
Quantifying the Benefit of Using
Differentiable Learning over Tangent Kernels

Eran Malach 1 Pritish Kamath 2 Emmanuel Abbe 3 Nathan Srebro 2

Abstract
We study the relative power of learning with gra-
dient descent on differentiable models, such as
neural networks, versus using the correspond-
ing tangent kernels. We show that under cer-
tain conditions, gradient descent achieves small
error only if a related tangent kernel method
achieves a non-trivial advantage over random
guessing (a.k.a. weak learning), though this ad-
vantage might be very small even when gradi-
ent descent can achieve arbitrarily high accuracy.
Complementing this, we show that without these
conditions, gradient descent can in fact learn with
small error even when no kernel method, in par-
ticular using the tangent kernel, can achieve a
non-trivial advantage over random guessing.1

1. Introduction
A recent line of research seeks to understand Neural Net-
works through their kernel approximation, as given by the
Neural Tangent Kernel (NTK, Jacot et al., 2018). The
premise of the approach is that in certain regimes, the dy-
namics of training neural networks are essentially the same
as those of its first order Taylor expansion at initialization,
which in turn is captured by the Tangent Kernel at initial-
ization. It is then possible to obtain convergence, global
optimality and even generalization guarantees by studying
the behaviour of training using the Tangent Kernel (e.g. Li
& Liang, 2018; Du et al., 2019b; Chizat et al., 2019; Zou
et al., 2020; Allen-Zhu et al., 2019; Arora et al., 2019b;
Du et al., 2019a, and many others). Some have also sug-
gested using Tangent Kernel directly for training (e.g. Arora
et al., 2019a), even suggesting it can sometimes outperform
training by GD on the actual network (Geiger et al., 2020).

*Equal contribution 1Hebrew University of Jerusalem,
Israel 2Toyota Technological Institute at Chicago, USA
3EPFL, Switzerland. Correspondence to: Eran Malach
<eran.malach@mail.huji.ac.il>, Pritish Kamath <pri-
tish@ttic.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

1The full (better formatted and potentially more up-to-date)
version of this paper is available at arxiv.org/abs/2103.01210.

Can all the success of deep learning be explained using the
NTK? This would imply that we can replace training by
gradient descent on a non-convex model with a (potentially
simpler to train, and certainly better understood) kernel
method. Is anything learnable using gradient descent on a
neural network or other differentiable model also learnable
using a kernel method (i.e. using a kernelized linear model)?

This question was directly addressed by multiple authors,
who showed examples where neural networks trained with
gradient descent (or some variant thereof) provably outper-
form the best that can possibly be done using the tangent
kernel or any linear or kernel method, under different set-
tings and assumptions (Yehudai & Shamir, 2019; Allen-Zhu
& Li, 2019; 2020; Li et al., 2020; Daniely & Malach, 2020;
Ghorbani et al., 2019b; 2020). However in these examples,
while training the model with gradient descent performs bet-
ter than using the NTK, the error of the NTK is still much
better then baseline, with a significant “edge” over random
guessing or using a constant, or null, predictor. That is, the
NTK at least allows for “weak learning”. In fact, in some of
the constructions, the process of leveraging the “edge” of
a linear or kernel learner and amplifying it is fairly explicit
(e.g. Allen-Zhu & Li, 2019; 2020). The question we ask in
this paper is:

Can gradient descent training on the actual deep (non-
convex) model only amplify (or “boost”) the edge of
the NTK, with the NTK required to have an edge in
order to allow for learning in the first place? Or can
differentiable learning succeed even when the NTK —or
any other kernel— does not have a non-trivial edge?

Can gradient descent succeed at “strong learning” only when
the NTK achieves ”weak learning”? Or is it possible for
gradient descent to succeed even when the NTK is not able
to achieve any significant edge?

Our Contributions. The answer turns out to be subtle,
and as we shall see, relies crucially on two important consid-
erations: the unbiasedness of the initialization, and whether
the initialization can depend on the input distribution.

We start, in Section 3, by providing our own example of
a learning problem where Gradient Descent outperforms
the NTK, and indeed any kernel method. But unlike the
previous recent separating examples, where the NTK enjoys

https://arxiv.org/abs/2103.01210

Quantifying the Benefit of Using Differentiable Learning over Tangent Kernels

a considerable edge (constant edge, or even near zero error,
but with a slower rate than GD), we show that the edge
of the NTK, and indeed of any (poly-sized) kernel, can
be arbitrarily close to zero while the edge of GD can be
arbitrarily large. The edge of the NTK in this example is
nonetheless vanishing at low rate, i.e., polynomially, and
this leads us to ask whether the NTK must have at least a
polynomial edge when GD succeeds.

In Theorem 4 of Section 4.1 we show that when using an
unbiased initialization, that is, where the output of the model
is 0 at initialization, then indeed the NTK must have a non-
trivial edge (polynomial in the accuracy and scale of the
model) in order for gradient descent to succeed.

The requirement that the initialization is unbiased turns out
to be essential: In Section 5 we show an example where
gradient descent on a model succeeds, from a biased initial-
ization, even though no (reasonably sized) kernel method
(let alone the NTK) can ensure a non-trivial edge.

But all is not lost with biased initialization. In Theorem 5
of Section 4.2 we show that at least for the square loss, if
gradient descent succeeds from any (possibly biased) ini-
tialization, then we can construct some alternate random
“initialization” such that the Tangent Kernel at this random
initialization (i.e. in expectation over the randomness) does
ensure a non-trivial edge. Importantly, this random initial-
ization must depend on knowledge of the input distribution.
Again, our example in Section 5 shows that this distribution-
dependence is essential. This also implies a separation
between problems learnable by gradient descent using an
unbiased vs arbitrary initialization, emphasizing that the ini-
tialization being unbiased should not be taken for granted.

This subtle answer is mapped in Table 1 (Appendix A).

2. Differentiable Learning and Tangent
Kernels

We consider learning a predictor f : X → R over an input
space X , so as to minimize its population loss LD(f) :=
E(x,y)∼D [`(f(x), y)] with respect to a source distribution
D over X × Y , where ` : R× Y → R≥0 is a loss function.
We denote by `′ and `′′ the derivatives of ` w.r.t. its first
argument. Some of our guarantees apply to any smooth loss,
i.e., |`′′| := supŷ,y |`′′(ŷ, y)| <∞, while others are specific
to the square loss `sq(ŷ, y) = 1

2 (ŷ − y)2 with binary labels
Y = {−1, 1}. Our lower bounds and separation results
are all stated for the square loss with binary labels (they
could be adapted to other loss functions, but in order to
demonstrate a separation, it is sufficient to provide a specific
example). To understand whether a predictor gives any
benefit, we discuss the error of a predictor compared to that
of “null prediction”, i.e. predicting 0 on all inputs. For the
square loss with binary labels, the error of null prediction
is LD(0) = 0.5, and so if LD(f) = 0.5− γ, we say that f
has an “edge” of γ (over null prediction).

