KO codes

Appendix
A. Polar(64,7) code

Recall from Section 5 that the Plotkin tree for a Polar code is obtained by freezing a set of leaves in a complete binary tree.
These frozen leaves are chosen according to the reliabilities, or equivalently, error probabilities, of their corresponding bit
channels. In other words, we first approximate the error probabilities of all the n-bit channels and pick the k-smallest of
them using the procedure from (Tal & Vardy, 2013). These k active set of leaves correspond to the transmitted message bits,
whereas the remaining n — k frozen leaves always transmit zero.

Here we focus on a specific Polar code: Polar(64, 7), with code dimension k& = 7 and blocklength n = 64. For Polar(64, 7),
we obtain these active set of leaves to be A = {48, 56, 60, 61, 62, 63,64}, and the frozen set to be A° = {1,2,---64} \ A.
Using these set of indices and simplifying the redundant branches, we obtain the Plotkin tree for Polar(64, 7) to be Figure 10.
We observe that this Polar Plotkin tree shares some similarities with that of a RM(6, 1) code (with same k& = 7 and n = 64)
with key differences at the topmost and bottom most leaves.

Polar(64, 7) KO counterpart of Polar(64, 7)

RM(0,0) RM(0,0) RM(0,0) RM(0,0) RM(0,0) RM(0,0) RM(0,0) RM(0,0)
ma ms mo miq my ms mao mq
(a) Polar(64, 7) encoder (b) Our KO encoder counterpart

Figure 10. Plotkin trees for the Polar(64, 7) encoder and our neural KO encoder counterpart. Both codes have dimension & = 7 and
blocklength n = 64.

Capitalizing on the encoding tree structure of Polar(64, 7), we build a corresponding KO encoder gy which inherits this
tree skeleton. In other words, we generalize the Plotkin mapping blocks at the internal nodes of tree, except for the root
node, and replace them with a corresponding neural network g;. Figure 10 depicts the Plotkin tree of our KO encoder.

KO codes

The KO decoder f; is designed similarly. Training of the (encoder, decoder) pair (gg, f) is similar to that of the KO(8, 2)
training which we detail in §4.

Figure 11 shows the BLER performance of the Polar(64, 7) code and its competing KO code, for the AWGN channel.
Similar to the BER performance analyzed in Figure 9, the KO code is able to significantly improve the BLER performance.
For example, we achieve a gain of around 0.5 dB when KO encoder is combined with the MAP decoding. Additionally, the
close performance of the KO decoder to that of the MAP decoder confirms its optimality.

== —a- Polar
s ::=:::t~ Polar with MAP
TESITa~ —e- KO
1071 SS3Stac —+- KO with MAP
—~ S
27 \:\\\
58] RN
— Ssos
[as)] S,
> 10-2 Seds
8 10 3 RN \\\
< SO
= O
s \\\\‘\
| N\,
E .\\ \\\
Y
% 10734 S \“
=] N N
—_— \\ \\
[as] RS ™
N AN
\\ \\‘
AY
10_4‘ \\
AN
\
*

-12 -11 -10 -9 -8 -7 -6 -5 -4 -3
Signal-to-noise ratio (SNR) [dB]

Figure 11. KO code achieves a significant gain over the Polar(64, 7) code in BLER when trained on AWGN channel. KO decoder also
matches the optimal MAP decoder.

B. Gains with list decoding

Successive cancellation decoding can be significantly improved by list decoding. List decoding allows one to gracefully
tradeoff computational complexity and reliability by maintaining a list (of a fixed size) of candidate codewords during the
decoding process. The following figure demonstrates that KO(8,2) code with list decoding enjoys a significant gain over the
non-list counterpart. This promising result opens several interesting directions, which are current focuses of active research.

