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A. Details for Section 4

Proof of Claim 4.4. Let 7. be the first time ¢ > 1 when
element e does not belong to E;. Then, 7 = maXecp Te.

Hence,
Te—1

T—1

E P+ = max E Pt
ecE

t=0 t=0

By the union bound, for all A > 0, we have

T—1 Te—1
P{Zpt > A] < ZP[ Y opz A}. (12)
t=0 eckE t=0

Define a new stochastic process Z;(e) as follows: Zy(e) = 1
and fort > 1,

Ty = [P ifee B
‘ 0, otherwise.

Note that if ZZ;Elpt > )\, then max;>o Z;(e) > e L.
Thus, we will bound Pr[max;> Z;(e) > e*~1]. Observe
that Z; is a supermartingale, since

E[Zt+]_ | .7:15] = PI‘[@ S Et+1 | ]:t] -ePr. Zt
<1 —p)-€ePt-Z, < Zy.

By Doob’s maximal martingale inequality, we have

Primax Z,(e) > eX1] < Zo(e) /Xt = e” Y.

Using (12), we get
T—1
P Son = <lB e,
t=0

Therefore,
T—1 o) T7—1
E[E:m}:i/ P{}:pt>A}M
t=0 0 t=0
§1n|EH—/ |E|- e~ Ddx
In |E|

=In|E| + |Ele”®IEH — 1 |E| +e.

B. Terminal Embedding

Lemma B.1. For every finite set of real numbers K, the
function Vi defined in Lemma 6.1 is a cut preserving em-
bedding that satisfies for every x € Randy € K

Yk (x) — Uk (y)| < |z —yl?
<BIK| - [r () — P (y)]-

Proof. We first show that this function ¥k is continuous
and differentiable in R. Consider 2k open intervals on the
real line divided by points in K and points (y; + y;+1)/2
fori € {1,2,--- ,k — 1}. In every such open interval, the
function 9 is a quadratic function, which is continuous
and differentiable. Since vk is also continuous and differ-
entiable at the endpoints of these intervals, the function ¥ g
is continuous and differentiable in R. For any = € R, we
have % (x) = 2|z — y*| > 0 where y* is the closest point
in K to x. Thus, the function ¥k is increasing in R, which
implies ¥ is cut preserving.

We now prove that ¢x satisfies two inequalities. We first
show that forevery x € Rand y € K, ¢k (z) — ¥k (y)| <
|z — y|?. Suppose that z > y (The case 2 < y is handled
similarly.) If z = y, then this inequality clearly holds. Thus,
to prove | (z) — ¥x (y)| < |z — y|?, it is sufficient to
prove the following inequality on derivatives

(re(w) — brc W)y < (2~ )2,

Let y* be the closest point in K to . Then,

(Vi (x) =Y (y)y = Wk (2), =
= (Yr (") +ec(z —y*)?), = 2z — ).
Since y* is the closest point in K to z, we have |z — y*| <

|z —y| = ((x —y)?)’ /2. This finishes the proof of the first
inequality.

We now verify the second inequality. First, consider two
points y; and y; (y; < y;). Write,

132

Ur(y) = ¥r(yi) =2 -z =5 > Wmt1 = ym)”

m=t

By the arithmetic mean—quadratic mean inequality, we have

(j—1i)- 4(ym+1_ym)2 > (Z ym+1—ym)2 = (yj—vi)*
Thus,
(i —vi)* (v —%)*
Vi (y5) — Vi (yi) > 20— 1) > 1)

Now we consider the case when x is an arbitrary real number
inRandy € K. Let y* be the closest point in K to z. Then,

|z —y|* < 2lz —y*|? +2ly" —yl*.

