-
dividuals who are non-infected/non-carriers (G2). This is
a low-separation setting, which is unfavorable for our ap-
proach. On the other hand, if B1,k/B1,2 = 5, for example,
individuals in G0, and G1 are 5 times more likely to form
an edge with someone in a susceptible group as compared to
forming an edge with an individual in G2. This a favorable
high-separation setting.

We mimic the situation where testing started after a signif-
icant proportion of the population has been exposed by
randomly setting the true exposure state of 20% of the
population to be 1 at time t = 0. Exposure for each in-
dividual eti =

∑
j∈Jt

i
ytj ≥ 1. The true infection label

yt+1
i = 1{i ∈ (G0, G1)} · 1{eti = 1}. We introduce noise

by randomly flipping the labels of 1% of the population. If
an individual tests positive at t < T , their label remains
positive until t = T . We define pobs to be the proportion
tested (their true label is observed). We pick the probability
of observing i’s label based on i’s true infection state, mean-
ing, p(oi|yi = 1) 6= p(oi|yi = 0). For all the simulations,
we set T = 6 and we draw 500 × 6 samples for each of
the training, validation, and testing sets. We simulate an
independent sample to compute the weights wi, so we also
draw 500 × 6 samples that are used to train and validate
weighting models. For each experiment, we draw 10 differ-
ent datasets, and report the mean and standard deviation of
the performance metric across the 10 draws.

Informing testing and isolation policies. Here, we high-
light how our model can inform efficient testing and iso-
lation policies. We simulate biased and limited testing by
setting p(oi|yi = 1)/p(oi|yi = 0) = 5, and pobs = .1 respec-
tively. We set B1,k/B1,2 = 5, making it a high potency set-
ting where MIINT is expected to perform well. We mimic a
situation where no isolation interventions are taken at train-
ing time. At deployment time, we fix a testing budget of
at most ptest% of the total population on each time step.
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Figure 1. Reduction in infection rates relative to a policy that does
not isolate infections (no-action policy) as the daily testing budget
varies. Our model achieves the highest reductions in policy relative
to all realistic (i.e., non-oracle) models.

We use the predictions from each model to inform who gets
tested by picking the top ptest% with the highest predicted
probability of infection. Of those tested, individuals who
are infected are “isolated” by setting their edges for the
subsequent time steps to 0. They are also taken out of the
population eligible for further testing.

We compute the infection rate based on the isolation pol-
icy suggested by each model at the end of the time hori-
zon, i.e., at time T . For a model M , the infection rate
πM = n−1 ·

∑
i y
T
i . We define π0 as the infection rate

under a no-action policy, that is if no isolation interventions
are taken. Our main metric of interest is the reduction in
infection rate relative to the no-action policy = (π0 − πM )/π0.
Figure 1 shows the reduction in infection rate on the y−axis
for different values of the testing budget ptest% on the
x−axis. In addition to the main baselines, we also show re-
sults from a random testing policy. The results show that for
each testing budget, our model outperforms all feasible base-
lines leading to uncovering more individuals who should
be isolated, thus achieving a higher reduction in infection
rates. The results imply that our model is able to achieve
near oracle infection control with 70% testing, compared to
≈ 90% for the baselines.

In the next two settings, we empirically validate our con-
jectures about the two properties that enable our model to
outperform others, and explore what happens as these favor-
able properties are weakened to the point of non-existence.

Sensitivity to the potency property. Here, we fix pobs =
.1 and p(oi|yi = 1)/p(oi|yi = 0) = 5, and sweep over carrier
potency by varying the value of B1,k/B1,2 from 1 (low po-
tency) to 5 (high potency). Figure 2(top) shows B1,k/B1,2 on
the x−axis and the AUROC on the y−axis. The plot shows
that MIINT outperforms other baselines when there is high
potency, and as potency declines, its performance becomes
similar to that of the other baselines. This supports our
conjecture that our regularization approach is advantageous
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Figure 2. Top: Impact of varying levels of carrier potency con-
trolled by B1,k/B1,2. Our model outperforms baselines, especially
in cases with high potency. Bottom: Impact of high (=.9) and
low (=.1) similarity between the characteristics of the untested-
uninfected and untested-infected populations. Our model outper-
forms baselines when the two populations are dissimilar.

when the true infection states for an individual is strongly
related to their contacts’ infection states.

