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Abstract
Reinforcement learning (RL) is empirically suc-
cessful in complex nonlinear Markov decision
processes (MDPs) with continuous state spaces.
By contrast, the majority of theoretical RL liter-
ature requires the MDP to satisfy some form of
linear structure, in order to guarantee sample effi-
cient RL. Such efforts typically assume the transi-
tion dynamics or value function of the MDP are
described by linear functions of the state features.
To resolve this discrepancy between theory and
practice, we introduce the Effective Planning Win-
dow (EPW) condition, a structural condition on
MDPs that makes no linearity assumptions. We
demonstrate that the EPW condition permits sam-
ple efficient RL, by providing an algorithm which
provably solves MDPs satisfying this condition.
Our algorithm requires minimal assumptions on
the policy class, which can include multi-layer
neural networks with nonlinear activation func-
tions. Notably, the EPW condition is directly mo-
tivated by popular gaming benchmarks, and we
show that many classic Atari games satisfy this
condition. We additionally show the necessity
of conditions like EPW, by demonstrating that
simple MDPs with slight nonlinearities cannot be
solved sample efficiently.

1. Introduction
Over the past decade, reinforcement learning (RL) has
emerged as the dominant paradigm for sequential decision
making in modern machine learning. During this time pe-
riod, video games have served as popular means to bench-
mark the incremental improvement in state of the art RL.
The Arcade Learning Environment (ALE), comprising a
suite of classic Atari games, is an archetypical example of
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such a benchmark (Bellemare et al., 2013). Agents trained
by RL efficiently learn to surpass human level performance
in such games (Mnih et al., 2013; 2015; Badia et al., 2020).

Motivated by these empirical accomplishments, there has
been a major thrust to theoretically characterize the condi-
tions which permit sample efficient RL. A significant line of
work has greatly advanced our understanding of the tabular
RL setting, where the number of states is finite and rela-
tively small (Simchowitz & Jamieson, 2019; Pananjady &
Wainwright, 2021). Sample efficiency bounds in this setting
scale with cardinality of the state space. However, in prac-
tice this cardinality is often large or infinite. For instance,
many gaming applications of RL, ranging in complexity
from Atari to Dota, all have continuous state spaces (Berner
et al., 2019). These scenarios are handled in the function
approximation setting (Du et al., 2019c; 2020a). Here, each
state is associated with a known feature, and one desires a
sample efficiency bound that scales with the dimensionality
of the features (instead of the cardinality of the state space).

To understand when continuous space RL is sample efficient,
theoreticians make certain assumptions on the features or the
underlying Markov Decision Process (MDP). A prominent
assumption, which has appeared in various forms, is that the
problem satisfies some sort of linear structure. For instance,
in the well studied linear MDP, the transitions and rewards
are described by linear functions of the features (Yang &
Wang, 2019; Jin et al., 2020; Yang & Wang, 2020; Wang
et al., 2021). In particular, the transition probabilities at
a state-action pair are defined by linear functions of the
feature corresponding to that state-action pair. A weaker, but
frequently occurring, form of this assumption is that value
function of any policy is nearly linear (Du et al., 2020a;
Lattimore et al., 2020), or that the optimal value function is
linear (Du et al., 2019c). Such linear structure is amenable
to theoretical analysis, since it permits analysts to leverage
the vast literature on supervised and online learning.

To obtain a holistic understanding of RL, examining such
linear structure is certainly important. Nevertheless, it is
unclear whether the aforementioned linearity conditions
actually hold in practical scenarios. We illustrate this via a
very simple example. Consider an MDP where there is a set
of n states with the property that taking any action at one of
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Figure 1. An image of the Atari Pong game. The green paddle must
move up and down to hit the ball (the white dot) while playing
against the opposing orange paddle.

these states leads to the same state. To cast this MDP in the
aforementioned linear MDP setting, the dimensionality of
the state features would have to scale linearly with n. This
precludes the existence of algorithms that can solve this
MDP with sample complexity independent of the cardinality
of the state space.