The first term on the right hand side equals 4|k () —
Vi (y*)]; the second term is upper bounded by 4(k —

D[ (y) — ¥ (y*)|. Thus,

lz—y|* < 4vx (2)—vr (¥ |[+4(k—1) vk () vk (y)].
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Note that i (2) — ¥ (y*)| < |tk (2) — i (y)] since y*
is the closest point in K to x. Also, we have

[V (") — YK (y)] <
< W () = YY) + YK (@) — Y (y)]
<20Yk(z) — YK (y)l-

Hence,
|z —y[* < 8Ky () — Y (y)]-
This completes the proof. O

Lemma B.2. The terminal embedding 1) is coordinate cut
preserving. For every threshold cut (i,0), there exists a
threshold cut (i,6") such that

{reR: 2, <0} ={x e R :¢(2); <6}

Proof. By the construction of ¢, we have for any threshold
cut (4, 6)

{z eRY:¢(2); <O} = {w e R : ¢hi(w;) <0}

Since 1; is a cut preserving terminal embedding by
Lemma 6.2, there exists a threshold # € R such that

{reR:x; <0} ={z eRY: Py(z;) <0},

C. k-medians in ¢

In this section, we present an algorithm for the k-medians in
£5 and show that it provides an explainable clustering with
cost at most O (log® 2 k) times the original cost.

C.1. Algorithm for k-medians in /-

Our algorithm builds a binary threshold tree 7" using a top-
down approach, as shown in Algorithm 2. It starts with
a tree containing only the root node r. The root r is as-
signed the set of points X, that contains all points in the
data set X and all reference centers c'. Then, the algorithm
calls function BUILD_TREE(7). Function BUILD_TREE(u)
partitions centers in u in several groups X, using func-
tion PARTITION_LEAF(u) and then recursively calls itself
(BUILD_TREE(v)) for every new group X, that contains
more than one reference center c'.

Most work is done in the function PARTITION_LEAF(u).
The argument of the function is a leaf node u of the tree.
We denote the set of data points and centers assigned to u
by X,. Function PARTITION_LEAF(u) partitions the set
of centers assigned to node u into several groups. Each
group contains at most half of all centers ¢’ from the set X,.
When PARTITION_LEAF(u) is called, the algorithm finds
the /1-median of all reference centers in node u. Denote this

point by m*. We remind the reader that the ¢-th coordinate
of the median m™ (which we denote by m}') is a median
for i-th coordinates of centers in X,,. That is, for each
coordinate %, both sets {c € X, NC : ¢; <m!} and {c €
X.NC' : ¢; > ml} contain at most half of all centers in X,.
Then, function PARTITION_LEAF(u) iteratively partitions
X, into pieces until each piece contains at most half of
all centers from X,. We call the piece that contains the
median m*" the main part (note that we find the median m*
when PARTITION_LEAF(u) is called and do not update m*“
afterwards).

At every iteration ¢, the algorithm finds the maximum dis-
tance R}’ from centers in the main part to the point m®. The
algorithm picks a random coordinate i} € {1,2,--- ,d},
random number 6} € [0, (R¥)?], and random sign o} €
{£1} uniformly. Then, it splits the main part using the
threshold cut (i}, mY 4+ o} /0}") if this cut separates at least
two centers in the main part. Function PARTITION_LEAF(u)
stops, when the main part contain at most half of all centers
in X,,. Note that all pieces separated from m" during the
execution of PARTITION_LEAF(u) contain at most half of
all centers in X, because m" is the median of all centers in
Xu.

Theorem C.1. Given a set of points X in R? and a set
of centers C = {c',...,c*} C RY Algorithm 2 finds a
threshold tree T with expected k-medians in {5 cost at most

Elcosty, (X, T)] < O(log”? k) - costy, (X, C).

Proof. Let T;(u) be the threshold tree at the beginning of
iteration ¢ in function PARTITION_LEAF(u). For every
point x € X,,, define its cost at step ¢ of function PAR-
TITION_LEAF(u) to be the distance from z to the closest
center in the same leaf of T; () as x. That is, if = belongs
to a leaf node v in the threshold tree T} (u), then

costy, (z, Ty (u)) = min{|jJz — ¢|l2 : c € X, N C}.

