
Near-optimal Algorithms for Explainable k-Medians and k-Means

A. Details for Section 4
Proof of Claim 4.4. Let τe be the first time t ≥ 1 when
element e does not belong to Et. Then, τ = maxe∈E τe.
Hence,

τ−1∑
t=0

pt = max
e∈E

τe−1∑
t=0

pt.

By the union bound, for all λ ≥ 0, we have

P
[τ−1∑
t=0

pt ≥ λ
]
≤
∑
e∈E

P
[τe−1∑
t=0

pt ≥ λ
]
. (12)

Define a new stochastic processZt(e) as follows: Z0(e) = 1
and for t ≥ 1,

Zt(e) =

{
e
∑t−1

t′=0
pt′ , if e ∈ Et;

0, otherwise.

Note that if
∑τe−1
t=0 pt ≥ λ, then maxt≥0 Zt(e) ≥ eλ−1.

Thus, we will bound Pr[maxt≥0 Zt(e) ≥ eλ−1]. Observe
that Zt is a supermartingale, since

E[Zt+1 | Ft] = Pr[e ∈ Et+1 | Ft] · ept · Zt
≤ (1− pt) · ept · Zt ≤ Zt.

By Doob’s maximal martingale inequality, we have

Pr[max
t≥0

Zt(e) ≥ eλ−1] ≤ Z0(e)/eλ−1 = e−(λ−1).

Using (12), we get

P
[τ−1∑
t=0

pt ≥ λ
]
≤ |E| · e−(λ−1).

Therefore,

E
[τ−1∑
t=0

pt

]
=

∫ ∞
0

P
[τ−1∑
t=0

pt ≥ λ
]
dλ

≤ ln |E|+
∫ ∞

ln |E|
|E| · e−(λ−1)dλ

= ln |E|+ |E|e− ln |E|+1 = ln |E|+ e.

B. Terminal Embedding
Lemma B.1. For every finite set of real numbers K, the
function ψK defined in Lemma 6.1 is a cut preserving em-
bedding that satisfies for every x ∈ R and y ∈ K

|ψK(x)− ψK(y)| ≤ |x− y|2

≤ 8|K| · |ψK(x)− ψK(y)|.

Proof. We first show that this function ψK is continuous
and differentiable in R. Consider 2k open intervals on the
real line divided by points in K and points (yi + yi+1)/2
for i ∈ {1, 2, · · · , k − 1}. In every such open interval, the
function ψK is a quadratic function, which is continuous
and differentiable. Since ψK is also continuous and differ-
entiable at the endpoints of these intervals, the function ψK
is continuous and differentiable in R. For any x ∈ R, we
have ψ′K(x) = 2 |x− y∗| ≥ 0 where y∗ is the closest point
in K to x. Thus, the function ψK is increasing in R, which
implies ψK is cut preserving.

We now prove that ψK satisfies two inequalities. We first
show that for every x ∈ R and y ∈ K, |ψK(x)−ψK(y)| ≤
|x − y|2. Suppose that x ≥ y (The case x ≤ y is handled
similarly.) If x = y, then this inequality clearly holds. Thus,
to prove |ψK(x) − ψK(y)| ≤ |x − y|2, it is sufficient to
prove the following inequality on derivatives

(ψK(x)− ψK(y))′x ≤
(
(x− y)2

)′
x
.

Let y∗ be the closest point in K to x. Then,

(ψK(x)− ψK(y))′x = (ψK(x))′x =

= (ψK(y∗) + εx(x− y∗)2)′x = 2|x− y∗|.

Since y∗ is the closest point in K to x, we have |x− y∗| ≤
|x− y| =

(
(x− y)2

)′
x
/2. This finishes the proof of the first

inequality.

We now verify the second inequality. First, consider two
points yi and yj (yi < yj). Write,

ψK(yj)− ψK(yi) = zj − zi =
1

2

j−1∑
m=i

(ym+1 − ym)2.

By the arithmetic mean–quadratic mean inequality, we have

(j−i)·
j−1∑
m=i

(ym+1−ym)2 ≥
(j−1∑
m=i

ym+1−ym
)2

= (yj−yi)2.

Thus,

ψK(yj)− ψK(yi) ≥
(yj − yi)2

2(j − i)
≥ (yj − yi)2

2(k − 1)
.

Now we consider the case when x is an arbitrary real number
in R and y ∈ K. Let y∗ be the closest point inK to x. Then,

|x− y|2 ≤ 2|x− y∗|2 + 2|y∗ − y|2.