Differentiable Learning. We study learning by (approxi-
mate) gradient descent on a differentiable model, such as a
neural network or other parametric model. More formally, a
differentiable model of size p is a mapping f : Rp×X → R,
denoted fθ(x), where θ ∈ Rp are the model parameters, or
“weights”, of the model, and the mapping is differentiable
w.r.t. θ. We will control the scale of the model through a
bound2 C2

f := supθ,x(‖∇θfθ(x)‖22 + f2
θ (x)) on the norm

of the gradients and function values3

For a differentiable model fθ(x) and an initialization θ0 ∈
Rp, gradient accuracy τ , and stepsize4 η, τ -approximate
gradient descent training is given by iterates, starting with
θ(0) ← θ0:

θ(t+1) ← θ(t) − ηgt (1)
for ‖gt −∇θLD(fθ(t))‖2 ≤ τ (2)

The gradient estimates gt can be obtained by computing the
gradient on an empirical sample of m training examples
drawn from D, in which case we can ensure accuracy τ ∝
Cf/
√
m. And so, we can think of C2

f/τ
2 as capturing the

sample size, and when we refer to the relative accuracy
τ/Cf being polynomial, one might think of the sample
size used to estimate the gradients being polynomial. But
here we only assume the gradient estimates gt are good
approximations of the true gradients of the population loss,
and do not specifically refer to sampling.5 We say that τ -
approximate gradient descent with model fθ, initialization
θ0, gradient accuracy τ and T steps ensures error ε on a
distribution D if with any gradient estimates satisfying (2),
the gradient descent iterates (1) lead to an iterate θ(T) with
population loss LD(fθ(T)) ≤ ε.
The Tangent Kernel. Consider the first order Taylor ex-
pansion of a differentiable model about some θ∗ ∈ Rp:

fθ(x) ≈ fθ∗(x) + (θ − θ∗)∇θfθ∗(x) (3)
= 〈[1, θ − θ∗], φθ∗(x)〉 (4)

where φθ∗(x) = [fθ∗(x),∇θfθ∗(x)] ∈ Rp+1 , (5)

which corresponds to a linear model with the feature map
as in (5), and thus can also be represented using the kernel:

NTKfθ∗(x, x
′) = fθ∗(x)fθ∗(x

′)+ 〈∇θfθ∗(x),∇θfθ∗(x′)〉 .

2The quantity Cf mixes the scale of the gradients and of the
function values. We use a single quantity in order to minimize
notation. Separating these would allow for more consistent scaling.

3ReLU networks do not formally fit this framework; see Re-
mark 9 in Appendix C on how this can be incorporated.

4We can also allow variable or adaptive stepsize sequences—
for simplicity of presentation we stick with a fixed stepsize.

5In some regimes, one should in fact distinguish the setting of
large sample sets and approximate population gradients in view
of the universality result proved for SGD in (Abbe & Sandon,
2020a;b). We focus here on the approximate setting that better
reflects the noisier regime; see discussion in (Abbe & Sandon,
2020a) for parities.

Quantifying the Benefit of Using Differentiable Learning over Tangent Kernels

In some regimes or model limits (e.g. Daniely et al., 2016;
Jacot et al., 2018; Chizat et al., 2019; Lee et al., 2019),
the approximation (3) about the initialization remains valid
throughout training, and so gradient descent on the actual
model fθ(x) can be approximated by gradient descent on
the linear model (4), i.e. a kernalized linear model specified
by the tangent kernel NTKfθ∗ at initialization. One can then
consider analyzing differentiable learning with the model f
using this NTK approximation, or even replacing gradient
descent on f with just using the NTK. How powerful can
such an approximation be relative to the full power of dif-
ferentiable learning? Can we expect that anything learnable
with differentiable learning is also learnable under the NTK
approximation?

To understand the power of a kernalized linear model
with some kernel K, we should consider predictors real-
izable with bounded norm in the corresponding feature map
(i.e. norm balls in the corresponding Reproducing Kernel
Hilbert Space):
F(K,B) := {x 7→ 〈w, φ(x)〉 : ‖w‖2 ·R ≤ B} (6)

= {f : X → R : ‖f‖K ·R ≤ B} (7)

where R := sup
x
‖φ(x)‖2 = sup

x

√
K(x, x)

whereK(x, x′) = 〈φ(x), φ(x′)〉 and ‖f‖K is theK-RKHS-
norm6 of f . Predictors in F(K,B) can be learned to
within error ε with O(B2/ε2) samples using O(B2/ε2)
steps of gradient descent on the kernalized linear model.
And since any predictor learned in this way will be in
F(K,B), showing that there is no low-error predictor in
F(K,B) establishes the limits of what can be learned
using K. We thus study the norm ball of the Tangent
Kernel, which, slightly overloading notations, we denote
NTKfθ (B) := F(NTKfθ , B).

Learning Problems. For a fixed source distribution D,
there is always a trivial procedure for “learning” it, where
a good predictor specific to D is hard-coded into the “pro-
cedure”. E.g., we can use a kernel with a single feature
corresponding to this hard coded predictor. Instead, in order
to capture learning as inferring from data, and be able to
state when this is not possible using some class of methods,
e.g. using kernel methods, we refer to a “learning problem”
as a family P of source distributions over X × Y , and say
that a learning procedure learns the problem to within error
ε if for any distributionD ∈ P the method learns a predictor
with population error at most ε. 7

We consider learning both when the input distribution,
i.e. the marginal distributionDX over X , is known (or fixed)

6The direct definition (6) is sufficient for our purposes, and so
we do not get into the definition of an RKHS (and RKHS norm).
See, e.g. Schölkopf & Smola (2002), for a definition and discussion.
In (7) we take the norm of f to be infinite if f is not in the RKHS.

7See Remark 10 in Appendix C for how this relates to a proba-
bilistic quantifier over the training set.

and when it is unknown. Distribution dependent learning
refers to learning when the input distribution is either fixed
(i.e. all distributionsD ∈ P have the same marginalDX), or
when the model or kernel is allowed to be chosen based on
the input distribution DX , as might be the case when using
unlabeled examples to construct a kernel. In distribution
independent learning, we seek a single model, or kernel,
that ensures small error for all source distributions in P ,
even though they might have different marginals DX .

3. Gradient Descent Outperforms the NTK
In this section, we exhibit a simple example of a learning
problem for which (i) approximate gradient descent on a
differentiable model of size p ensures arbitrarily small (in
fact zero) error, whereas (ii) the tangent kernel for this
model, or in fact any reasonably sized kernel, cannot ensure
error better than 0.5 − γ, for arbitrarily small γ, where
recall 0.5 is the error of the null prediction and γ depends
polynomially on the parameters of the model and of gradient
descent.

Several authors have already demonstrated a range of ex-
amples where gradient descent ensures smaller error than
can be ensured by any reasonably sized kernel, including
the tangent kernel (Yehudai & Shamir, 2019; Ghorbani
et al., 2019a;b; Allen-Zhu & Li, 2019; 2020; Li et al., 2020;
Daniely & Malach, 2020). In Appendix B and Table 2 we
survey these papers in detail and summarize the separations
they establish. Here, we provide a concrete, self-contained
and simple example for completeness, so that we can ex-
plicitly quantify the edge a kernel method might have. Our
emphasis is on showing that the error for kernel methods is
not just worse than gradient descent, but in fact not much
better than null prediction—this is in contrast to prior sep-
arations, where the error possible using a kernel is either
some constant between the error of null prediction and zero
error, or more frequently, close to zero error, but not as close
as the error attained by gradient descent (see Appendix B for
details). In our example, we also pay attention to whether
the model’s predictions at initialization are zero—a property
that, as we will later see, plays a crucial role in our analysis.

The Learning Problem. We consider the problem of
learning k-sparse parities over n biased bits, i.e. where the
marginal distribution of each bit (i.e. coordinate) is non-
uniform. In order to easily obtain lower bounds for any
kernel (not just the tangent kernel), we let the input distribu-
tion be a mixture of independent biased bits and a uniform
distribution, so that we can argue that no kernel can do
well on the uniform component, and hence bound its error
also on the mixture. The key is that when k is moderate,
up to k = O(log n), due to the bits being biased, a linear
predictor based on all the bits in the parity has enough of
an edge to be detected. This does give the tangent kernel a
small edge over a trivial predictor, but this is the best that
can be done with the tangent kernel. However, in a differ-

Quantifying the Benefit of Using Differentiable Learning over Tangent Kernels

entiable model, once this linear predictor is picked up, its
support can be leveraged to output a parity of these bits,
instead of their sum, thereby obtaining zero error.
Formally, for integers 2 ≤ k ≤ n and for α ∈ (0, 1), we con-
sider the “biased sparse parities” problem Pbsp[n, k, α] over
X = {−1, 1}n and Y = {−1, 1}, and learning w.r.t. the
square loss. The problem consists of

(
n
k

)
distributions over

X ×Y , each corresponding to a subset I ⊆ [n] with |I| = k.
The distribution DI is defined by the following sampling
procedure:
. Let D0 be the uniform distribution over {−1, 1}n and

let D1 be the product distribution over {−1, 1}n with
Exi = 1

2 . Samplex ∼ DX := (1− α)D0 + αD1.
. Set y ← χI(x) :=

∏
i∈I xi, the parity over the subset I .