Moreover, it has recently been shown both theoretically
and empirically that the optimal value function and optimal
policy can be very complex, even in ostensibly elementary
continuous state space MDPs (Dong et al., 2020a). Since
even powerful linear functions such as the Neural Tangent
Kernel are significantly worse in terms of representation
power than nonlinear neural networks (Allen-Zhu & Li,
2019; Li et al., 2020), it is unclear whether such weaker lin-
ear functions can be used to approximate the value function
or the underlying policy well.

Even in simple RL gaming benchmarks, there is no evi-
dence that the aforementioned linearity assumptions hold.
Indeed, nonlinear neural networks are predominant means
to approximate policies and value functions when solving
these games in practice. For instance, consider the Pong
game from the ALE benchmark, which is depicted in Fig-
ure 1. In this game, the agent must use its paddle to prevent
the ball from crossing a boundary, while playing against a
pseudorandom opposing paddle. Despite the simplicity of
Pong, state of the art methods solve this game using neural
networks (Mnih et al., 2013; 2015; Badia et al., 2020), and
it is not apparent whether this game is linear in any sense.

This reveals a significant gap between the theory and prac-
tice of RL. In theory, one usually employs some sort of
linearity assumption to ensure efficient RL. Yet, in practice,
RL appears to succeed in domains which do not satisfy such
linear structure. In an effort to resolve this discrepancy, we
ask the following question:

Which structure is typical of popular RL domains, and
does this structure permit sample efficient RL?

This question underlies the analysis of our paper. We make
the following contributions:

• We propose the Effective Planning Window (EPW)
condition, a structural condition for MDPs which goes
beyond linearity. Indeed, this condition is compati-

ble with neural network policies, and MDPs satisfying
EPW can have highly nonlinear (stochastic) transitions.
Informally, this condition requires the agent to consis-
tently plan C timesteps ahead, for a value of C signifi-
cantly smaller than the horizon length. We show that
popular Atari benchmark games satisfy this condition.

• We provide a simple algorithm, which exploits the
EPW condition to provably solve MDPs satisfying
EPW. We prove the sample efficiency of our algorithm,
and show that it requires a number of trajectories that
is a lower order polynomial of the horizon length and
other relevant problem dependent quantities.

• We argue that one must look beyond linear structure,
and further motivate the study and necessity of con-
ditions like EPW, by demonstrating that even slightly
nonlinear MDPs cannot be solved sample efficiently.

2. Related Work
Linear Function Approximation. The majority of RL lit-
erature in the function approximation setting focuses on
MDPs that satisfy some form of linear structure. A no-
table example is the linear MDP, where the transitions and
rewards are described by linear functions of the state fea-
tures (Yang & Wang, 2019; Jin et al., 2020; Yang & Wang,
2020). A weaker form of this assumption is that the value
function for each policy is nearly linear (Du et al., 2020a;
Lattimore et al., 2020), or that the optimal value function is
linear (Du et al., 2019c; Weisz et al., 2021a;b). We note that
the algorithm of Weisz et al. (2021a) requires a generative
model, while we work in the standard episodic RL setting.
As argued earlier, such linear assumptions are unlikely to
hold true in practice. In our work, we eschew any sort of
linearity assumption.

Nonlinear Function Approximation. Empirically, it is
typical to use nonlinear function approximators such as neu-
ral networks (Schulman et al., 2015; Levine et al., 2016).
But from a theoretical perspective, the understanding of non-
linear function approximation is limited. There is prior work
which studies the sample complexity of RL when using func-
tion approximation with nonlinear function classes (Wen &
Van Roy, 2013; Jiang et al., 2017; Van Roy & Dong, 2019;
Dong et al., 2020b; Du et al., 2020b; Wang et al., 2020; Jin
et al., 2021; Wang et al., 2021). However, these works often
are restricted to MDPs with deterministic transitions (Wen &
Van Roy, 2013; Van Roy & Dong, 2019; Du et al., 2020b). In
this deterministic setting, an algorithm can repeatedly visit
the same state and simply memorize an optimal path. By
contrast, we focus on MDPs with stochastic transitions, as is
typical in many Atari games. Here, an algorithm generally
cannot visit the same state more than once, and must gener-
alize beyond the trajectories it samples to learn something
global. Moreoever, the aforementioned analyses of nonlin-



Sample Efficient RL In Continuous State Spaces: A Perspective Beyond Linearity

ear function approximation typically make some stringent
assumption on the complexity of the function class (Jiang
et al., 2017; Dong et al., 2020b; Wang et al., 2020; Jin et al.,
2021; Wang et al., 2021). Such complexity measures either
cannot or are not known to handle neural networks. By
contrast, our results can handle nonlinear multilayer neural
networks. In a different line of work, Dai et al. (2018) study
RL with nonlinear function approximators and provide a
convergent algorithm for this setting. However, they do not
precisely relate the quality of the solution found by their
algorithm to the approximation error of the function class.