Bit error rate

1 ™ RM(8, 2)+SC decoder: without list
1 == KO(8, 2): without list

| = RM(8, 2)+sC
10754 KO(8, 2): list

-10 9 -8 -7 6 5 -4

Signal-to-noise ratio (SNR) [dB]

st size 256

Figure 12. The same KO(8,2) encoder and decoder as those used in Figure 4 achieve a significant gain (without any retraining or
fine-tuning) when list decoding is used together with the KO decoder. The magnitude of the gain is comparable to the gain achieved by
the same list decoding technique on the successive cancellation decoder of the RM(8,2) code. We used the list decoding from (Dumer &
Shabunov, 2006a) but without the permutation technique.

KO codes

Polar codes with list decoding achieves the state-of-the-art performances (Tal & Vardy, 2015). It is a promising direction
to design large block-lengths KO codes (based on the skeleton of Polar codes) that can improve upon the state-of-the-art
list-decoded Polar codes. One direction is to train KO codes as we propose and include list decoding after the training.
A more ambitious direction is to include list decoding in the training, potentially further improving the performance by
discovering an encoder tailored for list decoding.

Unlike Polar codes, RM codes have an extra structure of an algebraic symmetry; a RM codebook is invariant under certain
permutations. This can be exploited in list decoding as shown in (Dumer & Shabunov, 2006a), to get a further gain over
what is shown in Figure 12. However, when a KO code is trained based on a RM skeleton, this symmetry is lost. A question
of interest is whether one can discover nonlinear codes with such symmetry.

C. Tiny KO

As shown in §1.3, each neural component in the KO encoder and decoder has 3 hidden layers with 32 nodes each. For
the decoder, the total number of parameters in each decoder neural block is 69 x 32. We replace all neural blocks with
a smaller one with 1 hidden layer of 4 nodes. This decoder neural block has 20 parameters, obtaining a factor of 110
compression in the number of parameters. The computational complexity of this compressed decoder, which we refer to as
TinyKO, is within a factor of 4 from Dumer’s successive cancellation decoder. Each neural network component has two
matrix multiplication steps and one activation function on a vector, which can be fully parallelized on a GPU. With the GPU
parallelization, TinyKO has the same time complexity/latency as Dumer’s SC decoding.

The following table shows that there is almost no loss in reliability for the compressed KO(8, 2) encoder and decoder in this
manner. Training a smaller neural network take about two times more iterations compared to the larger one, although each
iteration is faster for the smaller network.

SNR (dB) | TinyKO(8,2) BER KO(8,2) BER
10 0.38414 + 2¢-7 0.36555 + 2¢-7
9 0.29671 + 2e-7 0.27428 + 2e-7
-8 0.18037 + 2e-7 0.15890 =+ 2e-7
7 0.07455 + 2e-7 0.06167 + le-7
6 0.01797 + 8e-8 0.01349 & 7e-8
5 2.18083e-3 + 3e-8 | 1.46003e-3 & 2e-8
4 1.18919¢-4 + 7e-9 | 0.64702¢-4 + 4e-9
3 4.54054e-6 + 1e-9 | 3.16216e-6 + 1e-9

Table 2. The smaller TinyKO neural architecture with 100 times smaller number of parameters achieve similar bit-error-rates as the bigger
KO architecture.

If one is allowed more computation time (e.g., O(n" logn)), then (Ye & Abbe, 2020) proposes a recursive projection-
aggregation (RPA) decoder for RM(m, r) codes that significantly improves over Dumer’s successive cancellation. With list
decoding, this is empirically shown to approach the performance of the MAP decoder. It is a promising direction to explore
deep learning architectures upon the computation tree of the RPA decoders to design new family of codes.

D. Ablation studies

In comparison to the classical RM codes, the KO codes have two additional features: real-valued codewords and non-linearity.
It is thus natural to ask how each of these components contribute to its gains over RM codes. To evaluate their contribution,
we did ablation experiments for KO(8, 2): (i) First, we constrain the KO codewords to be binary but allow for non-linearity
in the encoder gy. The performance of this binarized version KO-b(8, 2) is illustrated in Figure 4. We observe that this
binarized KO-b(8, 2) performs similar to RM(8, 2) but worser than KO(8, 2). (i) We transmit the real-valued codewords
but constrain the encoder gg to be linear (in real-value operations). At —3 dB the test BER of this linear code is 1.08 x 1075,
which is significantly worse than KO(8,2) with 2.97 x 106 and similar to RM(8,2) with 1.30 x 10~°.