The differentiable model. To learnPbsp[n, k, α], we con-
struct a differentiable model that is a combination of a lin-
ear predictor 〈θ, x〉 and a “selected-parity”, which outputs
the parity of the subset of bits indicated by the (essential)
support of θ, that is,

∏
|θi|≥ν xi (for a suitable threshold ν).

Importantly, both use the same weights θ (see Figure 1). The
weak edge of the linear predictor allows gradient descent
to learn a parameter vector θ such that {i | |θi| ≥ ν} = I ,
and once this is learned, the “selected-parity” kicks in and
outputs a perfect predictor.

Formally, we construct a differentiable model fθ(x) with
θ ∈ Rn (i.e. size p = n) that behaves as follows for all
θ ∈

([
− 2
n ,

2
n

]
∪
[

3
n ,

5
n

])n
:

fθ(x)

{
≈ 2 〈θ, x〉 if θ ≈ 0

=
∏
i : θi≥ 3

n
xi if ∃i : θi ≥ 3

n

, (8)

where≈ stands for the first order approximation of fθ about
θ = 0. The behaviour (8) is the only property we need to
show that approximate gradient descent learns Pbsp[n, k, α]:
as formalized in Claim 1, a single step of gradient descent
starting at θ(0) = 0 will leave θ(1)

i ∈
[
− 2
n ,

2
n

]
for i 6∈ I ,

while increasing θ(1)
i ≥ 3

n for i ∈ I , thus yielding the cor-
rect parity. We show how to implement fθ as a continuous
differentiable model with scale Cf = O(n), and further-
more how this can implemented as a feed-forward neural
network with piece-wise quadratic sigmoidal activations:

σ(z) =


0 z < 0

2z2 z ∈ [0, 1
2
]

4z − 2z2 − 1 z ∈ [1
2
, 1]

1 z > 1 z

σ(z)

0

1

1

The model fθ, illustrated in Figure 1, is defined below,
where θ ◦ x := (θ1x1, . . . , θnxn) and σc,da,b(z) := c +

σ
(
z−a
b−a

)
(d− c), defined for all a < b and c, d; it is defined

such that (i) σc,da,b(z) = c for every z ≤ a, (ii) σc,da,b(z) = d

for every z ≥ b and (iii)
∣∣∣ ddzσc,da,b(z)∣∣∣ ≤ 2|d−c|

b−a .

x1 x2 · · · xn

· · ·

G +

+

σ

θ1 θ2 θn

Figure 1. Schematic diagram for the construction of fθ , as used in
Claim 1, with only trainable parameters being θ1, θ2, . . . , θn. The
sub-network G is a fixed module implementing the “selected-parity”
function.

fθ(x) := σ−1,1
−1,1 (〈θ, x〉+ G(θ ◦ x)) (9)

G(z) := S(ξ(z)) · (H(ξ(z))−
∑
i zi) (10)

S(s) := 1−
∏n
i=1(1− s2

i) (11)
H(s) :=

∏n
i=1(1 + si − s2

i) (12)
ξ(z)i := σ(nzi − 2)− σ(−nzi − 2) (13)

The intuition for G is as follows. In the relevant regime of
θ ∈

(
[− 2

n ,
2
n] ∪ [3

n ,
5
n]
)n

and any x ∈ {−1, 1}n we have
that s = ξ(θ◦x) ∈ {−1, 0, 1}n, with si = xi if θi ∈ [3

n ,
5
n]

and si = 0 if θi ∈ [− 2
n ,

2
n]. In this regime of θ, we have

S(s) = 1 {s 6= 0} and H(s) =
∏
i:si 6=0 si. Thus, when

θi ∈ [− 2
n ,

2
n] for all i, we have S(ξ(θ ◦ x)) = 0 and hence

G(θ◦x) = 0 for all x ∈ {−1, 1}n. On the other hand, when
θi ∈ [3

n ,
5
n] for some i, we have S(ξ(θ ◦ x)) = 1 and hence

G(θ ◦x) =
∏
i : θi≥ 3

n
xi−〈θ, x〉 for all x ∈ {−1, 1}n. This

gives us (8), by noting that σ−1,1
−1,1(z) ≈ 2z at z ≈ 0 (first

order approximation) and σ−1,1
−1,1(z) = sign(z) when |z| ≥

1. While we presented fθ as a differentiable model using
the gadget G, it is also possible to implement fθ as a neural
network (with some untrainable weights); see Remark 11 in
Appendix D.

We can also calculate that for any i ∈ [n], θ and x ∈
{−1, 1}n, it holds that | ∂∂θi fθ(x)| ≤ O(n) and |fθ(x)| ≤ 1.
Thus, we get that C2

f = supθ,x ‖∇θfθ(x)‖2 + fθ(x)2 ≤
O(n2).

The following Claim (proved in Appendix D.1) formalizes
how a single step of gradient descent is sufficient for θ to be
away from zero on I , and hence for the network to output
the correct labels.

Claim 1. For any n, k and α ∈ (0, 1), and any DI ∈
Pbsp[n, k, α], τ -approximate gradient descent on the model
f of size p = n and Cf = O(n) described above, with
initialization θ0 = 0 (at which ∀xfθ0(x) = 0), accuracy
τ ≤ α/2k, step size η = 2k/(αn) and T = 1 step en-

Quantifying the Benefit of Using Differentiable Learning over Tangent Kernels

sures LDI (fθ(T)) = 0. In particular, if k ≤ log n then an
accuracy of τ ≤ α/n is sufficient.

On the other hand, the next claim (proof in Appendix F.1.1),
establishes that the tangent kernel at initialization only has
a small edge over the null prediction.

Claim 2. The tangent kernel of the model f at θ0 = 0 is the
scaled linear kernel NTKfθ0(x, x′) = 4 〈x, x′〉, and for any
2 ≤ k ≤ n, α ∈ (0, 1) and DI ∈ Pbsp[n, k, α] the error
with this kernel is infh∈NTKfθ0 (B) LDI (h) ≥ 1

2 −
α
2 = 1

2 −

O
(
n2τ
Cf

)
for all B ≥ 0, where τ = α/2k as in Claim 1. On

the other hand, ∃h ∈ NTKfθ0(n) s.t. LDI (h) ≤ 1
2 −

α2

22k =

1
2 − Ω

(
n2τ2

C2
f

)
.

We already see that gradient descent can succeed where the
tangent kernel at initialization can only ensure an arbitrar-
ily small edge over the error achieved by null prediction,
L(0) = 1/2:

Separation 1. For any γ > 0, there exists a source distri-
bution (with binary labels and w.r.t. the square loss), s.t.

. [Gradient Descent] Using a differentiable model with
p = 2 parameters, T = 1 steps, and accuracy τ

Cf
=

Θ(γ), τ -approximate gradient descent can ensure zero
squared-loss, but

. [Tangent Kernel] The tangent kernel of the model at
initialization does not ensure square loss lower than
1
2 − γ = 1

2 −Θ(τ/Cf) (compare to the null prediction
that always has square loss L(0) = 1

2).