Linear Quadratic Regulator. To characterize the sam-
ple complexity of RL in continuous state spaces, a differ-
ent line of work investigates the linear quadratic regulator
(LQR) (Fazel et al., 2018; Dean et al., 2019; Malik et al.,
2020). Here, the transition dynamics of the MDP are as-
sumed to be noisy linear functions of the state and action,
and the rewards are quadratic functions of the state and
action. We remark that in this setting, the action space is
continuous. By contrast, we exclusively study MDPs with
finite action spaces, since these are most typical in the RL
video game domains that motivate our paper.

3. Problem Formulation
3.1. Problem Statement

Notation & Preliminaries. We use the notation [n] to de-
note {0, 1 . . . n− 1} for any positive integer n. Recall that
an undiscounted, finite horizon MDPM = (S,A, T , R,H)
is defined by a set of states S, a set of actions A, a tran-
sition function T which maps from state-action pairs to a
probability density defined over states, a reward function
R which maps from state-action pairs to non-negative real
numbers, and a finite planning horizon H . Throughout our
paper, we assume that S ⊆ Rd and A is a finite set. We
assume a single initial state s0. Note that this is without
loss of generality, since we can always extend the horizon
to H + 1 where a single dummy initial state connects to an
arbitrary initial state distribution. For simplicity, we assume
that S can be partitioned intoH different levels. This means
that for each s ∈ S there exists a unique h ∈ [H] such
that it takes h timesteps to arrive at s from s0. We say that
such a state s lies on level h, and denote Sh to be the set
of states on level h. Note this assumption is without loss
of generality, and our results apply to generic MDPs which
cannot be partitioned into levels. This is because we can
always make the final coordinate of each state encode the
number of timesteps that elapsed to reach the state. Taking
any action from level H − 1 exits the game. The notation
‖x‖2 denotes the Euclidean norm of x.

A policy maps each state to a corresponding distribution
over actions. In practice, one typically uses a policy that is
parameterized by parameters belonging to some set Θ ⊆ Rk.

We study such policies, and use π(θ) to denote the policy
induced by using parameter θ ∈ Θ. When discussing a pol-
icy which is not parameterized, we simply use π to denote
the policy. We use πas (θ) to denote the probability of taking
action a at state s when using the policy π(θ). We use π(Θ)
to denote {π(θ) s.t. θ ∈ Θ}, which is the set of feasible poli-
cies and defines our policy class. Given a vector θ ∈ ΘH ,
we let π(θ) denote the policy which executes π(θh) at for
any state lying on level h ∈ [H], where θh denotes the hth

entry of θ. The value of a policy π(θ) in a (stochastic) MDP
M when initialized at state s is denoted V sM(π(θ)). It is

given by V sM(π(θ)) = E
[∑H−1

h=0 R(sh, ah)
]
, where the

expectation is over the trajectory {(sh, ah)}H−1
h=0 . Given an

accuracy ε and failure probability tolerance δ, the goal of
RL is to find a policy π(θ) which satisfies V s0M(π(θ)) ≥
maxθ′∈Θ V

s0
M(π(θ′))− ε with probability at least 1− δ.

Query Model. We adopt the standard episodic RL setup.
During each episode, an agent is allowed to interact with the
MDP by starting from s0, taking an action and to observe
the next state and reward, and repeating. The episode termi-
nates after the agent takes H actions, and the next episode
starts at s0. The agent thus takes a single trajectory in each
episode, and the total query complexity of the agent is mea-
sured by the total number of trajectories. Given a desired
solution accuracy ε and failure probability tolerance δ, we
are interested in algorithms which can successfully solve
an MDP using a number of trajectories that is at most poly-
nomial in H , |A|, d, k, 1

ε and 1
δ . If an algorithm provably

accomplishes this, we call such an algorithm sample effi-
cient or tractable. Notably, such algorithms cannot depend
on the (possibly uncountable) number of states.