If the point z is separated from its original center in C' by
the cut generated at time step ¢, then = will be eventually
assigned to some other center in the main part of T;(u). By
the triangle inequality, the new cost of z at the end of the
algorithm will be at most costy, (x, C) + 2R}, where R}
is the maximum radius of the main part in 73(u) i.e., R} is
the distance from the median m" to the farthest center ¢’ in
the main part. Define a penalty function ¢} (x) as follows:
¢ (x) = 2R} if x is separated from its original center ¢
at time t; ¢¥(x) = 0, otherwise. Let U, be the set of
all nodes u for which the algorithm calls BUILD_TREE(u)
and x € X,. Note that some nodes v of the threshold
tree with x € X, do not belong to U,. Such nodes v
are created and split into two groups in the same call of
PARTITION_LEAF(u). Observe that ¢y (x) # 0 for at most
one step ¢ in the call of PARTITION_LEAF(u) for some node
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Algorithm 2 Threshold tree construction for k-medians in Lo

Input: a data set X C R?, centers C' = {cy,ca,. ..,
Output: a threshold tree T'

function MAIN(X, C)

Ck} C R4

Create a root 7 of the threshold tree 7" containing X, = X U C..

BUILD_TREE(T).
end function

function PARTITION_LEAF(u)
Compute the /; median m* of all centers in X,.
Set the main part up = v and set ¢ = 0.

while node 1 contains more than 1/2 of centers in X, do

Update t =t + 1.

Let R} = maxcexuo ||c||2

Sample i} € {1,2,---,d}, 6 € [0,

if two centers in Xu0 are separated by (¢}, m} + O't
Assign to ug two children u< = {z € Xuo :
my + op0y.

(R“) ], and o} € {£1} uniformly at random.
0%) then
i < 19} and us = {z € X,

s x; > 0} where i = i, 9 =

Update the main part ug be u< if o = 1, and be u, otherwise (thus, the main part always contains m").

end if
end while
end function

function BUILD_TREE(u)
Call PARTITION_LEAF(u).

Call BUILD_TREE(v) for each leaf v in the subtree of u containing more than one center.

end function

u € U,, and

costy, (z,T) < costy, (x,C) +

+ D D ok, (13

ueU, t

The sum in the right hand side is over all iterations ¢ in
all calls of function PARTITION_LEAF(u) with u € U,.
Since each piece in the partition returned by function PAR-
TITION_LEAF(u) contains at most half of all centers from
X, the depth of the recursion tree is at most O (log k) (note
that the depth of the threshold tree can be as larger as k — 1).
This means that the size of U, is at most O(logk). In
Lemma C.3, we show that the expected total penalty in the
call of PARTITION_LEAF(u) for every u € U, is at most
O(+/log k) times the original cost. Before that, we upper
bound the expected penalty ¢} (x) for each step ¢ in the call
of PARTITION_LEAF(u) for every node u € U,.

Lemma C.2. The expected penalty ¢} (x) is upper bounded
as follows:

Mle=m"[lz + [z = m"[|

where c is the closest center to the point  in C.

Proof. We first bound the probability that point x is sepa-
rated from its original center c at iteration ¢. For any coordi-
nate i € {1,2,---,d}, let z; and ¢; be the i-th coordinates
of point  and center c respectively. For any point x € R9,
we define the indicator function 6,,(¢,6) = 0 if z; < 6, and
0. (%,6) = 1 otherwise. To determine whether the threshold
cut sampled at iteration ¢ separates x and c, we consider the
following two cases: (1) x and c are on the same side of the
median m" in coordinate i (i.e. (z; — m¥)(c; — m}) > 0),
and (2) z and c are on the opposite sides of the median m"
in coordinate i (i.e. (x; — m¥)(c; — m¥) < 0).