Furthermore, the gradient descent algorithm has an initial-
ization θ0 s.t. ∀xfθ0(x) = 0.

Proof. Apply Claims 1 and 2 to the sole source distribution
in Pbsp[n = 2, k = 2, α = 2γ], (corresponding to I =
{1, 2}).

Even though the tangent kernel at the initialization used by
gradient descent might have an arbitrarily small edge, one
might ask whether better error can be ensured by the tangent
kernel at some other “initialization” θ, or perhaps by the
tangent kernel of some other model, or perhaps even some
other kind of kernel8. The following claim shows that this
is not the case (proof in Appendix F.2.1).
Claim 3. For all α < 1/2, k, p,B, n, and any
kernel K corresponding to a p-dimensional fea-
ture map, there exists DI ∈ Pbsp[n, k, α] such
that infh∈F(K,B) LDI (h) ≥ LDI (0) − α

2 −
8For each instance DI ∈ Pbsp[n, k, α], there is of course al-

ways a point θ at which the tangent kernel allows for prediction
matching that of Gradient Descent, namely the iterate θ(T) reached
by Gradient Descent. But to learn using a kernel, the kernel should
be chosen without knowing the instance, i.e. without knowing I .

min
{

p
2|Pbsp| , O

(
B

2/3

|Pbsp|1/3

)}
, where LDI is w.r.t. the

square loss, and note that |Pbsp[n, k, α]| =
(
n
k

)
.

And so, setting k = Θ(log n) and α = 1/poly(n), we see
that gradient descent with polynomial parameters can learn
Pbsp[n, k, α], while no tangent kernel of a polynomial sized
model (i.e. with p = poly(n)) can ensure better than an
arbitrarily small polynomial edge; see Appendix G for full
proof.

Separation 2. For any sequence γn = 1/ poly(n), there
exists a sequence of learning problems Pn with fixed input
distributions (with binary labels and w.r.t. the square loss,),
such that

. [Gradient Descent] for each n, using a differentiable
model with p = n parameters, realizable by a neural
network of depth O(log n) with O(n) edges (where some
edges have trainable weights and some do not), T = 1
steps, polynomial accuracy τ

Cf
= O

(
γn
n2

)
, and initial-

ization θ0 s.t. ∀xfθ0(x) = 0, τ -approximate gradient
descent learns Pn to zero loss; but

. [Poly-Sized Kernels] no sequence of kernels Kn corre-
sponding to feature maps of dimension poly(n) (and
hence no tangent kernel of a poly-sized differentiable
models) can allow learning Pn to square loss better than
1
2 − γn for all n; and

. [Arbitrary Kernel, Poly Norm] no sequence of kernels
Kn of any dimension can allow learning Pn to square
loss better than 1

2 − γn for all n using predictors in
F(Kn, Bn) of norm Bn = poly(n).

Empirical Demonstration in Two-Layer Networks.
While for ease of analysis we presented a fairly specific
model, with many fixed (non-trainable) weights and only
few trainable weights, we expect the same behaviour occurs
also in more natural, but harder to analyze models. To verify
this, we trained a two-layer fully-connected ReLU network
on the source distribution Dα analyzed above, for n = 128
and k = 7. We observe that indeed when α > 0, and thus
a linear predictor has at least some edge, gradient descent
training succeeds in learning the sparse parity, while the
best predictor in the Tangent Kernel cannot get error much
better than 0.5. See Figure 2 for details.

4. Ensuring the Tangent Kernel has an Edge
In the example of Section 3 we saw that the Tangent Kernel
at initialization cannot ensure small error, and even though
Gradient Descent finds a perfect predictor, the tanget kernel
only has an arbitarily small edge over the null prediction.
But this edge isn’t zero: the second part of Claim 2 tells us
that at least in the example of Section 3, the tangent kernel
will have an edge, and this edge is polynomial (even linear)
in the accuracy required of gradient descent. Is this always
the case? We now turn to asking whether whenever gradient

Quantifying the Benefit of Using Differentiable Learning over Tangent Kernels

0 0.2 0.4 0.6 0.8 1

·104

0

0.1

0.2

0.3

0.4

0.5

iterations

Te
st
` s

q
lo

ss

α = 0.20
α = 0.15
α = 0.10
α = 0.05
α = 0.00

Figure 2. Two-layer fully-connected ReLU network (128 hidden
units) training on data sampled from DI with n = 128, k = 7 for
different values of α, trained using Adam optimizer with learning-
rate of 0.01. Solid lines show the test performance at each iteration
averaged over 20 runs. Dashed lines show the test performance of
the model with best test performance of the last iterate between the
20 runs. The horizontal dot-dash lines indicate the lower bound
(from Claim 3) on best accuracy attainable by any kernel method
with feature map with as many number of parameters as the NTK.

descent succeeds in ensuring small error, then the Tangent
Kernel must indeed have an edge that is at least polynomial
in the gradient descent parameters.

4.1. With Unbiased Initialization
We begin by considering situations where gradient descent
succeeds starting at an initialization yielding zero predic-
tions on all inputs, i.e. such that:

∀x : fθ0(x) = 0. (14)
Following Chizat et al. (2019), we refer to θ0 satisfying
(14) as unbiased initializations. With an unbiased initial-
ization, the Taylor expansion (3) does not have the zero-
order, or “bias” term, there is no need for the first coor-
dinate in the feature vector φθ0 , and the Tangent Kernel
becomes NTKfθ0(x, x′) = 〈∇θfθ0(x),∇θfθ0(x′)〉, simpli-
fying the Neural Tangent Kernel analysis. Chizat et al.
(2019), Woodworth et al. (2020) and others discuss how to
construct generic unbiased initializations, namely by includ-
ing pairs of units that cancel each other out at initialization,
but quickly diverge during training and allow for meaningful
learning. The initialization used in Claim 1 of Section 3
also satisfies (14).

In Theorem 4 below, we show that if gradient descent im-
proves over the loss at initialization, then the Tangent Kernel
must also have an edge over initialization, which for an un-
biased initialization means an edge over the null prediction.

We can also considered a relaxation of the unbiasedness
assumption (14), and instead require only that the output of
the network at initialization is very close to zero. This would
be the case with some random initialization schemes which
initialize the network randomly, but with small magnitude.
As long as the deviation from unbiasedness is smaller than

the edge guaranteed, Theorem 4 would still ensure that the
tangent kernel has an edge over null prediction.

Theorem 4. For any smooth loss function `, differentiable
model f , initialization θ0, and source distribution D, if
τ -accurate gradient descent for T steps ensures error
LD(fθ(T)) ≤ ε, then for B = Cf + τ

|`′′|Cf , there exists

h ∈ NTKfθ0(B) with

LD(h) ≤ max
(
ε, LD(fθ0)− τ2

2|`′′|C2
f

)
. (15)

In particular, if θ0 is an unbiased initialization and ε <
LD(0), then LD(h) ≤ LD(0)− τ2

2|`′′|C2
f

.

At a high level, we argue that if gradient descent is going to
move at all, the gradient at initialization must be substan-
tially non-zero, and hence move the model in some direction
that improves over initialization. But since the tangent ker-
nel approximates the true model close to the initialization,
this improvement translates also to an improvement over
initialization also in the Tangent Kernel. If the initialization
is unbiased, initialization is at the null predictor, and this
is an improvement over null predictions. The details of the
proof are presented in Appendix E.1.

Separation 1 establishes that Theorem 4 is polynomially
tight: it shows that despite gradient descent succeeding with
an unbiased initialization, the tangent kernel at initialization
has an edge of at mostO(τ/Cf). This leaves a quadratic gap
versus the guarantee of Ω(τ2/C2

f) in the Theorem (recalling
|`′′| = 1 for the square loss), but establishes the polynomial
relationship.