These experiments suggest us that the presence of both the non-linearity and real-valued codewords are necessary for the
good performance of KO codes and removal of any of these components hurts its gains.

KO codes

E. Discussion
E.1. On modulation and practicality of KO codes

We note that our real-valued KO codewords are entirely practical in wireless communication; the peak energy of a symbol is
only 22.48% larger than the average in KO codes. The impact on the power amplifier is not any different from that of a
more traditional modulation (like 16-QAM). Training KO code is a form of jointly designing the coding and modulation
steps; this approach has a long history in wireless communication (e.g., Trellis coded modulation) but the performance gains
have been restricted by the human ingenuity in constructing the heuristics.

E.2. Comparison with LDPC and BCH codes

We expect good performance for BCH at the short blocklengths considered in the paper though with high-complexity
(polynomial time) decoders such as ordered statistics decoder (OSD). On the other hand, there does not exist good LDPC
codes at the k and n regimes of this paper; thus, we do not expect good performance for LDPC at these regimes.

F. Plotkin construction

Plotkin (1960) proposed this scheme in order to combine two codes of smaller code lengths and construct a larger code
with the following properties. It is relatively easy to construct a code with either a high rate but a small distance (such as
sending the raw information bits directly) or a large distance but a low rate (such as repeating each bit multiple times).
Plotkin construction combines such two codes of rates p,, > p,, and distances d,, < d,, to design a larger block length code
satisfying rate p = (pa, + p»)/2 and distance min{2d,,, d, }. This significantly improves upon a simple time-sharing of
those codes, which achieves the same rate but distance only min{d.,, d }.

Note: Following the standard convention, we fix the leaves in the Plotkin tree of a first order RM(m, 1) code to be zeroth
order RM codes and the full-rate RM(1, 1) code. On the other hand, a second order RM(m, 2) code contains the first order
RM codes and the full-rate RM(2, 2) as its leaves.

G. KO(8, 2): Architecture and training

As highlighted in §4, our KO codes improve upon RM codes significantly on a variety of benchmarks. We present the
architectures of the KO(8, 2) encoder and the KO(8, 2) decoder, and their joint training methodology that are crucial for this
superior performance.

G.1. KO(8, 2) encoder

Architecture. KO(8, 2) encoder inherits the same Plotkin tree structure as that of the second order RM(8, 2) code and thus
RM codes of first order and the second order RM(2, 2) code constitute the leaves of this tree, as highlighted in Figure 13b.
On the other hand, a critical distinguishing component of our KO(8, 2) encoder is a set of encoding neural networks
go = {91, .., 96} that strictly generalize the Plotkin mapping. In other words, we associate a neural network g; € gy to
each internal node ¢ of this tree. If v and w denote the codewords arriving from left and right branches at this node, we
combine them non-linearly via the operation (u, v) — g;(u,v).

We carefully parametrize each encoding neural network g; so that they generalize the classical Plotkin map Plotkin(w, v) =
(u,u @ v). In particular, we represent them as g;(u, v) = (u, g;(u,v) + u ® v), where g; : R? — R is a neural network
of input dimension 2 and output size 1. Here g; is applied coordinate-wise on its inputs w and v. This clever parametrization
can also be viewed as a skip connection on top of the Plotkin map. Similar skip-like ideas have been successfully used in the
literature though in a different context of learning decoders (Welling, 2020). On the other hand, we exploit these ideas for
both encoders and decoders which further contribute to significant gains over RM codes.