If x and ¢ are on the same side of the median m“ in coor-
dinate 4, then the threshold cut (i, m¥ + o}*+/6}") separates
2 and c if and only if o} has the same sign as x; — m;* and

0% is between (z; — m¥)? and (c; — m¥)?. Thus,
P (6. (2, 0}) # 0c(i,9F) | Te(w)] =
(e =mi)? — (w —mi)?|
a 2(RY)? B
< lci — @il (les — mif'[ + |2 — mi'])
- 2(RY)? ’

where ¥} = mj' 4+ o'/ 0}
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Now, suppose z and c are on the opposite sides of the median
m* in coordinate 4, i.e. (x; — m})(¢c; —m¥) < 0. The
threshold cut (i, m{ +o}'+/60}") separates = and ¢ if and only
if o (x; —m¥) > 0,0 < (x;—m¥)?oro(c; —m¥) >0,
0% < (¢; — m%)?. Thus, we have for every coordinate i
with (z; — m¥)(¢; — m¥) <0,

(e =mi)? + (z —my)?
B 2(RY)? -
|ci — @] (Jei — mif| + |@i — myf|)
B 2(RY)? ’

where the last inequality follows from |¢; —z;| >

max{|c; — m¥|, |z; — m¥|}, since ¢;, z; are on the differ-
ent sides of m;'.

Since the coordinate 73’ is chosen randomly and uniformly
from {1, - - - d}, the probability that = and c are separated at
iteration ¢ is

P (if', 9F) # dc (i, 0F) | Te(u)] <

20 (Ry)
e =l = m" |z + [je = m"[)
- 4 (R |

where the last inequality follows from the Cauchy-Schwarz
inequality and (|¢;| + |@;])? < 2¢2 + 222

Then, the expected penalty is

mwunsﬂM@Wﬂn¢&Wﬁmummam]

< E[2||0—x||2 Ne=m®la + o = m ”2}

d- Ry
O

To bound the expected penalty for point x, we consider
two types of cuts based on three parameters: the maximum
radius R} and distances ||z — m™||2, ||c — m"||2 between
z, c and the median m" . If x is separated from its original
center c at iteration ¢ with

Ry < \/logy k- max{|[z —m"|l2, e = m"|l2},

then we call this cut a light cut. Otherwise, we called it a
heavy cut.

Lemma C.3. In every call of PARTITION_LEAF(u) (see
Algorithm 2), the expected penalty for a point v € X is
upper bounded as follows:

E{Z(ﬁ(m)} < O(y/1og k) - costy, (z, C).

Proof. 1f point x is not separated from its original center
¢ in PARTITION_LEAF(u), then the total penalty is 0. If
x is separated from its center c in this call, then there are
two cases: (1) the point x is separated by a light cut; (2)
the point x is separated by a heavy cut. We first show
that the expected penalty due to a heavy cut is at most

O(+/log k)costy, (z, C).

Denote the set of all heavy cuts at iteration ¢ in PARTI-
TION_LEAF(u) by H;":

HY = {o : max{|le—m" |, [e-m" |2} < R}'/+/log, k}.

Then, by Lemma C.2, the expected penalty x incurs due to
a heavy cut is at most

> sb%(x)] <
tixe HY
>

tix€eHp

E

[z —m¥|[2 + [lc — m"|]2
d-RY

<2z —cf2 'El

Since the maximum radius R} is a non-increasing func-
tion of ¢, we split all steps of this call of PARTITION_LEAF
into phases with exponentially decreasing values of R}
At phase s, the maximum radius R} is in the range
(RY¥/25%1 RY/2%], where RY is the maximum radius at
the beginning of PARTITION_LEAF(u).

Consider an arbitrary phase s and step ¢ in that phase. Let
R = RY/2%. For every center ¢’ with || — m“||s €
(R/2, R], the probability that this center ¢’ is separated from
the main part at step ¢ in phase s is at least

(Gem? -3 1
2d- (R¥)? ~ 4d’

P [0c (i, 0F) # O (i, 07) | Te(u)] =
1
d

where the last inequality is due to || — m¥|s > R/2 >
R} /2 for step ¢ in the phase s. Since there are at most k
centers, all centers with norm in (R/2, R] are separated
from the main part in at most 4d In k steps in expectation.
Thus, the expected length of each phase is O(d log k) steps,
and hence, the expected penalty z incurred during phase s
is at most

o = m s + fle = m*
2|z — -E <
fo-cla | 3 L <
tix€Hy
Ry €(R/2,R]
o = s + e = m*
<2l|x — -E
<do-clB ¥ Lk <
txeH"
RY€(R/2,R]