Theorem 4 is a strong guarantee, in that it holds for each
source distribution separately. This immediately implies
that if τ -approximate gradient descent on a differentiable
model f with unbiased initialization θ0 learns some family
of distribution P to within small error, or even just to with
some edge over the null prediction, then the Tangent Kernel
at θ0 also has an edge of at least τ2

2|`′′|C2
f

over the null pre-
diction. Note that this edge is polynomial in the algorithm
parameters τ and Cf , as is the required norm B. And so, if,
for increasing problem sizes n, gradient descent allows for
“polynomial learnability”, in the sense of learning with poly-
nomially increasing complexity, then the Tangent Kernel at
least allows for “weak learning” with a polynomial edge (in
all the parameters, and hence in the problem size n). Sep-
aration 2 shows that this relationship is tight, in that there
are indeed problems where strong learning is possible with
gradient descent with polynomial complexity, but the tanget
kernel, or indeed any kernel of polynomial complexity, can
only ensure polynomially weak learning.

Theorem 4 relies on the initialization being unbiased, or
at the very least the predictions at initialization not being
worse than the null predictions. Can we always ensure the
initialization satisfies such a condition? And what happens

Quantifying the Benefit of Using Differentiable Learning over Tangent Kernels

if it does not? Might it then be possible for Gradient Descent
to succeed even though the Tangent Kernel does not have
an edge over the null prediction?

The example in Section 5 shows that, indeed, some learning
problems might be learnable by gradient descent, but only
using an initilization that is not unbiased. That is, we should
not expect initializations to always be unbiased, nor can
we expect to always be able to “fix” the initialization to be
unbiased. And furthermore, the example shows that with
an initilization that is not unbiased, the Tangent Kernel at
initilization might not have a significant edge over the null
predictor.

But before seeing this example, let us ask: What can we
ensure when the initialization is not unbiased?

4.2. With Distribution Dependence
In Theorem 5 we show that, at least for the square loss, for
an arbitrary initialization, even though the Tangent Kernel
at initialization might not have an edge, we can construct
a distribution W , which we can think of as an alternate
“random initilization”, such that the Tangent Kernel of the
model at a random point θ ∼ W drawn from this distribu-
tion, does have an edge over null prediction. But the catch
is that this distribution depends not only on the true initial-
ization θ0, but also on the input distribution DX . That is,
the Tangent Kernel for which we are establishing an edge
is distribution dependent. In Section 5 we will see that this
distribution-dependence is unavoidable.
Theorem 5. For a differentiable model f , initialization θ0,
stepsize η, number of iterations T , and the square loss, given
an input distribution DX , there exists a distributionW (that
depends on DX), supported on T + 1 parameter vectors in
Rp, such that for any source distribution D that agrees with
DX and for which τ -approximate gradient descent ensures
error LD(fθ(T)) < LD(0)− γ, we have

E
θ∼W

inf
h∈NTKfθ (B)

LD(h) < LD(0)− γ′ (16)

where γ′ = min
{

γ
T+1 ,

τ2

2C2
f

}
and B =

√
2γ′Cf . And so,

the Average Tangent Kernel K = Eθ∼W NTKfθ has rank at
most (T+1)(p+1) and infh∈F(K,B) LD(h) ≤ LD(0)−γ′.

The proof details are presented in Appendix E.2.

5. No Edge with the Tangent Kernel
As promised, we will now present an example establishing:

1. Some learning problems are learnable by gradient de-
scent, but only with a biased initialization

2. Theorem 4 cannot be extended to biased initializations:
Even if gradient descent, with a biased initialization,
ensures small error, the Tangent Kernel at initialization
might not have a significant edge.

3. Theorem 5 cannot be made distribution-independent:
Even if gradient descent, with a biased initialization,

ensures small error on a learning problem, there might
not be any distribution-independent random “initializa-
tion” that yields a significant edge in a Tangent Kernel at
a random draw from this “initialization”.

The Learning Problem. This time we will consider learn-
ing parities of any cardinality (not necessarily sparse), but
we will “leak” the support of the parity through the in-
put distribution DX . For an integer n and α ∈ (0, 1),
we consider the “leaky parities” problem P lp[n, α] over
X = {−1, 1}n and Y = {−1, 1} with 2n − n − 1 dis-
tributions, each corresponding to I ⊆ [n] with |I| ≥ 2.
Each source distribution DI is a mixture of two components
DI = (1− α)D(0)

I + αD(1)
I : the first component D(0)

I has
labels y = χI(x) corresponding to parity of bits in I , with
a uniform marginal distribution over x. The second compo-
nent has uniform random labels y independent of the inputs
(i.e. the labels in this component are entirely uninformative),
but the input is deterministic and set to x := xI where
xIi = 1 for i ∈ I and−1 for i /∈ I . Learning this problem is
very easy: all a learner has to do is examine the marginals of
each input coordinate of xi. Those in the support I will have
EDI [xi] = α while when i 6∈ I we have EDI [xi] = −α.
The marginals over xi thus completely leak the optimal
predictor. But as we shall see, while gradient descent can
leverage the marginals in this way, kernel methods (where
the kernel is pre-determined and does not depend on the
input distribution) fundamentally cannot.

More formally, D(0)
I is the distribution obtained by sam-

pling x ∼ U({±1}n) and setting y = χI(x) :=
∏
i∈I xi,

whileD(1)
I is the distribution obtained by (deterministically)

setting x := xI and sampling y ∼ U({−1, 1}), and recall
DI := (1 − α)D(0)

I + αD(1)
I . In other words, DI corre-

sponds to first choosing b ∈ {0, 1} with Pr[b = 1] = α and
sampling (x, y) ∼ D(b)

I .

The differentiable model. To learn P lp[n, α], we con-
struct a differentiable model that is very similar to the
one in Section 3, being a combination of a linear pre-
dictor and a “selected-parity”, but where the linear com-
ponent has a bias term, and is thus equal to −1 (rather
then zero) at initialization. Formally, we construct fθ with
θ ∈ Rn (i.e. size p = n) that behaves as follows for all
θ ∈

([
0, 2

n

]
∪
[

3
n ,

5
n

])n
:

fθ(x)

{
≈ −1 + 2

〈
θ, x+ 5

3α1
〉

if θ ≈ 0

=
∏
i : θi≥ 3

n
xi if ∃i : θi ≥ 3

n

, (17)

where≈ stands for the first order approximation of fθ about
θ = 0, and 1 ∈ Rn is the all-1s vector. Again, (17) is the
only property we need, to show that approximate gradient
descent learns P lp[n, α]: at initialization, we output −1
for all examples, meaning the derivative of the loss is non-
negative, and we generally want to try to increase the output
of the model. How much we increase each coordinate θi

Quantifying the Benefit of Using Differentiable Learning over Tangent Kernels

will depend on E[xi + 5
3α], which is 8/3 for i ∈ I but

only 2/3 for i 6∈ I , and the first step of gradient descent
will separate between the coordinates inside and outside the
support I , thus effectively identifying I . With an appropriate
stepsize, the step will push θ into the regime covered by
the second option in (17), and the model will output the
desired parity9. The key ingredient here is that even though
all the coordinates are uncorrelated with the labels, and thus
also with residuals at an unbiased initialization, and the
model of Section 3 will have zero gradient at initialization,
we artificially make all the residuals at initialization non-
positive, thus creating a correlation between each coordinate
and the residual, which moves θ in a way that depends on
the marginal DX (as in the proof of Theorem 5).