Encoding. From an encoding perspective, recall that the KO(8, 2) code has code dimension k£ = 37 and block length
n = 256. Suppose we wish to transmit a set of 37 message bits denoted as m = (m(2)2), mey,--- ,m(771)) through
our KO(8,2) encoder. We first encode the block of four message bits m 5 5 into a RM(2,2) codeword c 3 oy using
its corresponding encoder at the bottom most leaf of the Plotkin tree. Similarly we encode the next three message bits
myz 1) into an RM(2,1) codeword ¢ 1). We combine these codewords using the neural network ge at their parent
node, which yields the codeword ¢ (3 2) = g6(C(2’2), c(2’1)) € R8. The codeword C(3,2) is similarly combined with its

KO codes

RM(8,2) KO(8,2)

RM(7,2)
RM(7.1)
m(7,1)
RM(6,1) RM(6,2) \
m \\ \\\
(5:1) ‘. RM(3,2) ’ .

4s()

RM(2,1) RM(2,2) RM(2,1) RM(2,2)
m2,1) m(2,2) m,1) m(2,2)
(a) RM(8,2) encoder (b) KO(8,2) encoder

Figure 13. Plotkin trees for RM(8,2) and KO(8,2) encoders. Leaves are highlighted in green. Both codes have dimension k£ = 37 and
blocklength n = 256.

corresponding left codeword and this procedure is thus recursively carried out till we reach the top most node of the tree,
which outputs the codeword c(s 2y € R?°°. Finally we obtain the unit-norm KO(8, 2) codeword @ by normalizing c(s o), i.e.

T = c(32)/llci 22

Note that the map of encoding the message bits m into the codeword x, i.e. & = gy(m), is differentiable with respect to 6
since all the underlying operations at each node of the Plotkin tree are differentiable.

G.2. KO(8,2) decoder

Architecture. Capitalizing on the recursive structure of the encoder, the KO(8, 2) decoder decodes the message bits from
top to bottom, similar in style to Dumer’s decoding in §2. More specifically, at any internal node of the tree we first decode
the message bits along its left branch, which we utilize to decode that of the right branch and this procedure is carried out
recursively till all the bits are recovered. At the leaves, we use the Soft-MAP decoder to decode the bits.

Similar to the encoder gs, an important aspect of our KO(8,2) decoder is a set of decoding neural networks f3 =
{f1, f2,---, f11, f12}. For each node i in the tree, fo;_1 : R? — R corresponds to its left branch whereas fy; : R* — R
corresponds to the right branch. The pair of decoding neural networks (f2;_1, f2;) can be viewed as matching decoders
for the corresponding encoding network g;: While g; encodes the left and right codewords arriving at this node, the
outputs of fo;_1 and fo; represent appropriate Euclidean feature vectors for decoding them. Further, fo;_; and f5; can
also be viewed as a generalization of Dumer’s decoding to nonlinear real codewords: f2;_1 generalizes the LSE function,
while f5; extends the operation @,. More precisely, we represent fa;—1(y;,Ys) = fgi,l(yl, Y,) + LSE(y,, y5) whereas
F2i(U1s Yor Y ®) = f2i(Y1, Yoy Yu, ®) + Y1 + (—1)%y,, where (y,, y,) are appropriate feature vectors from the parent
node, and y,, is the feature corresponding to the left-child v, and v is the decoded left-child codeword. We explain about
these feature vectors in more detail below. Note that both the functions ﬁi_l and fgi are also applied coordinate-wise.

Decoding. At the decoder suppose we receive a noisy codeword y € R256 at the root upon transmission of the actual
codeword & € R?55 along the channel. The first step is to obtain the LLR feature for the left RM(7, 1) codeword: we obtain

KO codes

y?
fll f12
[MAP dec. | | Soft- MAP| | |Soft-MAP]|
I RLLICRY T(2,2)
(a) RM(8, 2) decoder (b) KO(8, 2) decoder

Figure 14. Plotkin tres for the RM(8, 2) and KO(8, 2) decoders. Red arrows indicate the bit decoding order.