Mz =m"la + fle = m"[l

< O(logh) - 1z — el -
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Let s’ be the last phase for which

RY/2% > \/log, k- max{|lz — m"||2, |c—m®"||2}. (14)

Then, in every phase s > &', all cuts separating x from its
original center c are light. Hence, the total expected penalty
due to a heavy cut is upper bounded by

O(log k)-lz—c|la- (|l —m"[la+[lc=m"|l2)-> Vi
s=0 1

s'+1
= O(logk)-[lz—cll2- (lz—m* ||z +lle=m*|l2)- ~pp—
1
Using the definition (14) of s, we write
s'+1
u u
_ — . <
(lz = m*[l2 + [lc = m"||2) R S
< gllz = m*2 + fle = m*|l2 4
- Ry /2% ~ /logsy k

Thus, the expected penalty due to a heavy cut is at most
O(V1og k)costy, (z, C).

We now analyze the expected penalty due to a light cut.
Consider an iteration ¢ in PARTITION_LEAF(u) with x ¢

H}*. By the analysis in Lemma C.2, the probability that
and c are separated at iteration ¢ is at most

le = 2ll2(llz = m*[l2 + [l = m"[|)
d-(Ry)? '

The probability that = or c is separated from the main part
at iteration ¢ is at least

max{|z — m"|3, |lc — m"[|3}
d(Ry)? '

If x or c is separated from the main part, then the point x
will not incur penalty at any step after ¢. Thus, the prob-
ability that = and c are separated by a light cut in the end
of PARTITION_LEAF(u) is at most

le = zlla(llz = m*|l2 + llc = m™[l2)

max{||z — m*|3, [lc — m“||3}
2|l — 2|2

~ max{|lz —m[|a, e = m*|l2}

Since the penalty of a light cut is at most R} < 4/log, k -
max{ ||z — m*||2, ||c — m"||2}, the expected penalty due to
a light cut is at most O(+/log k) - costy, (z, C).

This concludes the proof of Lemma C.3. O

For every node u, the main part contains the median m*,
which is also the /;-median of all centers in X,,. Thus, each

cut sampled in the call PARTITION_LEAF(u) separates at
most half of all centers in X, from the origin. The main part
contains at most half of centers in X, at the end of the call
PARTITION_LEAF(u). Therefore, each leaf node generated
in the end of PARTITION_LEAF(u) contains at most half of
centers in X,,. Thus, the depth of the recursion tree is at
most O(log k). By Lemma C.3 and Equation (13), we get
the conclusion. O

D. Lower Bound for Threshold Tree

D.1. Lower bound for £-means

In this section, we show a lower bound on the price of
explainability for k-means.

Theorem D.1. For any k, there exists an instance X with k
clusters such that the cost of explainable k-means clustering
for every tree T is at least

k

To prove this lower bound, we construct an instance as fol-
lows. We uniformly sample k centers C' = {c!,c?, -+, c*}
from the d-dimensional unit cube [0, 1]¢ where the dimen-
sion d = 3001n k. For each center ¢, we add two points
¢+ (g,e, - ,e) with e = 3001In k/k. We also add many
points at each center such that the optimal centers for any
threshold tree remain almost the same. Specially, we can
add k2 points co-located with each center ¢'. Then, if one
center ¢’ is shifted by a distance of ¢ in the threshold tree
clustering, the cost of the co-located points at ¢’ is at least
k22, Since the optimal regular cost for this instance is
kdz?, the total cost of the threshold tree is lower bounded
by Q(k/ log k)OPT 2 (X). Consequently, we consider the
threshold tree with optimal centers shifted by at most €.

First, we show that any two centers defined above are far
apart with high probability.

Lemma D.2. With probability at least 1 — 1/k? the follow-
ing holds: The squared distance between every two distinct
centers c and ¢’ in C'is at least d/12.