Sensitivity to the dissimilarity property. Here we exam-
ine what happens when the untested-infected individuals
have characteristics that are similar to untested-uninfected
individuals. We do so by moving the untested, and pos-
sibly infected1 individuals to “look” similar to the non-
infected/non-carrier individuals. Specifically, we sample
pairs of images {(νi, νj)}i,j:di=1,dj=2. We then use Voxel-
Morph (Balakrishnan et al., 2018), a learning-based frame-
work for deformable, pairwise image registration to learn
a function that gives us a deformation field which we then
apply it to pairs of images, moving νi to look more similar
to νj . Using VoxelMorph in this way allows us to control
the degree of similarity between images.

Figure 3 shows a sample image morphing for a pair of
images using VoxelMorph.

Figure 2(bottom) shows the results of this setting. The

1Individuals in G1 are only infected if they get exposed.

x−axis can be viewed as the degree of similarity between
the two untested groups with 0 being dissimilar (i.e., the
original images without any deformation) and 1 being very
similar (i.e., all images of the digit 1 look almost identical
to 2’s). The y−axis is the average AUROC. We see that
all models perform worse as members in G1 look more
and more similar to those in G2. We also see that MIINT
outperforms all baselines when the two groups are dissimilar,
and performs as well as the others when the mapping from
input space to label becomes more difficult.

The last two experiments confirm our conjectures about the
properties necessary for MIINT to perform well, and imply
that MIINT “does no harm”: at worst it performs compara-
bly to alternatives, and at best it can give significantly better
performance. Additional results examining the effect of bias
and limited testing are in the supplement.

6.2. Real data experiment

Here, our task is to predict the onset of Clostridioides diffi-
cile, (C. difficile) infections among patients in a large urban
hospital. C. difficile infections are contagious bacterial infec-
tions that attack the gut, and cause over 300,000 infections
annually in the US (Magill et al., 2014). As with most con-
tagious infections, asymptomatic carriers of C. difficile exist
and can contribute to the spread of the infection (Riggs et al.,
2007).

Setup. Using EHRs, we extract daily characteristics of pa-
tients who were admitted to the hospital between 09/01/2012
and 06/01/2014. We follow similar inclusion criteria as (Oh
et al., 2018; Makar et al., 2018), outlined in detail in the
supplement. We collect all patient characteristics available
upon admission (e.g., gender, age, medical history) as well
as daily characteristics (e.g., lab tests). We collect contact
networks, where an edge exists if two patients are in the
same room on the same day or if they came into contact
with the same nurse on the same day.

Here, we have partial access to the true infection states,
since not all the patients are tested, making accurate evalua-
tion of different models impossible. Therefore, we exploit
the hospital’s testing protocols to construct a proxy “true”
label and a proxy “observed” label. Whether a patient is
diagnosed as C. difficile positive or not is a result of two, or
possibly three tests. First, an enzyme immunoassay (EIA)
and Glutamate dehydrogenase (GDH) test are conducted.
If the results of the two tests are discordant, a polymerase
chain reaction (PCR) assay acts as a tie-breaker. Previous
studies comparing the outcomes of the two groups (those
who have concordant, positive EIA/GDH results vs. dis-
cordant EIA/GDH and PCR positive) have shown that the
former experiences more severe complications (Origüen
et al., 2018; Polage et al., 2015). This suggests that concor-
dant, positive EIA/GDH can act a proxy for symptomatic
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Figure 3. Varying similarity between asymptomatic carrier features and non-infected/non-carrier features using VoxelMorph (Balakrishnan
et al., 2018)

infections whereas discordant EIA/GDH, and PCR positive
may be identifying patients who are carriers but have low
toxin levels and are therefore asymptomatic.

In this experiment, we hide the EIA/GDH discordant lab
tests at training time, presenting them as untested individ-
uals to all models. At the final evaluation time, however,
we compare the models’ predictions to the true infection
labels. The true infection state is determined to be positive
for patients who tested positive through a concordant, posi-
tive EIA/GDH or a discordant EIA/GDH test followed by
a positive PCR test. True negatives are defined similarly;
they are patients who tested negative either through a con-
cordant, negative EIA/GDH, or a discordant EIA/GDH and
a negative PCR test. In addition to the baselines outlined
in section 6.1, we allow one of the models full access to
the EIA/GDH discordant, PCR positive/negative labels, and
refer to it as a “partial oracle” model (POM) since it has
access to the PCR positive/negative labels, but not the full
infection states. The latter are unavailable because the vast
majority of patients in the hospital are not tested. We also
compare our results to a state-of-the-art prediction model
for C. difficile infections (Wiens et al., 2012), which is a
logistic regression model that takes into account the varying
importance of different risk factors over the hospitalization,
and relies on medical knowledge to construct exposure prox-
ies. We refer to this model as the Expert driven Logistic
Regression (ELR).