The first term on the right hand side equals 4|ψK(x) −
ψK(y∗)|; the second term is upper bounded by 4(k −
1)|ψK(y)− ψK(y∗)|. Thus,

|x−y|2 ≤ 4|ψK(x)−ψK(y∗)|+4(k−1)|ψK(y∗)−ψK(y)|.

Near-optimal Algorithms for Explainable k-Medians and k-Means

Note that |ψK(x)−ψK(y∗)| ≤ |ψK(x)−ψK(y)| since y∗

is the closest point in K to x. Also, we have

|ψK(y∗)− ψK(y)| ≤
≤ |ψK(x)− ψK(y∗)|+ |ψK(x)− ψK(y)|
≤ 2|ψK(x)− ψK(y)|.

Hence,
|x− y|2 ≤ 8k|ψK(x)− ψK(y)|.

This completes the proof.

Lemma B.2. The terminal embedding ψ is coordinate cut
preserving. For every threshold cut (i, θ), there exists a
threshold cut (i, θ′) such that

{x ∈ Rd : xi ≤ θ′} = {x ∈ Rd : ψ(x)i ≤ θ}.

Proof. By the construction of ϕ, we have for any threshold
cut (i, θ)

{x ∈ Rd : ψ(x)i ≤ θ} = {x ∈ Rd : ψi(xi) ≤ θ}.

Since ψi is a cut preserving terminal embedding by
Lemma 6.2, there exists a threshold θ′ ∈ R such that

{x ∈ Rd : xi ≤ θ′} = {x ∈ Rd : ψi(xi) ≤ θ}.

C. k-medians in `2

In this section, we present an algorithm for the k-medians in
`2 and show that it provides an explainable clustering with
cost at most O(log3/2 k) times the original cost.

C.1. Algorithm for k-medians in `2

Our algorithm builds a binary threshold tree T using a top-
down approach, as shown in Algorithm 2. It starts with
a tree containing only the root node r. The root r is as-
signed the set of points Xr that contains all points in the
data set X and all reference centers ci. Then, the algorithm
calls function BUILD TREE(r). Function BUILD TREE(u)
partitions centers in u in several groups Xv using func-
tion PARTITION LEAF(u) and then recursively calls itself
(BUILD TREE(v)) for every new group Xv that contains
more than one reference center ci.

Most work is done in the function PARTITION LEAF(u).
The argument of the function is a leaf node u of the tree.
We denote the set of data points and centers assigned to u
by Xu. Function PARTITION LEAF(u) partitions the set
of centers assigned to node u into several groups. Each
group contains at most half of all centers ci from the set Xu.
When PARTITION LEAF(u) is called, the algorithm finds
the `1-median of all reference centers in node u. Denote this

point by mu. We remind the reader that the i-th coordinate
of the median mu (which we denote by mu

i) is a median
for i-th coordinates of centers in Xu. That is, for each
coordinate i, both sets {c ∈ Xu ∩ C : ci < mu

i } and {c ∈
Xu∩C : ci > mu

i } contain at most half of all centers inXu.
Then, function PARTITION LEAF(u) iteratively partitions
Xu into pieces until each piece contains at most half of
all centers from Xu. We call the piece that contains the
median mu the main part (note that we find the median mu

when PARTITION LEAF(u) is called and do not update mu

afterwards).

At every iteration t, the algorithm finds the maximum dis-
tance Rut from centers in the main part to the point mu. The
algorithm picks a random coordinate iut ∈ {1, 2, · · · , d},
random number θut ∈ [0, (Rut)2], and random sign σut ∈
{±1} uniformly. Then, it splits the main part using the
threshold cut (iut ,m

u
i +σut

√
θut) if this cut separates at least

two centers in the main part. Function PARTITION LEAF(u)
stops, when the main part contain at most half of all centers
in Xu. Note that all pieces separated from mu during the
execution of PARTITION LEAF(u) contain at most half of
all centers in Xu because mu is the median of all centers in
Xu.

Theorem C.1. Given a set of points X in Rd and a set
of centers C = {c1, . . . , ck} ⊂ Rd, Algorithm 2 finds a
threshold tree T with expected k-medians in `2 cost at most

E[cost`2(X,T)] ≤ O(log
3/2 k) · cost`2(X,C).

Proof. Let Tt(u) be the threshold tree at the beginning of
iteration t in function PARTITION LEAF(u). For every
point x ∈ Xu, define its cost at step t of function PAR-
TITION LEAF(u) to be the distance from x to the closest
center in the same leaf of Tt(u) as x. That is, if x belongs
to a leaf node v in the threshold tree Tt(u), then

cost`2(x, Tt(u)) = min{‖x− c‖2 : c ∈ Xv ∩ C}.