this via the left neural network f1,i.e. ¥, = f1(¥1.108> Y129.256) € R1?5. Subsequently, the Soft-MAP decoder transforms
this feature into an LLR vector for the message bits, i.e. L(7,1) = Soft-MAP(f1(¥1.128, Y129.256))- Note that the message
bits 7m7 1) can be hard decoded directly from the sign of L7 ;). Instead here we use their soft version via the sigmoid
function o (-), i.e., M7,1) = 0(L(7,1)). Thus we obtain the corresponding RM(7, 1) codeword ¥ by encoding the message
my7,1) via an RM(7, 1) encoder. The next step is to obtain the feature vector for the right child. This is done using the right
decoder fo,1.e. Y, = f2(Y1.128, Y129:256: Yo, V). Utilizing this right feature y,, the decoding procedure is thus recursively
carried out till we compute the LLRs for all the remaining message bits m,1), - - - , ™M(2,2) at the leaves. Finally we obtain
the full LLR vector L = (L7 1), ..., L(2,2)) corresponding to the message bits m. A simple sigmoid transformation, o (L),
further yields the probability of each of these message bits being zero, i.e. o(L) = P[m = 0].

Note that the decoding map f, : y — L is fully differentiable with respect to ¢, which further ensures a differentiable loss
for training the parameters (6, ¢).
G.3. Training

Recall that we have the following flow diagram from encoder till the decoder when we transmit the message bits m:

Channel o
e

m 2 x Y f—¢> L L> o(L). In view of this, we define an end-to-end differentiable cross entropy loss function
to train the parameters (6, ¢), i.e.

L(0,¢) = > _mjlog(l - o(L;)) + (1 —m;)loga(L;).
J
Finally we run Algorithm 1 on the loss L(6, ¢) to train the parameters (6, ¢) via gradient descent.

H. Soft-MAP decoder

As discussed earlier (see also Figure 14), Dumer’s decoder for second-order RM codes RM(m, 2) performs MAP decoding
at the leaves while our KO decoder applies Soft-MAP decoding at the leaves. The leaves of both RM(m, 2) and KO(m, 2)

KO codes

codes are comprised of order-one RM codes and the RM(2, 2) code. In this section, we first briefly state the MAP decoding
rule over general binary-input memoryless channels and describe how the MAP rule can be obtained in a more efficient way,
with complexity O(n logn), for first-order RM codes. We then present the generic Soft-MAP decoding rule and its efficient
version for first-order RM codes.

MAP decoding. Given a length-n channel LLR vector I € R™ corresponding to the transmission of a given (n, k) code, i.e.
code dimension is k£ and block length is n, with codebook C over a general binary-input memoryless channel, the MAP
decoder picks a codeword c* according to the following rule (Abbe et al., 2020)

¢’ =argmax (l,1—2¢c), (5)
ceC

where (-,) denotes the inner-product of two vectors. Obviously, the MAP decoder needs to search over all 2* codewords
while each time computing the inner-product of two length-n vectors. Therefore, the MAP decoder has a complexity
of O(n2*). Thus the MAP decoder can be easily applied to decode small codebooks like an RM(2,2) code, that has
blocklength n = 4 and a dimension k = 4, with complexity O(1). On the other hand, a naive implementation of the MAP
rule for RM(m, 1) codes, that have 2% = 2m+1 = 21 codewords, requires O(n?) complexity. However, utilizing the special
structure of order-1 RM codes, one can apply the fast Hadamard transform (FHT) to implement their MAP decoding in a
more efficient way, i.e., with complexity O(n logn). The idea behind the FHT implementation is that the standard n x n
Hadamard matrix H contains half of the the 2n codewords of an RM(m, 1) code (in £1), and the other half are just —H.
Therefore, FHT of the vector I, denoted by Iy, lists half of the 2n inner-products in (5), and the other half are obtained the
as —lypg. Therefore, the FHT version of the MAP decoder for first-order RM codes can be obtained as

¢ = (1 —sign(lwua(i*))hi<)/2 st i =argmax |[lwu(7)], (6)
1€[n]

where Ly (i) is the -th element of the vector Ly, and h; is the i-th row of the matrix H. Given that Iy can be efficiently
computed with O(n logn) complexity, the FHT version of the MAP decoder for the first-order RM codes, described in (6),
has a complexity of O(nlogn).