Proof. Consider any fixed two centers ¢,¢’ € C. Since
¢, ¢ are uniformly sampled from [0, 1]%, each coordinate of
¢, is sampled from [0, 1]; and centers ¢, ¢’ are sampled
independently. Thus, we have

d

d
Ee.ellle— ¢/ = ;Ec¢,0;[(ci —a)ll=5
We use a random variable X; to denote (c; — c})? for each
coordinate i € {1,...,d}. Since random variables { X;}¢_,
are independent, by Hoeffding’s inequality, we have
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d d
P lZXi—]E{ZXl} < —\/2dlnk] <
i=1 i=1
< ednk — %,

where we used that d = 3001nk. This implies that the
squared distance between c¢ and ¢’ is less than d/12 with
probability at most 1/k*. Using the union bound over all
pairs of centers in C, we conclude that the squared distance
between all pairs in C is at least d/12 with probability at
least 1 — 1/k?. O

If any two centers are far apart, then a point = separated from
its original center will incur a large penalty. Thus, we can
get a lower bound if there exists an instance which satisfies:
(1) any two centers are separated by a large distance; (2)
every threshold tree separates a relatively large portion of
points from their original centers. In particular, we prove
that with probability 1 — o(1), every threshold cut separates
arelatively large portion of points from their original centers
in the random instance we constructed.

Lemma D.3. With probability at least 1 — 1/k?, the follow-
ing holds: every threshold cut (i,0) withi € {1,2,--- ,d}
and 0 € [0,1) separates at least €k /4 points from their
original centers.

Proof. Consider a fixed coordinate ¢ € {1,...,d}. We
project each center and its rectangular neighborhood onto
this coordinate. For each center ¢ € C, we define an inter-
val I/ as the intersection of [0, 1] and the e-neighborhood
of its projection ¢, i.e. I/ = (¢} —,¢! +¢)N[0,1]. Each
interval I f has length at least €. If we pick a threshold cut
inside any interval ILJ , then we separate at least one points
from center ¢?. In this case, the interval I f is called covered
by this threshold cut. Then, we give the lower bound on the
minimum number of intervals covered by a threshold cut.

For a fixed set of centers C, we consider at most 2k special
positions for the threshold cut at coordinate ¢ as follows. Let
E; be the set containing two end points of intervals I; for all
centers c¢/. For any threshold cut at coordinate 4, the closest
position in set F; covers exactly the same set of intervals as
this threshold cut. Thus, we only need to consider threshold
cuts at positions in E;.

For centers chosen uniformly from [0, 1]¢, the set E; con-
tains 2%k random variables. Suppose we pick a threshold
cut at a position 6 in E; related to interval I]. Conditioned
on the position 6, the other k — 1 centers ¢/ for j # j*
are uniformly distributed in [0,1]? since all centers are
chosen independently. For j € {1,2,--- k} \ {j*}, let
Y; be the indicator random variable that the interval I

contains this position §. For each variable YZJ we have
e <P {Yij = 1} < 2. Since random variables Y; are

independent, by the Chernoff bound for Bernoulli random
variables, we have

P> Y/ -E < —V18klnk | 0| <
J

>
J

1
< e—dlnk _

= k4-

Thus, we have the number of intervals containing this posi-
tion @ is at least ek /4 with probability at least 1 — 1/k*.

Since we have 2k positions FE; for each coordinate ¢ €
{1,2,---,d}, there are total 2dk positions for threshold
cuts. Using the union bound over all positions, we have the
minimum number of intervals covered by a threshold cut is
at least ek /4 with probability at least 1 — 1/k%. Since the
threshold cut separates one point from its original center for
each covered interval, we have every threshold cut separates
at least ¢k /4 points from their original centers in this case.

O

Proof of Theorem D.1. By Lemma D.2, we can only con-
sider the instance where any two centers are separated with
the squared distance at least d/12. Note that the optimal
centers for any threshold tree remain almost the same as
centers C'. Thus, we analyze the k-means cost given by
any threshold tree with respect to center C. If a point in
X 1is separated from its original center, this point will fi-
nally be assigned to another center in C'. By the triangle
inequality, the k-means cost of this point is at least d/20. By
Lemma D.3, there exists an instance such that any threshold
cut separates at least £k /4 points from their original centers.
Thus, there exists an instance X such that any threshold tree
T has the k-means cost at least

ek d ekd
> =
costyz (X,T) 12 20

Note that the optimal regular k-means cost for this instance
X is
OPTg(X) = 2k - £%d.