As with the model of Section 3, we can implement (17) as
a continuous differentiable model with scale Cf = O(n),
through a slight modification of the architecture described
in Equations (9)-(13):

fθ(x) := σ−1,0

0, 2n
(〈θ,1〉)

+ σ−1,1
−1,1

(〈
θ, x+ 5

3α1
〉

+ G(θ, x)
)

(18)

G(θ, x) := S(ξ(θ ◦ x))

·
(
H(ξ(θ ◦ x))−

〈
θ, x+ 5

3α1
〉)

(19)

where S, H and ξ are as defined in (11), (12) and (13).
The first term in (18) is −1 at θ(0) = 0 and satisfies
∇θ σ−1,0

0, 2n

(〈
θ(0),1

〉)
= 0. The second term is essen-

tially the same as (9), with only difference being the linear
term 〈θ, x〉 is replaced with

〈
θ, x+ 5

3α1
〉
. Similar to the

construction in Section 3, we get that (17) holds and that
C2
f ≤ O(n2).

We prove the following claims in Appendix D.2 and Ap-
pendix F.1.2 respectively (cf. Claims 1 and 2).
Claim 6. For any n and α ∈ (0, 1), for anyDI ∈ P lp[n, α],
gradient descent on the model f of size p = n with C2

f =

O(n2) described above, with initialization θ0 = 0, accuracy
τ = 4

3α, step size η = 1 and T = 1 step ensures error
LDI (fθ(T)) ≤ α.

Claim 7. The tangent kernel of the model f at θ0 = 0
is the scaled linear kernel endowed with a bias term,
NTKfθ0(x, x′) = (1+ 100

9 α2)+4 〈x, x′〉, and for any n ≥ 2,
α ∈ (0, 1), and any DI ∈ P lp[n, α], the error with this
kernel is infh∈NTKfθ0 (B) LDI (h) = LDI (0) = 1

2 for any

B ≥ 0.

We already see that in contrast to a situation where the
initialization is unbiased, and so Theorem 4 ensures the
tangent kernel has at least a polynomial edge, even if gra-
dient descent succeeds, but with an initialization which is

9The reason for the offset 5
3

is to ensure all coordinates will be
non-negative after the first step, which simplifies identification of
the two regimes in (17) when implementing the model

not unbiased, the tangent kernel at initialization might not
have any edge at all, and so we cannot hope to remove
the requirement of the initialization being unbiased from
Theorem 4:
Separation 3. For any ε > 0, there exists a source distri-
bution (with binary labels and w.r.t. the square loss), s.t.

. [Gradient Descent] Using a differentiable model with
p = 2 parameters, T = 1 steps, and accuracy τ

Cf
=

Θ(ε), τ -approximate gradient descent ensures square
loss of ε, but

. [Tangent Kernel] The tangent kernel of the model at ini-
tialization cannot ensure square loss lower than 1

2 (which
is the loss of null prediction).

Proof. Apply Claims 6 and 7 to the sole source distribution
in P lp[n = 2, α = 2ε].

But what about the tangent kernel at a different “initializa-
tion”, or of some other model, or even some other kernel
altogether? The following Claim (proved in Appendix F.2.2)
shows that no kernel can get a significant edge over the zero
predictor unless the number of features and the norm are
both exponentially large in n. In order to contrast with
guarantee (16) of Theorem 5, we state the Claim also for
learning using a random kernel, i.e. in expectation over an
arbitrary distribution of kernels.

Claim 8. For all α ∈ (0, 1), p, B, n, and any randomized
kernel K with rank(K) = p almost surely (i.e. a distri-
bution over kernels, each of which corresponding to a
p-dimensional feature map), there exists DI ∈ P lp[n, α]
such that EK infh∈F(K,B) LDI (h) ≥ LDI (0) −
min

{
p

2|P lp| , O
(

B
2/3

|P lp|1/3

)}
. where LDI is w.r.t. the square

loss, and note that |P lp[n, α]| = 2n − n− 1.
In particular, we see that in contrast to the distribution-
dependent situation of Theorem 5, where we could ensure
a polynomial edge for the tangent kernel at a specified ran-
domized “initialization”, this is not possible in general, and
we cannot hope to remove the dependence on the input
distribution in Theorem 5.

Separation 4. For any sequence εn = 1/poly(n), there
exists a sequence of learning problemPn (with binary labels
and w.r.t. the square loss), such that

. [Gradient Descent] for each n, using a differentiable
model with p = n parameters, realizable by a neural
network of depth O(log n) and O(n) edges (where some
edges have trainable weights and some do not), T = 1
steps, and accuracy τ

Cf
= O(εnn), τ -approximate gradi-

ent descent learns Pn to square loss of εn, but
. [Poly-Sized Kernels] no sequence of (randomized) kernels
Kn corresponding to feature maps of dimension poly(n)
(and hence no tangent kernel of a poly-sized differentiable
models, even with randomized “initialization”) can allow

clm:gd-upper-bound-1

Quantifying the Benefit of Using Differentiable Learning over Tangent Kernels

learning Pn (in expectation) to square loss smaller than
1
2 − 2−Ω(n) for all n; and

. [Arbitrary Kernel, Poly Norm] no sequence of (random-
ized) kernels Kn of any dimension can allow learn-
ing Pn (in expectation) to square loss smaller than
1
2 − 2−Ω(n) for all n using predictors in F(Kn, Bn) of
norm Bn = poly(n).

Proof. Apply Claims 6 and 8 to Pn = P lp[n, α = εn].

Since we are working over X = {−1,+1}n of cardinality
2n, we can always ensure an edge of (1− α)p/2n+1 using
indicator features on p of the 2n inputs, thus allowing mem-
orization of these tiny fraction of inputs. An edge of 2−Θ(n)

is thus a “trivial” edge attained by this kind of memorization,
and Claim 8 and Separation 4 establish the tangent kernel,
or even any other kernel, cannot be significantly better.

We can also conclude that even though we saw that our
learning problem is learnable with gradient descent, we can-
not hope to learn it with an unbiased initialization, since
this would imply existence of a kernel with a polynomial
edge. We thus get the following separation between learn-
ability with gradient descent using biased versus unbiased
initialization (importantly, only for distribution independent
learning); proof in Appendix G.
Separation 5. For any sequence εn = 1/poly(n), there
exists a sequence of learning problemPn (with binary labels
and w.r.t. the square loss), such that

. [GD with biased initialization] for each n, using a differ-
entiable model with p = n parameters, realizable by a
neural network of depthO(log n) andO(n) edges (where
some edges have trainable weights and some do not),
T = 1 step, and accuracy τ

Cf
= O

(
εn
n

)
, and some (not

unbiased) initialization, τ -approximate gradient descent
learns Pn to square loss εn, but

. [GD with unbiased initialization] It is not possible to
ensure error better than 1

2 on Pn, for all n, using τ -
approximate gradient descent starting with an unbiased
initialization (as in Eq. (14)), and any differentiable
models of size p = poly(n) and accuracy τ/Cf =
1/ poly(n), and any number of steps T .

6. Conclusion and Discussion
With the study of Neural Tangent Kernels increasing in pop-
ularity, both as an analysis and methodological approach,
it important to understand the limits of the relationship be-
tween the Tangent Kernel approximation and the true dif-
ferentiable model. Furthermore, the notion of “gradual”
learning of deep models, where we learn progressively more
complex models, or more layers, and so the success of deep
learning rests on being able to make progress even with
simpler, e.g. linear models, is an appealing approach to
understanding deep learning. Indeed, when we first asked
ourselves whether the tangent kernel must always have an

edge in order for gradient descent to succeed, and we sought
to quantify how large this edge must be, we were guided
also by understanding the “gradual” nature of deep learn-
ing. We were surprised to discover that in fact, with biased
initialization, deep learning can succeed even without the
tangent kernel having a significant edge.