If the point x is separated from its original center in C by
the cut generated at time step t, then x will be eventually
assigned to some other center in the main part of Tt(u). By
the triangle inequality, the new cost of x at the end of the
algorithm will be at most cost`2(x,C) + 2Rut , where Rut
is the maximum radius of the main part in Tt(u) i.e., Rut is
the distance from the median mu to the farthest center ci in
the main part. Define a penalty function φut (x) as follows:
φut (x) = 2Rut if x is separated from its original center c
at time t; φut (x) = 0, otherwise. Let Ux be the set of
all nodes u for which the algorithm calls BUILD TREE(u)
and x ∈ Xu. Note that some nodes v of the threshold
tree with x ∈ Xv do not belong to Ux. Such nodes v
are created and split into two groups in the same call of
PARTITION LEAF(u). Observe that φut (x) 6= 0 for at most
one step t in the call of PARTITION LEAF(u) for some node

Near-optimal Algorithms for Explainable k-Medians and k-Means

Algorithm 2 Threshold tree construction for k-medians in L2

Input: a data set X ⊂ Rd, centers C = {c1, c2, . . . , ck} ⊂ Rd
Output: a threshold tree T

function MAIN(X,C)
Create a root r of the threshold tree T containing Xr = X ∪ C.
BUILD TREE(r).

end function

function PARTITION LEAF(u)
Compute the `1 median mu of all centers in Xu.
Set the main part u0 = u and set t = 0.
while node u0 contains more than 1/2 of centers in Xu do

Update t = t+ 1.
Let Rut = maxc∈Xu0

‖c‖2.
Sample iut ∈ {1, 2, · · · , d}, θut ∈ [0, (Rut)2], and σut ∈ {±1} uniformly at random.
if two centers in Xu0

are separated by (iut ,m
u
i + σut

√
θut) then

Assign to u0 two children u≤ = {x ∈ Xu0
: xi ≤ ϑ} and u> = {x ∈ Xu0

: xi > ϑ} where i = iut , ϑ =
mu
i + σut θ

u
t .

Update the main part u0 be u≤ if σut = 1, and be u> otherwise (thus, the main part always contains mu).
end if

end while
end function

function BUILD TREE(u)
Call PARTITION LEAF(u).
Call BUILD TREE(v) for each leaf v in the subtree of u containing more than one center.

end function

u ∈ Ux, and

cost`2(x, T) ≤ cost`2(x,C) +
∑
u∈Ux

∑
t

φut (x). (13)

The sum in the right hand side is over all iterations t in
all calls of function PARTITION LEAF(u) with u ∈ Ux.
Since each piece in the partition returned by function PAR-
TITION LEAF(u) contains at most half of all centers from
Xu, the depth of the recursion tree is at most O(log k) (note
that the depth of the threshold tree can be as larger as k− 1).
This means that the size of Ux is at most O(log k). In
Lemma C.3, we show that the expected total penalty in the
call of PARTITION LEAF(u) for every u ∈ Ux is at most
O(
√

log k) times the original cost. Before that, we upper
bound the expected penalty φut (x) for each step t in the call
of PARTITION LEAF(u) for every node u ∈ Ux.

Lemma C.2. The expected penalty φut (x) is upper bounded
as follows:

E[φut (x)] ≤ E
[
2‖x− c‖2 ·

‖c−mu‖2 + ‖x−mu‖2
d ·Rut

]
,

where c is the closest center to the point x in C.

Proof. We first bound the probability that point x is sepa-
rated from its original center c at iteration t. For any coordi-
nate i ∈ {1, 2, · · · , d}, let xi and ci be the i-th coordinates
of point x and center c respectively. For any point x ∈ Rd,
we define the indicator function δx(i, θ) = 0 if xi ≤ θ, and
δx(i, θ) = 1 otherwise. To determine whether the threshold
cut sampled at iteration t separates x and c, we consider the
following two cases: (1) x and c are on the same side of the
median mu in coordinate i (i.e. (xi −mu

i)(ci −mu
i) ≥ 0),

and (2) x and c are on the opposite sides of the median mu

in coordinate i (i.e. (xi −mu
i)(ci −mu

i) < 0).

If x and c are on the same side of the median mu in coor-
dinate i, then the threshold cut (i,mu

i + σut
√
θut) separates

x and c if and only if σut has the same sign as xi −mu
i and

θut is between (xi −mu
i)2 and (ci −mu

i)2. Thus,

P [δx(i, ϑut) 6= δc(i, ϑ
u
t) | Tt(u)] =

=

∣∣(ci −mu
i)2 − (xi −mu

i)2
∣∣

2(Rut)2
≤

≤ |ci − xi| (|ci −m
u
i |+ |xi −mu

i |)
2(Rut)2

,

where ϑut = mu
i + σut

√
θut .