Without any assumptions on the MDP, approximating an
optimal policy is intractable. To permit sample efficient RL,
prior theoretical work has often assumed that MDP satisfies
some form of linear structure. For instance, the transition
or value function might be described by a linear function
of the states. However, it is well documented that RL is
empirically successful in highly nonlinear domains (Schul-
man et al., 2015; Levine et al., 2016). We aim to reduce this
gap between theory and practice. We now formally state the
problem that we consider throughout our paper.

Our goal is to present nonlinear characteristic conditions
which permit sample efficient RL, and argue that these

conditions are satisfied in practice by popular RL domains.

3.2. Effective Planning Window Condition

We first state basic conditions that are satisfied by most RL
problems encountered in practice. We will later refine these
to obtain our Effective Planning Window (EPW) condition,
and then show that EPW enables sample efficient RL.

Let us begin by observing that in practice, the policy class
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Figure 2. An image of the Atari Skiing game. The skier must move
through flagged checkpoints.

π(Θ) typically satisfies some mild regularity assumptions.
We formalize this in the following condition.

Condition 1 (Regular Policy Class). A policy class π(Θ)
is said to be Regular when:

(a) Bounded Domain. There exists B > 0 such that each
θ ∈ Θ satisfies ‖θ‖2 ≤ B.

(b) Lipschitz Continuous Policies. There exists φ > 0
such that for any θ, θ′ ∈ Θ and any (s, a) ∈ S × A,
we have |πas (θ)− πas (θ′)| ≤ φ‖θ − θ′‖2.

We stress that this is a very mild condition, and places min-
imal restrictions on π(Θ). Indeed, a policy parameterized
by a multi-layer neural network with a nonlinear activation
function satisfies this condition (Fazlyab et al., 2019). Us-
ing this condition on the policy class, we now introduce the
following Generic Game condition. As we will discuss in
the sequel, many popular gaming RL benchmarks such as
Atari games satisfy this condition.

Condition 2 (Generic Game). An MDP and Regular pol-
icy class pair (M, π(Θ)) form a Generic Game if:

(a) Failure States. There is a set of failure states F ⊂ S,
and taking any action from a state in F exits the game.

(b) Complete Policy Class. There exists some θ? ∈ Θ such
that executing π(θ?) from s0 arrives at some state in
SH−1 \ F almost surely1. We define S? to be the set
of all states s ∈ S \ F such that executing π(θ?) from
s reaches SH−1 \ F almost surely. If a state lies in S?
we call it a safe state.

(c) Binary Rewards. For any state s ∈ SH−1 \F and any
a ∈ A, R(s, a) = 1. For any other state s and any
a ∈ A, R(s, a) = 0.

A few comments are in order. Note that F is essentially
used to describe states where the agent has lost the game.
Also, observe that in Generic Games, an optimal policy is
one that arrives at a non-failure state in level H − 1 almost
surely. Hence π(θ?) is indeed an optimal policy.

1The Generic Game condition can also be defined in the case
when this property of θ? holds true with probability exponentially
large in H , as would occur when using a softmax policy class. Our
results hold true when using this notion of a Generic Game. We
focus on the almost sure case to avoid complicating notation.

Let us now describe how popular Atari games can be cast as
Generic Games. Recall the famous Pong game depicted in
Figure 1, which is a part of the ALE benchmark (Bellemare
et al., 2013). In this game, an RL agent must learn to move
the paddle up and down to hit the ball and prevent it from
crossing its boundary. Note that in the context of RL, this
is a single player game, since the opposing paddle hits the
ball back according to a pre-specified stochastic decision
rule (which is not trained). The agent loses the game if the
ball crosses its own boundary, and wins the game if it hits
the ball past the opposing paddle. Another game in the ALE
benchmark is the Skiing game, depicted in Figure 2. Here,
the agent must move the skier through a series of randomly
appearing flagged checkpoints, which appear frequently
over a long time horizon. The skier receives a penalty each
time it misses a checkpoint.