Soft-MAP. Note that the MAP decoder and its FHT version involve argmax(-) operation which is not differentiable. In
order to overcome this issue, we obtain the soft-decision version of the MAP decoder, referred to as Soft-MAP decoder,
to come up with differentiable decoding at the leaves (Jamali et al., 2021). The Soft-MAP decoder obtains the soft LLRs
instead of hard decoding of the codes at the leaves. Particularly, consider an AWGN channel model as y = s + n, where y
is the length-n vector of the channel output, s := 1 — 2¢, ¢ € C, and n is the vector of the Gaussian noise with mean zero
and variance o per element. The LLR of the i-th information bit w; is then defined as

bing({) := In (W) '

By applying the Bayes’ rule, the assumption of Pr(u; = 0) = Pr(u; = 1), the law of total probability, and the distribution
of the Gaussian noise, we can write (7) as

)

iy = Zrecr e (lly = slB/o?) "
infl?2) = 11N .
Yscer exp (—|ly — s[3/0?)
We can also apply the max-log approximation to approximate (8) as follows.
Lo (5) ~ 1 . s 1 2 9
inf(Z)~;gggi}Ily—SI\z—;gelggglly—SI\za ©

where C} and C} denote the subsets of codewords that have the i-th information bit u; equal to zero and one, respectively.
Finally, given that the length-n LLR vector of the cahhnel output can be obtained as I := 2y /02 for the AWGN channels,
and assuming that all the codewords s’s have the same norm, we obtain a more useful version of the Soft-MAP rule for
approximating the LLRs of the information bits as

Line (i) ~ I,1-2¢) — 1,1—2c). 10
£(7) fé%?< c) gég(c) (10)

KO codes

It is worth mentioning at the end that, similar to the MAP rule, one can compute all the 2* inner products in O(n2*)
time complexity, and then obtain the soft LLRs by looking at appropriate indices. As a result, the complexity of the
Soft-MAP decoding for decoding RM(m, 1) and RM(2, 2) codes is O(n?) and O(1) respectively. However, one can apply
an approach similar to (6) to obtain a more efficient version of the Soft-MAP decoder, with complexity O(nlogn), for
decoding RM(m, 1) codes.

I. Experimental details

We provide our code at https://github.com/deepcomm/KOcodes.

L.1. Training algorithm

Algorithm 1: Training algorithm for KO(8,2)

Input: number of epochs T, number of encoder training steps 7y, number of decoder training steps Tyec, encoder
training SNR SNRy,¢, decoder training SNR SNR 4., learning rate for encoder lre,,, learning rate for
decoder Irgec

1 Initialize (0, ¢)
2 for T steps do

3 for Tyec steps do

4 Generate a minibatch of random message bits m

5 Simulate AWGN channel with SNR gec

6 Fix 6, update ¢ by minimizing L(6, ¢) using Adam with learning rate Ir g,
7 for T, steps do

8 Generate a minibatch of random message bits m

9 Simulate AWGN channel with SNR¢p¢
10 Fix ¢, update 6 by minimizing L(0, ¢) using Adam with learning rate lrep.

O;tput: 0, 9)

I.2. Hyper-parameter choices for KO(8,2)

We choose batch size B = 50000, encoder training SNR SNR,,,. = —3dB, decoder trainint SNR SNRg4e. = —5dB,
number of epochs 7' = 2000, number of encoder training steps T, = 50, number of decoder training steps Tgqe. = 500.
For Adam optimizer, we choose learning rate for encoder lrq,. = 10~° and for decoder Irgec = 10~