Near-optimal Algorithms for Explainable k-Medians and k-Means

Now, suppose x and c are on the opposite sides of the median
mu in coordinate i, i.e. (xi − mu

i)(ci − mu
i) < 0. The

threshold cut (i,mu
i +σut

√
θut) separates x and c if and only

if σut (xi−mu
i) ≥ 0, θut ≤ (xi−mu

i)2 or σut (ci−mu
i) ≥ 0,

θut ≤ (ci − mu
i)2. Thus, we have for every coordinate i

with (xi −mu
i)(ci −mu

i) < 0,

P [δx(i, ϑut) 6= δc(i, ϑ
u
t) | Tt(u)] =

=
(ci −mu

i)2 + (xi −mu
i)2

2(Rut)2
≤

≤ |ci − xi| (|ci −m
u
i |+ |xi −mu

i |)
2(Rut)2

,

where the last inequality follows from |ci − xi| ≥
max{|ci −mu

i | , |xi −mu
i |}, since ci, xi are on the differ-

ent sides of mu
i .

Since the coordinate iut is chosen randomly and uniformly
from {1, · · · d}, the probability that x and c are separated at
iteration t is

P[δx(iut , ϑ
u
t) 6= δc(i

u
t , ϑ

u
t) | Tt(u)] ≤

≤
d∑
i=1

|ci − xi| (|ci −mu
i |+ |xi −mu

i |)
2d · (Rut)2

≤ ‖c− x‖2(‖x−mu‖2 + ‖c−mu‖2)

d · (Rut)2
,

where the last inequality follows from the Cauchy-Schwarz
inequality and (|ci|+ |xi|)2 ≤ 2c2i + 2x2

i .

Then, the expected penalty is

E[φut (x)] ≤ E
[
P [δx(iut , ϑ

u
t) 6= δc(i

u
t , ϑ

u
t) | Tt(u)] · 2Rut

]
≤ E

[
2‖c− x‖2 ·

‖c−mu‖2 + ‖x−mu‖2
d ·Rut

]
.

To bound the expected penalty for point x, we consider
two types of cuts based on three parameters: the maximum
radius Rut and distances ‖x −mu‖2, ‖c −mu‖2 between
x, c and the median mu . If x is separated from its original
center c at iteration t with

Rut ≤
√

log2 k ·max{‖x−mu‖2, ‖c−mu‖2},

then we call this cut a light cut. Otherwise, we called it a
heavy cut.

Lemma C.3. In every call of PARTITION LEAF(u) (see
Algorithm 2), the expected penalty for a point x ∈ X is
upper bounded as follows:

E
[∑

t

φut (x)

]
≤ O(

√
log k) · cost`2(x,C).

Proof. If point x is not separated from its original center
c in PARTITION LEAF(u), then the total penalty is 0. If
x is separated from its center c in this call, then there are
two cases: (1) the point x is separated by a light cut; (2)
the point x is separated by a heavy cut. We first show
that the expected penalty due to a heavy cut is at most
O(
√

log k)cost`2(x,C).

Denote the set of all heavy cuts at iteration t in PARTI-
TION LEAF(u) by Hu

t :

Hu
t = {x : max{‖x−mu‖2, ‖c−mu‖2} < Rut /

√
log2 k}.

Then, by Lemma C.2, the expected penalty x incurs due to
a heavy cut is at most

E

[∑
t:x∈Hu

t

φut (x)

]
≤

≤ 2‖x− c‖2 · E

[∑
t:x∈Hu

t

‖x−mu‖2 + ‖c−mu‖2
d ·Rut

]
.

Since the maximum radius Rut is a non-increasing func-
tion of t, we split all steps of this call of PARTITION LEAF
into phases with exponentially decreasing values of Rut .
At phase s, the maximum radius Rut is in the range
(Ru1/2

s+1, Ru1/2
s], where Ru1 is the maximum radius at

the beginning of PARTITION LEAF(u).