We claim that an Atari game like Pong or Skiing, together
with a neural network policy class, satisfy the Generic Game
condition. The first two conditions of Generic Games are
easy to verify. Note that the states in Pong (resp. Skiing) are
images, so F includes any state where the ball has crossed
the agent’s boundary (resp. where the skier has missed a
prior checkpoint), since this corresponds to the agent failing
to complete the game. It is known that Atari can be solved
using a neural network policy (Mnih et al., 2015), so a policy
class parameterized by neural networks is complete.

To ensure that Pong and Skiing satisfy the third condition,
we need to design an appropriate binary reward function.
For Pong, this is handled by redefining F to include any
state s ∈ SH−1 where the ball has not crossed the opposing
paddle. Similarly for Skiing, this is done by ensuring F
includes any state where the skier has already missed a
checkpoint. Then one can simply assign a reward of 1 to any
state in SH−1\F , and 0 to all other states, as required by the
Generic Game condition. Hence, playing optimally in this
Generic Game framework ensures the ball has moved past
the opposing paddle, or the skier has made all checkpoints,
corresponding to winning the game.

The aforementioned reward design is an example of reward
shaping, which is unavoidable in RL and ubiquitous in prac-
tice (Hadfield-Menell et al., 2017). Nevertheless, we stress
that the reward function we described above is very similar
to the reward function that practitioners already use. Con-
cretely, in Pong one typically assigns a reward of 1 if the
ball has moved past the opposing paddle, a reward of −1 if
the ball has moved past the agent’s paddle, and a reward of 0
otherwise (Bellemare et al., 2013). And in Skiing, the skier
receives reward at the end of the game, in proportion to the
number of checkpoints it has cleared (Badia et al., 2020).
Our reward function thus requires no more effort to design
than the reward functions already in use, since they require
the same information, and these are identical in spirit.
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st′′ ∈ S? st−C ∈ S? st′ ∈ S \ (S? ∪ F) st ∈ S \ (S? ∪ F) st+1 ∈ F

Figure 3. Five states from the Pong game. Here we let t′′ < t− C < t′ < t, and the ball is progressively moving towards the lower right
corner. At timesteps t′, t, the paddle has not lost the game. However, it does not have enough time to react and reach the ball in time. At
timestep t+ 1 the game is over. At timesteps t′′, t− C, the paddle has enough time to react and reach the ball.

Beyond Pong and Skiing, other Atari games (and similarly
themed video games) can be cast in the Generic Game frame-
work. In Appendix A, we describe this reduction for the
Atari games Tennis & Journey Escape, and also for the more
complex gaming benchmark CoinRun (Cobbe et al., 2019).

We make one more remark about the binary reward structure
of Generic Games. There are many games which naturally
have a set of goal states, and these immediately can be de-
scribed as Generic Games. Examples include Pong, Tennis
and CoinRun (latter two are described in Appendix A). More
generally, however, EPW applies to many games which do
not naturally have a binary reward structure. As we dis-
cussed, Skiing can be cast in the EPW framework with
binary rewards, by ensuring that F includes any state where
the skier has missed a checkpoint. However, in certain sce-
narios, one may be satisfied with only collecting a large
fraction of the checkpoints in Skiiing, or more generally,
obtaining a large (but not perfect) score in games where
one continually collects small rewards. We emphasize that
such scenarios can be cast in our Generic Game framework.
For instance, in Skiing if checkpoints arrive roughly every
x timesteps, and we desire to give a reward of 1 for each
checkpoint collected, then we can design F to include any
state at timestep t where the agent has not collected Ω(t/x)
reward thus far. Similar reductions apply to other games
where one continually needs to collect a small amount of
reward at regular intervals.

Does the Generic Game condition permit sample efficient
RL? Unfortunately, there exist Generic Games where the
MDP is only slightly nonlinear, but even approximating an
optimal policy sample efficiently is impossible. We later
show this formally in Proposition 1. So we must further
restrict this class of games. In order to refine our notion of a
Generic Game, we first state a useful definition.