Our results also highlight the importance of the distinction
between distribution dependent and independent learning,
and between biased and unbiased initialization. The gap
between distribution dependent and independent learning
relates to kernel (i.e. linear) methods inherently not being
able to leverage information in DX : success or failure is
based on whether y|x is well represented by a predictor
in F(K,B), and has little to do with the marginal over x.
In contrast, gradient descent on a non-linear model, could
behave very differently depending on DX , as we also see
empirically in the experiment in Figure 2. Perhaps even
more surprising is the role of the bias of the initialization.
It might seem like a benign property, and that we should
always be able to initialize with zero, or nearly-zero predic-
tions, or at least at θ0 that is not much worse than null, or
perhaps correct for the bias as in Chizat et al. (2019). But we
show that at least for distribution-independent learning, this
is not a benign property at all: for some problems we must
use biased initialization (Separation 5). This observation
may be of independent interest, beyond the role it plays in
understanding the Neural Tangent Kernel.

The learning problems and models we used to demonstrate
the separation results are artificially extreme, so as to push
the separation to the limit, and allow easy analytical study.
But we believe they do capture ways in which gradient
descent is more powerful than kernel methods. In the ex-
ample of Section 3, gradient descent starts by selecting a
few “simple features” (the k � n relevant coordinates),
based on simple correlations. But unlike kernel methods,
gradient descent is then able to use these features in more
complex ways. We see this happening also empirically in
Figure 2 with a straightforward two-layer ReLU network,
where gradient descent is able to succeed in learning the
complex parity function, once there is enough signal to eas-
ily identify the few relevant coordinates. In the example of
Section 5, we see how gradient descent is also able to pick
up on structure in the input (unlabeled data) distribution, in
a way that kernel methods are fundamentally unable to.

Acknowledgements

We thank Gilad Yehudai for clarifying our questions about
Yehudai & Shamir (2019), Jascha Sohl-dickstein for point-
ing us to references on NTK and anonymous reviewers
for helpful comments. This work was done while NS was
visiting EPFL. This research is part of the NSF/Simons
funded Collaboration on the Theoretical Foundations of
Deep Learning (deepfoundations.ai). PK was partially sup-
ported by NSF BIGDATA award 1546500.

https://deepfoundations.ai/

Quantifying the Benefit of Using Differentiable Learning over Tangent Kernels

References
Abbe, E. and Sandon, C. Poly-time universality and limi-

tations of deep learning. arXiv, abs/2001.02992, 2020a.
URL http://arxiv.org/abs/2001.02992.

Abbe, E. and Sandon, C. On the universality of deep
learning. In Advances in Neural Information Pro-
cessing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, 2020b. URL https:

//proceedings.neurips.cc/paper/2020/hash/

e7e8f8e5982b3298c8addedf6811d500-Abstract.

html.

Allen-Zhu, Z. and Li, Y. What can resnet learn ef-
ficiently, going beyond kernels? In Advances in
Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pp. 9015–9025, 2019. URL https:

//proceedings.neurips.cc/paper/2019/hash/

5857d68cd9280bc98d079fa912fd6740-Abstract.

html.

Allen-Zhu, Z. and Li, Y. Backward feature correction:
How deep learning performs deep learning. arXiv,
abs/2001.04413, 2020. URL https://arxiv.org/

abs/2001.04413.

Allen-Zhu, Z., Li, Y., and Liang, Y. Learning and
generalization in overparameterized neural networks,
going beyond two layers. In Advances in Neural
Information Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pp. 6155–6166, 2019. URL https:

//proceedings.neurips.cc/paper/2019/hash/

62dad6e273d32235ae02b7d321578ee8-Abstract.

html.

Arora, S., Du, S. S., Hu, W., Li, Z., Salakhutdinov,
R., and Wang, R. On exact computation with an
infinitely wide neural net. In Advances in Neural
Information Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pp. 8139–8148, 2019a. URL https:

//proceedings.neurips.cc/paper/2019/hash/

dbc4d84bfcfe2284ba11beffb853a8c4-Abstract.

html.

Arora, S., Du, S. S., Hu, W., Li, Z., and Wang, R. Fine-
grained analysis of optimization and generalization for
overparameterized two-layer neural networks. arXiv
preprint arXiv:1901.08584, 2019b.

Chizat, L., Oyallon, E., and Bach, F. On lazy training in
differentiable programming. In Advances in Neural In-
formation Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS
2019, 8-14 December 2019, Vancouver, BC, Canada, pp.
2933–2943, 2019.

Daniely, A. and Malach, E. Learning parities with
neural networks. In Advances in Neural Information
Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, 2020. URL https:

//proceedings.neurips.cc/paper/2020/hash/

eaae5e04a259d09af85c108fe4d7dd0c-Abstract.

html.

Daniely, A., Frostig, R., and Singer, Y. Toward deeper
understanding of neural networks: The power of
initialization and a dual view on expressivity. In
Advances in Neural Information Processing Sys-
tems 29: Annual Conference on Neural Information
Processing Systems 2016, December 5-10, 2016,
Barcelona, Spain, pp. 2253–2261, 2016. URL https:

//proceedings.neurips.cc/paper/2016/hash/

abea47ba24142ed16b7d8fbf2c740e0d-Abstract.

html.

Du, S., Lee, J., Li, H., Wang, L., and Zhai, X. Gradient
descent finds global minima of deep neural networks.
In Chaudhuri, K. and Salakhutdinov, R. (eds.), Proceed-
ings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learn-
ing Research, pp. 1675–1685. PMLR, 09–15 Jun 2019a.
URL http://proceedings.mlr.press/v97/du19c.

html.

Du, S. S., Zhai, X., Poczos, B., and Singh, A. Gradient
descent provably optimizes over-parameterized neural
networks. In International Conference on Learning Rep-
resentations, 2019b.

Geiger, M., Spigler, S., Jacot, A., and Wyart, M. Dis-
entangling feature and lazy training in deep neural net-
works. Journal of Statistical Mechanics: Theory and
Experiment, 2020(11):113301, nov 2020. doi: 10.1088/
1742-5468/abc4de. URL https://doi.org/10.1088/

1742-5468/abc4de.

Ghorbani, B., Mei, S., Misiakiewicz, T., and Monta-
nari, A. Limitations of lazy training of two-layers
neural network. In Advances in Neural Informa-
tion Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pp. 9108–9118, 2019a. URL https:

//proceedings.neurips.cc/paper/2019/hash/

http://arxiv.org/abs/2001.02992
https://proceedings.neurips.cc/paper/2020/hash/e7e8f8e5982b3298c8addedf6811d500-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e7e8f8e5982b3298c8addedf6811d500-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e7e8f8e5982b3298c8addedf6811d500-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e7e8f8e5982b3298c8addedf6811d500-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/5857d68cd9280bc98d079fa912fd6740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/5857d68cd9280bc98d079fa912fd6740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/5857d68cd9280bc98d079fa912fd6740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/5857d68cd9280bc98d079fa912fd6740-Abstract.html
https://arxiv.org/abs/2001.04413
https://arxiv.org/abs/2001.04413
https://proceedings.neurips.cc/paper/2019/hash/62dad6e273d32235ae02b7d321578ee8-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/62dad6e273d32235ae02b7d321578ee8-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/62dad6e273d32235ae02b7d321578ee8-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/62dad6e273d32235ae02b7d321578ee8-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/dbc4d84bfcfe2284ba11beffb853a8c4-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/dbc4d84bfcfe2284ba11beffb853a8c4-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/dbc4d84bfcfe2284ba11beffb853a8c4-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/dbc4d84bfcfe2284ba11beffb853a8c4-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/eaae5e04a259d09af85c108fe4d7dd0c-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/eaae5e04a259d09af85c108fe4d7dd0c-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/eaae5e04a259d09af85c108fe4d7dd0c-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/eaae5e04a259d09af85c108fe4d7dd0c-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/abea47ba24142ed16b7d8fbf2c740e0d-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/abea47ba24142ed16b7d8fbf2c740e0d-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/abea47ba24142ed16b7d8fbf2c740e0d-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/abea47ba24142ed16b7d8fbf2c740e0d-Abstract.html
http://proceedings.mlr.press/v97/du19c.html
http://proceedings.mlr.press/v97/du19c.html
https://doi.org/10.1088/1742-5468/abc4de
https://doi.org/10.1088/1742-5468/abc4de
https://proceedings.neurips.cc/paper/2019/hash/c133fb1bb634af68c5088f3438848bfd-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c133fb1bb634af68c5088f3438848bfd-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c133fb1bb634af68c5088f3438848bfd-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c133fb1bb634af68c5088f3438848bfd-Abstract.html

Quantifying the Benefit of Using Differentiable Learning over Tangent Kernels

c133fb1bb634af68c5088f3438848bfd-Abstract.

html.