Therefore, the k-means cost for this instance X given by
any threshold tree 7 is at least

1
costyz (X, T) > T6os OPTy(X)

Oe
—ao(- " ). oprax)
N log k G\
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D.2. Lower bound for £-medians in /5

In this section, we show a lower bound on the price of
explainability for k-medians in /.

Theorem D.4. Forevery k > 1, there exists an instance X
with k clusters such that the k-medians with {5 objective
cost of every threshold tree T is at least

costy, (X, T) > Q(log k)OPTy, (X).

To prove this lower bound, we use the construction sim-
ilar to that used in Theorem D.1. We discretize the d-
dimensional unit cube [0,1]¢ into grid with length ¢ =
1/[In k], where the dimension d = 300 In k. We uniformly
sample k centers C = {c',c?,---,c*} from the above
erid {0, ¢,2¢,--- , 1}%. For each center ¢!, we add 2 points
¢+ (g,e,- - ,€) to this center. Similar to Theorem D.1, we
also add many points at each center such that the optimal
centers for any threshold tree remain almost the same.

Similar to Lemma D.2, we show that any two centers defined
above are far apart with high probability.

Lemma D.5. With probability at least 1 — 1/k? the follow-
ing holds: The distance between every two distinct centers
cand ¢ in C'is at least \/d /4.

Proof. To sample a center from the grid uniformly, we can
first sample a candidate center uniformly from the cube
[~£/2,1 + ¢/2]¢ and then move it to the closest grid point.
Note that the /5-distance from every point in this cube to its
closest grid point is at most v/d = o(1). By Lemma D.2,
the ¢y distance between every pairs of candidate centers is
at least y/d /12 with probability at least 1 — 1/k2. Thus, the
distance between every two distinct centers is at least v/d /4
with probability at least 1 — 1/k2. O

For every node in the threshold tree, we can specify it by
threshold cuts in the path from the root to this node. Thus,
we define a path 7 as an ordered set of tuples (i;,6;,0;),
where (i;, 6;) denotes the j-th threshold cut in this path and
o; € {%1} denotes the direction with respect to this cut.
We use u(7) be the node specified by the path . We define
a center is damaged if one of its two points are separated by
this cut, otherwise a center is undamaged. Let F}, be the set
of undamaged centers in node u.

Lemma D.6. With probability at least 1 —1/k, the following
holds: For every path w with length less than log, k/4, we
have (a) the node u(m) contains at most v/ k undamaged
centers; or (b) every cut in node u(m) damages at least
|Fyu(m)|/2 centers in F ).

Proof. Consider any fixed path 7w with length less than
log, k/4. We upper bound the probability that both events
(a) and (b) do not happen conditioned on F, (). If | Fy(ry| <

'k, then the event () happens. For the case F, () contains
more than v/k centers, we pick an arbitrary threshold cut
(i,0) in the node u(m). For every center c in F, (5, the
probability we damage this center c is at least €. Let X; be
the indicator random variable that the j-th center in F, )
is damaged by the threshold cut (7, #). Then, we have the
expected number of centers in Fy, () damaged by this cut

(,0) is
E{ZXJ} 2 & |Fuem) -
J

Let p = E[3>_; X;]. By the Chernoff bound for Bernoulli
random variables, we have

P> X <e|Fum| /2| <P | X; <p/2
J j
< e H/8 < omeVE/8,

Using the union bound over all threshold cuts in u(7), the
failure probability that both event (a) and (b) do not happen
is at most e~¢V*/16_ The number of paths with length less
than log, k/4 is at most m(2d/e)™ < e~'°&” k. Thus, by
the union bound over all paths with length less than log,, k /4,
we get the conclusion. O

Proof of Theorem D.4. By Lemma D.5 and Lemma D.6,
we can find an instance X such that both two properties
hold. We first show that the threshold tree must separate
all centers. Suppose there is a leaf contains more than one
center. Since the distance between every two centers is at
least v/d /4 and there are many points at each center, the cost
for this leaf can be arbitrary large. To separate all centers,
the depth of the threshold tree is at least [log, k.