We split the data into 5 subsets based on time. The first
subset holds 6 months of data and is used to train the main
infection prediction models. The second and third subsets
contain 5 months of data each, and are used for validation
and testing of the main prediction model. The last 2 subsets
are used for training and validation of the weighting models,
and each contain 2 months worth of data. We report the AU-
ROC, the True Positive Rate (TPR) at the threshold which
achieves a False Positive Rate (FPR) of 10% on the test set.

Table 2 shows the results of the models on the test set.
For several models, the unweighted model outperforms its
weighted counterpart. We show the better performing ver-

TPR@
FPR=10%

AUROC

POM 0.49 (0.014) 0.73 (0.003)
NEM–U 0.45 (0.009) 0.7 (0.006)
OM–U 0.45 (0.012) 0.7 (0.005)
ELR 0.53 (0.008) 0.82 (0.006)
GNN 0.24 (0.005) 0.59 (0.005)
PL–U 0.58 (0.012) 0.78 (0.006)
MIINT–U 0.6 (0.007) 0.81 (0.006)

Table 2. Performance metrics for C. difficile infection prediction
on the test set.

sion here, and index it with “–U” to denote that it is the
unweighted version. Results from all models, and results
broken down by concordant EIA/GDH as well as discordant
EIA/GDH are in the supplement. Standard deviations are
calculated by taking 100 bootstrap replicates of the test set
data. We see that MIINT outperforms almost all others on
both reported metrics. The one exception is ELR: MIINT
and ELR achieve comparable AUROCs but MIINT has a
significantly better TPR. MIINT outperforms POM even
though the latter has access to better labels. We hypothesize
that this is because in addition to accurately predicting the
tested patients, MIINT is also capturing truly untested infec-
tions, and utilizing these estimates to accurately impute the
exposures of the concordant EIA/GDH patients as well as
the discordant EIA/GDH, PCR positive patients.

7. Conclusion
We presented MIINT, a model that predicts contagious in-
fections. Unlike other models, MIINT works well even
when labels are generated using biased and limited testing.
It does so by exploiting the fact that, in practice, data related
to contagious diseases are not i.i.d. The key idea is that
structured patterns of infection transmission can serve as
a complementary signal to identify even untested carriers.
The stronger that signal is, the less impact that biased and
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incomplete testing will have.

We identified two properties that determine the extent to
which MIINT outperforms other approaches. The first states
that the more transmissible the infection, the better MIINT
performs. The second is the degree to which characteristics
of untested and infected individuals and characteristics of
the untested and healthy individuals form discrete clusters–
an important property in general for semi-supervised learn-
ing.

We showed empirically that MIINT can be used to inform
testing and isolation strategies that can reduce total infec-
tions. We also showed that even if the two properties out-
lined above are absent, MIINT still performs well. In an
experiment using EHR data, we showed that MIINT outper-
forms baselines when when used to predict CDI.

Future work and limitations There are several future di-
rections that extend the work presented here. One direction
is extensions to hypergraphs. The “flat” graphs used in
this paper allow each individual to be connected to others
through one edge only. Hypergraph extensions would allow
each individual to be connected to others through multiple
edges, each encoding a different mode of contact (e.g., con-
tact through clinician sharing, or room sharing). Encoding
multiple relationships through hypergraphs could enable the
identification of different transmission routes.

Because of the obvious relevance of our work to the current
pandemic we should note that our model is best-suited for
infections which spread through close contact where contact
tracing is available through structured EHR data. Extensions
to our approach that address community-acquired infections
must take into account incomplete and imperfect contact
tracing.

In conclusion, we believe this work is a first step down an
important path. If predictive models are to play a useful role
in limiting the spread of contagious infections, they must
take into account the interdependence of outcomes, and the
fact that untested individuals are capable of spreading the
disease before they have been diagnosed.
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