Consider an arbitrary phase s and step t in that phase. Let
R = Ru1/2

s. For every center c′ with ‖c′ − mu‖2 ∈
(R/2, R], the probability that this center c′ is separated from
the main part at step t in phase s is at least

P [δc′(i
u
t , ϑ

u
t) 6= δmu(iut , ϑ

u
t) | Tt(u)] =

=

d∑
j=1

1

d
·

(c′j −mu
j)2

2(Rut)2
=
‖c′ −mu‖22
2d · (Rut)2

≥ 1

4d
,

where the last inequality is due to ‖c′ −mu‖2 > R/2 ≥
Rut /2 for step t in the phase s. Since there are at most k
centers, all centers with norm in (R/2, R] are separated
from the main part in at most 4d ln k steps in expectation.
Thus, the expected length of each phase is O(d log k) steps,
and hence, the expected penalty x incurred during phase s
is at most

2‖x− c‖2 · E
[∑

t:x∈Hu
t

Ru
t ∈(R/2,R]

‖x−mu‖2 + ‖c−mu‖2
d ·Rut

]
≤

≤ 2‖x− c‖2 · E
[∑

t:x∈Hu
t

Ru
t ∈(R/2,R]

‖x−mu‖2 + ‖c−mu‖2
d ·R/2

]
≤

≤ O(log k) · ‖x− c‖2 ·
‖x−mu‖2 + ‖c−mu‖2

R
.

Near-optimal Algorithms for Explainable k-Medians and k-Means

Let s′ be the last phase for which

Ru1/2
s′ ≥

√
log2 k ·max{‖x−mu‖2, ‖c−mu‖2}. (14)

Then, in every phase s > s′, all cuts separating x from its
original center c are light. Hence, the total expected penalty
due to a heavy cut is upper bounded by

O(log k)·‖x−c‖2 ·(‖x−mu‖2+‖c−mu‖2)·
s′∑
s=0

2s

Ru1
=

= O(log k)·‖x−c‖2 ·(‖x−mu‖2+‖c−mu‖2)· 2
s′+1

Ru1
.

Using the definition (14) of s′, we write

(‖x−mu‖2 + ‖c−mu‖2) · 2s
′+1

Ru1
≤

≤ 2
‖x−mu‖2 + ‖c−mu‖2

Ru1/2
s′

≤ 4√
log2 k

.

Thus, the expected penalty due to a heavy cut is at most
O(
√

log k)cost`2(x,C).

We now analyze the expected penalty due to a light cut.
Consider an iteration t in PARTITION LEAF(u) with x 6∈
Hu
t . By the analysis in Lemma C.2, the probability that x

and c are separated at iteration t is at most

‖c− x‖2(‖x−mu‖2 + ‖c−mu‖2)

d · (Rut)2
.

The probability that x or c is separated from the main part
at iteration t is at least

max{‖x−mu‖22, ‖c−mu‖22}
d(Rut)2

.

If x or c is separated from the main part, then the point x
will not incur penalty at any step after t. Thus, the prob-
ability that x and c are separated by a light cut in the end
of PARTITION LEAF(u) is at most

‖c− x‖2(‖x−mu‖2 + ‖c−mu‖2)

max{‖x−mu‖22, ‖c−mu‖22}
≤

≤ 2‖c− x‖2
max{‖x−mu‖2, ‖c−mu‖2}

.

Since the penalty of a light cut is at most Rut ≤
√

log2 k ·
max{‖x−mu‖2, ‖c−mu‖2}, the expected penalty due to
a light cut is at most O(

√
log k) · cost`2(x,C).

This concludes the proof of Lemma C.3.

For every node u, the main part contains the median mu,
which is also the `1-median of all centers in Xu. Thus, each

cut sampled in the call PARTITION LEAF(u) separates at
most half of all centers inXu from the origin. The main part
contains at most half of centers in Xu at the end of the call
PARTITION LEAF(u). Therefore, each leaf node generated
in the end of PARTITION LEAF(u) contains at most half of
centers in Xu. Thus, the depth of the recursion tree is at
most O(log k). By Lemma C.3 and Equation (13), we get
the conclusion.

D. Lower Bound for Threshold Tree
D.1. Lower bound for k-means

In this section, we show a lower bound on the price of
explainability for k-means.

Theorem D.1. For any k, there exists an instance X with k
clusters such that the cost of explainable k-means clustering
for every tree T is at least

cost`22(X,T) ≥ Ω

(
k

log k

)
OPT`22(X).

To prove this lower bound, we construct an instance as fol-
lows. We uniformly sample k centersC =

{
c1, c2, · · · , ck

}
from the d-dimensional unit cube [0, 1]d where the dimen-
sion d = 300 ln k. For each center ci, we add two points
ci ± (ε, ε, · · · , ε) with ε = 300 ln k/k. We also add many
points at each center such that the optimal centers for any
threshold tree remain almost the same. Specially, we can
add k2 points co-located with each center ci. Then, if one
center ci is shifted by a distance of ε in the threshold tree
clustering, the cost of the co-located points at ci is at least
k2ε2. Since the optimal regular cost for this instance is
kdε2, the total cost of the threshold tree is lower bounded
by Ω(k/ log k)OPT`22(X). Consequently, we consider the
threshold tree with optimal centers shifted by at most ε.