We now lower bound the cost for every threshold tree that
separates all centers. Consider any threshold tree 7' that
separates all centers. We consider the following two cases.
If the number of damaged centers at level |log, k| /4 of
threshold tree T is more than k /2, then the cost given by T
is at least

kE Vd _ kVd
2 8 16 °

costy, (X, T) >

If the number of damaged centers at level |log, k|/4 of
threshold tree 7' is less than k/2, then the number of un-
damaged centers at every level : = 1,2,..., |log, k] /4 is
at least k£ /2. We call a node w a small node if it contains at
most Vk undamaged centers, otherwise we call it a large
node. Then, we lower bound the number of damaged cen-
ters generated at any fixed level ¢ € {1,2,--- , |log, k|/4}.
Since the number of nodes at level i is at most k1/4, the
number of undamaged centers in small nodes at level i is
at most k3/%. Thus, the number of undamaged centers in
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large nodes at level i is at least k/4. By Lemma D.6, the
number of damaged centers generated at level ¢ is at least
ek /8. Therefore, the cost given by this threshold tree T is
at least

lloga k] ek v _

te, (X, T) >
COng(,)_ 4 ] 8

(kVdelog k).
Note that the optimal cost for this instance is at most kev/d
and € = 1/[log k]. Combining the two cases above, we
have the cost given by threshold tree 7 is at least

costy, (X, T) = Q(kVdelog k) = Q(log k)OPTy, (X).
O

E. Fast Algorithm

In this section, we provide a fast variant of Algorithm 1 with
running time O(kd log? k). The input of this algorithm is
the set of reference centers ¢!, ..., c* and the output is a
threshold tree that splits all centers. The algorithm does
not consider the data points (hence, it does not explicitly
assign them to clusters). It takes an extra O(nk) time to
assign every point in the data set to one of the leaves of the
threshold tree.

This fast variant of Algorithm 1 picks a separate threshold
cut w® for each leaf u. This cut is chosen uniformly at
random from R", where

U s

ct,cdeX,

R* =

That is, R" is the set of all cuts w that separate at least two
centers in X,,. The algorithm then splits leaf u into two
parts using w".

A straightforward implementation of the algorithm parti-
tions each leaf by computing 0. (w*) for all centers ¢ in X,,.
It takes O(d - | X,, N C|) time to find R* and sample w*
for each w. It takes time O(] X, N CY) to split X, into two
groups. Thus, the total running time of this implementation
of the algorithm is O(k?d). We now discuss how to imple-
ment this algorithm with running time O (kd log? k) using
red-black trees.

The improved algorithm stores centers for each leaf of the
threshold tree in d red-black trees. Centers in the i-th red-
black tree are sorted by the ¢-th coordinate. Using red-black
trees, we can find the minimum and maximum values of ¢;
for c € C'N X, in time O(dlog k). Denote these values by
a; and b;, then

m:U@wmmw

Hence, we can find R* and sample a random cut w* in time
O(dlog k) for each u.

To partition set X" into two groups with respect to w" =
(i, 0), we consider the i-th red-black tree for leaf u and find
the sizes of the new parts, Left = {c € X, N C : ¢; < 0}
and Right = {c € X,, N C : ¢; > 0}. We choose the set
that contains fewer centers. Let us assume that the second
set (Right) is smaller the first one (Left). Then, we find
all centers in Right and delete them from this red-black
tree and all other red-black trees for node u. We assign
the updated red-black trees (with deleted Right) to the left
child of u. For the right child, we build d new red-black
trees, which store centers for Right. Since we delete at
most half of all centers in the red-black tree, each center is
deleted at most O(log k) times. Each time it is deleted from
d trees and inserted into d trees. Each deletion and insertion
operation takes time O(log k). Thus, the total time of all
deletion and insertion operations is O(kd log® k).

We note that though this algorithm slightly differs from
the algorithm presented in Section 4, its approximation
guarantees are the same.