Definition 1 (x-Ancestor). Given a Generic Game
(M, π(Θ)), consider any h ∈ [H] and any state s′ ∈ Sh. A
state s ∈ S is an x-ancestor of s′, if s ∈ Smax{0,h−x} and
there exists some θ ∈ Θ such that following π(θ) from s
will reach s′ with nonzero probability.

We are now formally state our Effective Planning Win-
dow (EPW) condition, which refines our notion of Generic
Games. For the statement of the condition, recall our notion
of S?, which was defined in the Generic Game condition.

Condition 3 (Effective Planning Window). A Generic
Game (M, π(Θ)) satisfies the Effective Planning Window
condition with parameter C if there exists C ∈ [H] such
that the following holds. Consider any s′ ∈ S \ F . If s is a
C-ancestor of s′, then s ∈ S?.

Before examining RL benchmark games in the context of
this condition, a few comments about the condition itself
are in order. The quantity C ensures that any C-ancestor
of a non-failure state is a safe state. So if an agent is at
timestep t and the game is not over, then at timestep t−C it
was in a state from where it could have achieved the highest
reward possible in the MDP (if it took the correct sequence
of actions). For the purposes of RL, this effectively means
that at each timestep, the agent must consistently plan over
the next C timesteps instead of the entire horizon length
H . When C is small or a constant, then it is reasonable to
believe that sample efficient RL is possible.

Of course, any Generic Game satisfies the EPW condition
for a choice of C = H − 1. However, many popular RL
benchmark games satisfy the EPW property with a value of
C that is much smaller than H . Informally, the C quantity
is the amount of time required by the agent to successfully
react to scenarios in the game (without losing). Let us
understand this in the Pong and Skiing games.

In Pong, after the opposing paddle hits the ball, the agent
must react to the trajectory of the ball and adjust its position
accordingly to hit it. If it takes too long to react before it
starts adjusting its position, then it will be unable to reach
the ball in time. We depict this in Figure 3. More formally,
assume that at timestep t the paddle has not lost the game
and the ball is moving towards its boundary. At timestep t,
the ball may be too close to the boundary, and so the agent
will not not have enough time to move its paddle fast enough
in order to reach the ball in time. However, at timestep t−C
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st′′ ∈ S? st−C ∈ S? st′ ∈ S \ (S? ∪ F) st ∈ S \ (S? ∪ F) st+1 ∈ F

Figure 4. Five states from the Skiing game. Here we let t′′ < t − C < t′ < t, and the skier is progressively moving towards the
checkpoint. At timesteps t′, t, the skier has not lost. However, it does not have enough time to react and adjust its position to reach the
checkpoint in time. At timestep t+1 the game is over. At timesteps t′′, t−C, the skier has enough time to react and reach the checkpoint.

the ball is further away from the boundary, so the agent has
enough time to move its paddle appropriately in order to
react, reach the ball and hit it back. So at timestep t − C
the agent lies in a safe state in S?, since it has enough time
to adjust its paddle and hit the ball back, and hence play
optimally. Notably, if we let C ′ be the number of timesteps
it takes for the ball to traverse from one end of the board to
the other, then C ≤ C ′. Hence, when H is large and the
agent needs to control the paddle for many rounds, then C
is a constant independent of H .

Similarly, in the Skiing game, the skier must react to the
location of the oncoming checkpoint, and adjust its position
accordingly. Formally, assume at timestep t a checkpoint
is oncoming. In such a scenario, as depicted in Figure 4,
the skier might be too far from the checkpoint in order
to actually clear it (even if it moves directly towards the
checkpoint). However, at timestep t−C the skier has enough
time to adjust its position in order to clear the checkpoint.
Hence at timestep t − C, the skier is in a safe state in S?
since it can play optimally from this state. Again, if we
let C ′ be the number of timesteps it takes for a skier to
move from the left edge of the screen to the right edge,
then C ≤ C ′. Hence, when H is large and there are many
checkpoints to be cleared, then C is a constant independent
of H , as previously observed in Pong.