First, we show that any two centers defined above are far
apart with high probability.

Lemma D.2. With probability at least 1− 1/k2 the follow-
ing holds: The squared distance between every two distinct
centers c and c′ in C is at least d/12.

Proof. Consider any fixed two centers c, c′ ∈ C. Since
c, c′ are uniformly sampled from [0, 1]d, each coordinate of
c, c′ is sampled from [0, 1]; and centers c, c′ are sampled
independently. Thus, we have

Ec,c′ [‖c− c′‖2] =

d∑
i=1

Eci,c′i [(ci − c
′
i)

2] =
d

6
.

We use a random variable Xi to denote (ci − c′i)2 for each
coordinate i ∈ {1, . . . , d}. Since random variables {Xi}di=1

are independent, by Hoeffding’s inequality, we have

Near-optimal Algorithms for Explainable k-Medians and k-Means

P

[
d∑
i=1

Xi − E
[d∑
i=1

Xi

]
≤ −
√

2d ln k

]
≤

≤ e−4 ln k =
1

k4
,

where we used that d = 300 ln k. This implies that the
squared distance between c and c′ is less than d/12 with
probability at most 1/k4. Using the union bound over all
pairs of centers in C, we conclude that the squared distance
between all pairs in C is at least d/12 with probability at
least 1− 1/k2.

If any two centers are far apart, then a point x separated from
its original center will incur a large penalty. Thus, we can
get a lower bound if there exists an instance which satisfies:
(1) any two centers are separated by a large distance; (2)
every threshold tree separates a relatively large portion of
points from their original centers. In particular, we prove
that with probability 1− o(1), every threshold cut separates
a relatively large portion of points from their original centers
in the random instance we constructed.

Lemma D.3. With probability at least 1− 1/k2, the follow-
ing holds: every threshold cut (i, θ) with i ∈ {1, 2, · · · , d}
and θ ∈ [0, 1) separates at least εk/4 points from their
original centers.

Proof. Consider a fixed coordinate i ∈ {1, . . . , d}. We
project each center and its rectangular neighborhood onto
this coordinate. For each center cj ∈ C, we define an inter-
val Iji as the intersection of [0, 1] and the ε-neighborhood
of its projection cji , i.e. Iji = (cji − ε, c

j
i + ε) ∩ [0, 1]. Each

interval Iji has length at least ε. If we pick a threshold cut
inside any interval Iji , then we separate at least one points
from center cj . In this case, the interval Iji is called covered
by this threshold cut. Then, we give the lower bound on the
minimum number of intervals covered by a threshold cut.

For a fixed set of centers C, we consider at most 2k special
positions for the threshold cut at coordinate i as follows. Let
Ei be the set containing two end points of intervals Iji for all
centers cj . For any threshold cut at coordinate i, the closest
position in set Ei covers exactly the same set of intervals as
this threshold cut. Thus, we only need to consider threshold
cuts at positions in Ei.

For centers chosen uniformly from [0, 1]d, the set Ei con-
tains 2k random variables. Suppose we pick a threshold
cut at a position θ in Ei related to interval Iji . Conditioned
on the position θ, the other k − 1 centers cj for j 6= j∗

are uniformly distributed in [0, 1]d since all centers are
chosen independently. For j ∈ {1, 2, · · · , k} \ {j∗}, let
Y ji be the indicator random variable that the interval Iji

contains this position θ. For each variable Y ji , we have

ε ≤ P
[
Y ji = 1

]
≤ 2ε. Since random variables Y ji are

independent, by the Chernoff bound for Bernoulli random
variables, we have

P

∑
j

Y ji − E

[∑
j

Y ji

]
≤ −
√

18εk ln k | θ

 ≤
≤ e−4 ln k =

1

k4
.

Thus, we have the number of intervals containing this posi-
tion θ is at least εk/4 with probability at least 1− 1/k4.

Since we have 2k positions Ei for each coordinate i ∈
{1, 2, · · · , d}, there are total 2dk positions for threshold
cuts. Using the union bound over all positions, we have the
minimum number of intervals covered by a threshold cut is
at least εk/4 with probability at least 1− 1/k2. Since the
threshold cut separates one point from its original center for
each covered interval, we have every threshold cut separates
at least εk/4 points from their original centers in this case.