Ghorbani, B., Mei, S., Misiakiewicz, T., and Montanari, A.
Linearized two-layers neural networks in high dimension.
arXiv, abs/1904.12191, 2019b. URL http://arxiv.

org/abs/1904.12191.

Ghorbani, B., Mei, S., Misiakiewicz, T., and Mon-
tanari, A. When do neural networks outperform
kernel methods? In Advances in Neural Informa-
tion Processing Systems, volume 33, pp. 14820–
14830. Curran Associates, Inc., 2020. URL https:

//proceedings.neurips.cc/paper/2020/file/

a9df2255ad642b923d95503b9a7958d8-Paper.pdf.

Jacot, A., Hongler, C., and Gabriel, F. Neural tangent kernel:
Convergence and generalization in neural networks. In
Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing
Systems 2018, NeurIPS 2018, December 3-8, 2018,
Montréal, Canada, pp. 8580–8589, 2018. URL https:

//proceedings.neurips.cc/paper/2018/hash/

5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.

html.

Kamath, P., Montasser, O., and Srebro, N. Approximate is
good enough: Probabilistic variants of dimensional and
margin complexity. In Conference on Learning Theory,
COLT 2020, 9-12 July 2020, Virtual Event [Graz, Aus-
tria], volume 125 of Proceedings of Machine Learning
Research, pp. 2236–2262. PMLR, 2020. URL http://

proceedings.mlr.press/v125/kamath20b.html.

Lee, J., Xiao, L., Schoenholz, S. S., Bahri, Y., Novak, R.,
Sohl-Dickstein, J., and Pennington, J. Wide neural net-
works of any depth evolve as linear models under gradient
descent. In Wallach, H. M., Larochelle, H., Beygelzimer,
A., d’Alché-Buc, F., Fox, E. B., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019, Van-
couver, BC, Canada, pp. 8570–8581, 2019. URL https:

//proceedings.neurips.cc/paper/2019/hash/

0d1a9651497a38d8b1c3871c84528bd4-Abstract.

html.

Li, Y. and Liang, Y. Learning overparameterized neural net-
works via stochastic gradient descent on structured data.
In Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc., 2018. URL https:

//proceedings.neurips.cc/paper/2018/file/

54fe976ba170c19ebae453679b362263-Paper.pdf.

Li, Y., Ma, T., and Zhang, H. R. Learning over-parametrized
two-layer neural networks beyond NTK. In Conference

on Learning Theory, COLT 2020, 9-12 July 2020, Vir-
tual Event [Graz, Austria], volume 125 of Proceedings
of Machine Learning Research, pp. 2613–2682. PMLR,
2020. URL http://proceedings.mlr.press/v125/

li20a.html.

Mei, S., Bai, Y., and Montanari, A. The landscape of empir-
ical risk for nonconvex losses. The Annals of Statistics,
46(6A):2747 – 2774, 2018. doi: 10.1214/17-AOS1637.
URL https://doi.org/10.1214/17-AOS1637.

Schölkopf, B. and Smola, A. J. Learning with Kernels:
support vector machines, regularization, optimization,
and beyond. Adaptive computation and machine learning
series. MIT Press, 2002. ISBN 9780262194754. URL
https://www.worldcat.org/oclc/48970254.

Soltanolkotabi, M. Learning relus via gradient descent.
In Advances in Neural Information Processing Sys-
tems 30: Annual Conference on Neural Information
Processing Systems 2017, December 4-9, 2017, Long
Beach, CA, USA, pp. 2007–2017, 2017. URL https:

//proceedings.neurips.cc/paper/2017/hash/

e034fb6b66aacc1d48f445ddfb08da98-Abstract.

html.

Vardi, G., Yehudai, G., and Shamir, O. Learning a single
neuron with bias using gradient descent, 2021. URL
https://arxiv.org/abs/2106.01101.

Woodworth, B. E., Gunasekar, S., Lee, J. D., Moroshko, E.,
Savarese, P., Golan, I., Soudry, D., and Srebro, N. Kernel
and rich regimes in overparametrized models. In Confer-
ence on Learning Theory, COLT 2020, 9-12 July 2020,
Virtual Event [Graz, Austria], volume 125 of Proceedings
of Machine Learning Research, pp. 3635–3673. PMLR,
2020. URL http://proceedings.mlr.press/v125/

woodworth20a.html.

Yehudai, G. and Shamir, O. On the power and limitations
of random features for understanding neural networks.
In Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Process-
ing Systems 2019, NeurIPS 2019, 8-14 December 2019,
Vancouver, BC, Canada, pp. 6594–6604, 2019.

Zou, D., Cao, Y., Zhou, D., and Gu, Q. Gradient de-
scent optimizes over-parameterized deep relu networks.
Mach. Learn., 109(3):467–492, 2020. doi: 10.1007/
s10994-019-05839-6. URL https://doi.org/10.

1007/s10994-019-05839-6.

https://proceedings.neurips.cc/paper/2019/hash/c133fb1bb634af68c5088f3438848bfd-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c133fb1bb634af68c5088f3438848bfd-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c133fb1bb634af68c5088f3438848bfd-Abstract.html
http://arxiv.org/abs/1904.12191
http://arxiv.org/abs/1904.12191
https://proceedings.neurips.cc/paper/2020/file/a9df2255ad642b923d95503b9a7958d8-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/a9df2255ad642b923d95503b9a7958d8-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/a9df2255ad642b923d95503b9a7958d8-Paper.pdf
https://proceedings.neurips.cc/paper/2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html
http://proceedings.mlr.press/v125/kamath20b.html
http://proceedings.mlr.press/v125/kamath20b.html
https://proceedings.neurips.cc/paper/2019/hash/0d1a9651497a38d8b1c3871c84528bd4-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/0d1a9651497a38d8b1c3871c84528bd4-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/0d1a9651497a38d8b1c3871c84528bd4-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/0d1a9651497a38d8b1c3871c84528bd4-Abstract.html
https://proceedings.neurips.cc/paper/2018/file/54fe976ba170c19ebae453679b362263-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/54fe976ba170c19ebae453679b362263-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/54fe976ba170c19ebae453679b362263-Paper.pdf
http://proceedings.mlr.press/v125/li20a.html
http://proceedings.mlr.press/v125/li20a.html
https://doi.org/10.1214/17-AOS1637
https://www.worldcat.org/oclc/48970254
https://proceedings.neurips.cc/paper/2017/hash/e034fb6b66aacc1d48f445ddfb08da98-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/e034fb6b66aacc1d48f445ddfb08da98-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/e034fb6b66aacc1d48f445ddfb08da98-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/e034fb6b66aacc1d48f445ddfb08da98-Abstract.html
https://arxiv.org/abs/2106.01101
http://proceedings.mlr.press/v125/woodworth20a.html
http://proceedings.mlr.press/v125/woodworth20a.html
https://doi.org/10.1007/s10994-019-05839-6
https://doi.org/10.1007/s10994-019-05839-6