Beyond Pong and Skiing, other Atari games satisfy the EPW
condition, with a constant value of C. We demonstrate this
for the Atari games Tennis & Journey Escape in Appendix A.
In Appendix A we additionally show that more complex
games, such as CoinRun (Cobbe et al., 2019), also satisfy
EPW with a small value of C. We stress that EPW is orthog-
onal to linearity. Indeed, there are MDPs satisfying linearity
but not EPW, and vice versa. We conclude this section by
highlighting two important aspects of the EPW condition.

The Magnitude Of C. We treat C as a constant that is
independent of and much smaller than H . This is certainly
reasonable given our above discussion. So an algorithm
incurring O(|A|C) sample complexity is efficient. Further-
more, as we discuss later, there exist EPW games where
Ω(|A|C) sample complexity is necessary to solve the game.

The Challenge Of Solving EPW Games. We note that a
deterministic EPW game is straightforward to solve, since
an agent can just try each of the |A|C trajectories when it
is at level h, to discover which trajectories do not lead to
F . In such a case, an agent can simply memorize a good
path. However, when transitions are stochastic (as in Atari),
the agent cannot simply try each trajectory to memorize
one that does not lead to F . This is because in general
stochastic MDPs, a finite sample algorithm might only visit
any given state at most once. Instead, the algorithm must
learn and generalize beyond the trajectories it samples, to
learn something global about the MDP. Furthermore, we
emphasize that stochastic EPW games cannot be solved as
simply as just splitting the horizon H into H/C distinct
planning windows, and then solving these planning prob-
lems independently of each other. Instead, the key difficulty
is that the agent must consistently plan C timesteps ahead.
By this, we mean that just because an agent has arrived at a
non-failure state at time t, does not imply that at time t+ 1
it is guaranteed to avoid F . Indeed, if we execute a policy
and the resulting trajectory ends in a failure state after t
timesteps, then it is unclear at which of the prior timesteps
{t− C . . . t− 1} that we took an incorrect action. And we
cannot rollback to timestep t−C and rerun the same trajec-
tory to discover when we made a mistake. This complicates
the design of efficient algorithms for this setting.

4. Main Results
We now turn to our main results. Before diving into the
details, let us provide a brief overview for the results. Our
main contribution is an algorithm which sample efficiently
solves games satisfying the EPW condition. We prove the
efficiency of this algorithm and discuss the role of the EPW
condition in permitting sample efficient RL. We then further
motivate the study of conditions like EPW, as opposed to the
study of linear structure, by proving a lower bound which
shows that Generic Games with even slight nonlinearities
cannot be solved sample efficiently. With this outline in
mind, let us now formally present our main results.

Our primary contribution is an algorithm which exploits the
EPW condition to sample efficiently find an optimal policy.
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Algorithm 1
1: Inputs: MDPM, policy class π(Θ), sample size n
2: Initialize θ(0) = [θrand, θrand . . . θrand] ∈ ΘH−1

3: for t ∈ {0, 1 . . . H − 2} do
4: Sample n trajectories {τi}ni=1 ∼ π(θ(t)), where each trajectory τi = {(si,h, ai,h)}H−1

h=0

5: Define the loss function L̂t : Θ→ R as

L̂t(θ) = |A|C+1 ·

[
1

n

n∑
i=1

(
Isi,t+C+1∈F

C∏
j=0

π
ai,t+j
si,t+j (θ)

)]
(1)

6: Minimize L̂t over Θ to obtain
θ̂t ∈ argmin

θ∈Θ
L̂t(θ) (2)

7: Define θ(t+ 1) = [θ̂0, θ̂1 . . . , θ̂t−1, θ̂t, θrand, . . . , θrand]
8: end for
9: return θ(H − 1)

Our algorithm is defined in Algorithm 1. For this method,
recall our notation that for a vector θ ∈ ΘH , we let π(θ)
denote the policy which executes π(θh) at each h ∈ [H],
where θh denotes the hth entry of θ. We make the basic
assumption that there exists θrand ∈ Θ such that π(θrand)
maps each state to the uniform distribution over A.