Proof of Theorem D.1. By Lemma D.2, we can only con-
sider the instance where any two centers are separated with
the squared distance at least d/12. Note that the optimal
centers for any threshold tree remain almost the same as
centers C. Thus, we analyze the k-means cost given by
any threshold tree with respect to center C. If a point in
X is separated from its original center, this point will fi-
nally be assigned to another center in C. By the triangle
inequality, the k-means cost of this point is at least d/20. By
Lemma D.3, there exists an instance such that any threshold
cut separates at least εk/4 points from their original centers.
Thus, there exists an instance X such that any threshold tree
T has the k-means cost at least

cost`22(X,T) ≥ εk

4
· d

20
=
εkd

80
.

Note that the optimal regular k-means cost for this instance
X is

OPT`22(X) = 2k · ε2d.

Therefore, the k-means cost for this instance X given by
any threshold tree T is at least

cost`22(X,T) ≥ 1

160ε
·OPT`22(X)

= Ω

(
k

log k

)
·OPT`22(X).

Near-optimal Algorithms for Explainable k-Medians and k-Means

D.2. Lower bound for k-medians in `2

In this section, we show a lower bound on the price of
explainability for k-medians in `2.

Theorem D.4. For every k ≥ 1, there exists an instance X
with k clusters such that the k-medians with `2 objective
cost of every threshold tree T is at least

cost`2(X,T) ≥ Ω(log k)OPT`2(X).

To prove this lower bound, we use the construction sim-
ilar to that used in Theorem D.1. We discretize the d-
dimensional unit cube [0, 1]d into grid with length ε =
1/dln ke, where the dimension d = 300 ln k. We uniformly
sample k centers C = {c1, c2, · · · , ck} from the above
grid {0, ε, 2ε, · · · , 1}d. For each center ci, we add 2 points
ci± (ε, ε, · · · , ε) to this center. Similar to Theorem D.1, we
also add many points at each center such that the optimal
centers for any threshold tree remain almost the same.

Similar to Lemma D.2, we show that any two centers defined
above are far apart with high probability.

Lemma D.5. With probability at least 1− 1/k2 the follow-
ing holds: The distance between every two distinct centers
c and c′ in C is at least

√
d/4.

Proof. To sample a center from the grid uniformly, we can
first sample a candidate center uniformly from the cube
[−ε/2, 1 + ε/2]d and then move it to the closest grid point.
Note that the `2-distance from every point in this cube to its
closest grid point is at most ε

√
d = o(1). By Lemma D.2,

the `2 distance between every pairs of candidate centers is
at least

√
d/12 with probability at least 1− 1/k2. Thus, the

distance between every two distinct centers is at least
√
d/4

with probability at least 1− 1/k2.

For every node in the threshold tree, we can specify it by
threshold cuts in the path from the root to this node. Thus,
we define a path π as an ordered set of tuples (ij , θj , σj),
where (ij , θj) denotes the j-th threshold cut in this path and
σj ∈ {±1} denotes the direction with respect to this cut.
We use u(π) be the node specified by the path π. We define
a center is damaged if one of its two points are separated by
this cut, otherwise a center is undamaged. Let Fu be the set
of undamaged centers in node u.

Lemma D.6. With probability at least 1−1/k, the following
holds: For every path π with length less than log2 k/4, we
have (a) the node u(π) contains at most

√
k undamaged

centers; or (b) every cut in node u(π) damages at least
ε|Fu(π)|/2 centers in Fu(π).

Proof. Consider any fixed path π with length less than
log2 k/4. We upper bound the probability that both events
(a) and (b) do not happen conditioned on Fu(π). If |Fu(π)| ≤

√
k, then the event (a) happens. For the case Fu(π) contains

more than
√
k centers, we pick an arbitrary threshold cut

(i, θ) in the node u(π). For every center c in Fu(π), the
probability we damage this center c is at least ε. Let Xj be
the indicator random variable that the j-th center in Fu(π)

is damaged by the threshold cut (i, θ). Then, we have the
expected number of centers in Fu(π) damaged by this cut
(i, θ) is

E
[∑

j

Xj

]
≥ ε

∣∣Fu(π)

∣∣ .
Let µ = E[

∑
j Xj]. By the Chernoff bound for Bernoulli

random variables, we have

P

∑
j

Xj ≤ ε
∣∣Fu(π)

∣∣ /2
 ≤ P

∑
j

Xj ≤ µ/2


≤ e−µ/8 ≤ e−ε

√
k/8.

Using the union bound over all threshold cuts in u(π), the
failure probability that both event (a) and (b) do not happen
is at most e−ε

√
k/16. The number of paths with length less

than log2 k/4 is at most m(2d/ε)m ≤ e− log2 k. Thus, by
the union bound over all paths with length less than log2 k/4,
we get the conclusion.