1.3. Neural network architecture of KO(8,2)
1.3.1. INITIALIZATION

We design our (encoder, decoder) neural networks to generalize and build upon the classical (Plotkin map, Dumer’s decoder).
In particular, as discussed in Section G.1, we parameterize the KO encoder gs, as g;(u, v) = (u, g;(u,v) +udv), where g :
R2 > Risa fully connected neural network, which we delineate in Section 1.3.2. Similarly, for KO decoder, we parametrize
itas foi1(Y1,Y2) = foim1(Y1,Y2) + LSE(y1, ¥3) and foi (Y1, Yo, Yo 0) = f2i (Y1, Y2, Yus ©) + Y1 + (—1)°ys, where
faic1 : R? — Rand fy; : R* — R are also fully connected neural networks whose architectures are described in
Section 1.3.4 and Section 1.3.3. If f ~ 0 and g = 0, we are able to thus recover the standard RM(8, 2) encoder and its
corresponding Dumer decoder. By initializing all the weight parameters (6, ¢) sampling from N(0,0.022), we are able to

approximately recover the performance RM(8, 2) at the beginning of the training which acts as a good initialization for our
algorithm.

1.3.2. ARCHITECTURE OF g;

¢ Dense(units=2 x 32)
e SeLU()
e Dense(units=32 x 32)

https://github.com/deepcomm/KOcodes

KO codes

SeLU()
¢ Dense(units=32 x 32)
e SeLU()

¢ Dense(units=32 x 1)

1.3.3. ARCHITECTURE OF le

¢ Dense(units=4 x 32)
e SeLU()

¢ Dense(units=32 x 32)
* SeLU()

¢ Dense(units=32 x 32)
* SeLU()

¢ Dense(units=32 x 1)

1.3.4. ARCHITECTURE OF .]?‘21‘_1

¢ Dense(units=2 x 32)
e SeLU()

¢ Dense(units=32 x 32)
* SeLU()

¢ Dense(units=32 x 32)
e SeLU()

¢ Dense(units=32 x 1)

J. Results for Order-1 codes

Here we focus on first order KO(m, 1) codes, and in particular KO(6, 1) code that has code dimension & =7 and blocklength
n = 64. The training of the (encoder, decoder) pair (g, f,) for KO(6, 1)is almost identical to that of the second order
RM(8, 2) described in §3. The only difference is that we now use the Plotkin tree structure of the corresponding RM(6, 1)
code. In addition, we also train our neural encoder gy together with the differentiable MAP decoder, i.e. the Soft-MAP, to
compare its performance to that of the RM codes. Figure 15 illustrates these results.

The left panel of Figure 15 highlights that KO(6, 1) obtains significant gain over RM(6, 1) code (with Dumer decoder)
when both the neural encoder and decoder are trained jointly. On the other hand, in the right panel, we notice that we match
the performance of that of the RM(6, 1) code (with the MAP decoder) when we just train the encoder gy (with the MAP
decoder). In other words, under the optimal MAP decoding, KO(6, 1) and RM(6, 1) codes behave the same. Note that
the only caveat for KO(6, 1) in the second setting is that its MAP decoding complexity is O(n?) while that of the RM is
O(nlogn).

KO codes

...... == -+~ RM BLER - Gaussian BLER
Stesao_ -+- KO BLER -""...__ -4- RM BLER
RMBER |]t T -+- KO BLER
= KO BER 107! == Gaussian BER
107 —+ RM BER
8 8 —— KO BER
s S 102
5 10 5
= =E
m m 1073
1073
1074
1074
-12 -10 -8 -6 -4 =12 -10 -8 -6 -4
Signal-to-noise ratio (SNR) [dB] Signal-to-noise ratio (SNR) [dB]

Figure 15. KO(6, 1) code. Left: KO(6, 1) code achieves significant gain over RM(6, 1) code (with Dumer) when trained on AWGN
channel. Right: Under the optimal MAP decoding, KO(6, 1) and RM(6, 1) codes achieve the same performance. Error rates for a random
Gaussian codebook are also plotted as a baseline.