Proof of Theorem D.4. By Lemma D.5 and Lemma D.6,
we can find an instance X such that both two properties
hold. We first show that the threshold tree must separate
all centers. Suppose there is a leaf contains more than one
center. Since the distance between every two centers is at
least

√
d/4 and there are many points at each center, the cost

for this leaf can be arbitrary large. To separate all centers,
the depth of the threshold tree is at least dlog2 ke.

We now lower bound the cost for every threshold tree that
separates all centers. Consider any threshold tree T that
separates all centers. We consider the following two cases.
If the number of damaged centers at level blog2 kc/4 of
threshold tree T is more than k/2, then the cost given by T
is at least

cost`2(X,T) ≥ k

2
·
√
d

8
=
k
√
d

16
.

If the number of damaged centers at level blog2 kc/4 of
threshold tree T is less than k/2, then the number of un-
damaged centers at every level i = 1, 2, . . . , blog2 kc/4 is
at least k/2. We call a node u a small node if it contains at
most

√
k undamaged centers, otherwise we call it a large

node. Then, we lower bound the number of damaged cen-
ters generated at any fixed level i ∈ {1, 2, · · · , blog2 kc/4}.
Since the number of nodes at level i is at most k1/4, the
number of undamaged centers in small nodes at level i is
at most k3/4. Thus, the number of undamaged centers in

Near-optimal Algorithms for Explainable k-Medians and k-Means

large nodes at level i is at least k/4. By Lemma D.6, the
number of damaged centers generated at level i is at least
εk/8. Therefore, the cost given by this threshold tree T is
at least

cost`2(X,T) ≥ blog2 kc
4

εk

8

√
d

8
= Ω(k

√
dε log k).

Note that the optimal cost for this instance is at most kε
√
d

and ε = 1/dlog ke. Combining the two cases above, we
have the cost given by threshold tree T is at least

cost`2(X,T) = Ω(k
√
dε log k) = Ω(log k)OPT`2(X).

E. Fast Algorithm
In this section, we provide a fast variant of Algorithm 1 with
running time O(kd log2 k). The input of this algorithm is
the set of reference centers c1, . . . , ck and the output is a
threshold tree that splits all centers. The algorithm does
not consider the data points (hence, it does not explicitly
assign them to clusters). It takes an extra O(nk) time to
assign every point in the data set to one of the leaves of the
threshold tree.

This fast variant of Algorithm 1 picks a separate threshold
cut ωu for each leaf u. This cut is chosen uniformly at
random from Ru, where

Ru =
⋃

ci,cj∈Xu

Sij .

That is, Ru is the set of all cuts ω that separate at least two
centers in Xu. The algorithm then splits leaf u into two
parts using ωu.

A straightforward implementation of the algorithm parti-
tions each leaf by computing δc(ωu) for all centers c in Xu.
It takes O(d · |Xu ∩ C|) time to find Ru and sample ωu

for each u. It takes time O(|Xu ∩ C|) to split Xu into two
groups. Thus, the total running time of this implementation
of the algorithm is O(k2d). We now discuss how to imple-
ment this algorithm with running time O(kd log2 k) using
red-black trees.

The improved algorithm stores centers for each leaf of the
threshold tree in d red-black trees. Centers in the i-th red-
black tree are sorted by the i-th coordinate. Using red-black
trees, we can find the minimum and maximum values of ci
for c ∈ C ∩Xu in time O(d log k). Denote these values by
ai and bi, then

Ru =
⋃
i

{i} × [ai, bi].

Hence, we can find Ru and sample a random cut ωu in time
O(d log k) for each u.

To partition set Xu into two groups with respect to ωu =
(i, θ), we consider the i-th red-black tree for leaf u and find
the sizes of the new parts, Left = {c ∈ Xu ∩ C : ci ≤ θ}
and Right = {c ∈ Xu ∩ C : ci > θ}. We choose the set
that contains fewer centers. Let us assume that the second
set (Right) is smaller the first one (Left). Then, we find
all centers in Right and delete them from this red-black
tree and all other red-black trees for node u. We assign
the updated red-black trees (with deleted Right) to the left
child of u. For the right child, we build d new red-black
trees, which store centers for Right. Since we delete at
most half of all centers in the red-black tree, each center is
deleted at most O(log k) times. Each time it is deleted from
d trees and inserted into d trees. Each deletion and insertion
operation takes time O(log k). Thus, the total time of all
deletion and insertion operations is O(kd log2 k).

We note that though this algorithm slightly differs from
the algorithm presented in Section 4, its approximation
guarantees are the same.