In our main result Theorem 1, we bound the sample com-
plexity of Algorithm 1 and demonstrate that it efficiently
finds a near optimal policy for any EPW game. Before
stating the theorem, let us discuss Algorithm 1 and pro-
vide some intuition for this method. Recall that in Generic
Games, a near optimal policy avoids failure states with high
probability. The method initializes θ(0) to be the parameter
vector which induces a uniformly random policy regardless
of the state (Line 2). It then incrementally updates θ(t), in a
fashion that ensures π(θ(t)) avoids failure states with high
probability for each t′ ≤ t (Line 7). Ultimately it returns
the parameter vector θ(H − 1) (Line 9). More concretely,
at each timestep t in the inner loop, the algorithm samples n
trajectories from the policy π(θ(t)) that it has constructed
thus far (Line 4). Via these sampled trajectories it defines
the empirical loss L̂t, as shown in Eq. (1). Intuitively, L̂t
penalizes those parameters θ such that executing π(θ) over
timesteps {t, t+ 1 . . . t+ C} arrives at a failure state with
high probability. This intuition suggests that a minimizer θ̂t
of L̂t, as defined in Eq. (2), will assign low probability to
trajectories ending in a failure state when playing θ̂t. The
quantity θt then defines the t+ 1th entry of θ(t+ 1). Note
that θ(t+ 1) agrees with θ(t) in its first t entries.

The form of the loss L̂t suggests that one needs to know
the exact value of C to use Algorithm 1. We emphasize
that any upper bound C ′ ≥ C can be used in place of C in
the definition of L̂t. As discussed in Section 3.2, such an
upper bound is easy to find in gaming domains where we

expect the EPW condition to hold. For example, in Pong we
can play the game manually (in OpenAI Gym), and observe
the number of timesteps it takes the paddle to traverse its
side. This yields C ≤ 15, while 200 ≤ H . As to how this
affects the sample complexity of the method, one can simply
substitute C ′ for C in the bound provided in our main result
Theorem 1.

Before formally presenting Theorem 1, a remark on the
computational requirements of Algorithm 1 is imperative.
The method requires oracle access to a minimizer θ̂t of the
loss L̂t, which in turn is defined by the policy class π(Θ).
In our paper, we impose minimal assumptions on π(Θ).
Our motivation for this choice is that in practice, it is most
common to parameterize a policy via a multi-layer neural
network with nonlinear activation function. Beyond our ex-
tremely mild Regularity condition, is unclear which (if any)
desirable properties such a policy class satisfies. Hence, for
a worst case Regular policy class π(Θ), obtaining even an
approximation of θ̂t could be extremely computationally
intractable. Nevertheless, we stress that in both theory and
practice, stochastic gradient descent and its variants have
been shown to efficiently find global minima of loss func-
tions parameterized by neural networks (Li & Liang, 2018;
Allen-Zhu et al., 2019; Du et al., 2019b). Furthermore, as we
show in our proofs, the function L̂t is Lipschitz continuous
with a tolerable Lipschitz constant. Hence by Rademacher’s
Theorem, L̂t is differentiable almost everywhere, and it is
reasonable to minimize L̂t via the stochastic gradient type
methods that are popular for minimizing complex neural
network losses. We also remark that it is fairly common in
the RL literature to assume access to a computational oracle,
when studying sample complexity (Agarwal et al., 2014; Du
et al., 2019a; Agarwal et al., 2020a; Misra et al., 2020). We
now formally state Theorem 1, our main result.

Theorem 1. Fix error tolerance ε > 0 and failure proba-
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bility tolerance δ > 0. Given any (M, π(Θ)) satisfying the
EPW condition, and sample size

n =
4H2|A|2C+2

ε2

(
log

(
2H

δ

)
+k log

(
1 +

32H|A|C+1CφB

ε

))
,

Algorithm 1 outputs θ satisfying

V s0M(π(θ)) ≥ V s0M(π(θ?))− ε

with probability at least 1− δ.

A formal proof for the theorem is presented in Appendix B.
A few comments are in order. Note that Algorithm 1 sam-
ples n trajectories at each timestep in its inner loop. Recall
from the definition of our query model in Section 3.1, that
we measure the total sample complexity by the total number
of trajectories sampled. Hence, the total sample complex-
ity of Algorithm 1 scales as O(H

3|A|2C+2kC
ε2 ), where we

have discarded logarithmic factors. Observe that the total
sample complexity depends only logarithmically on the fail-
ure probability tolerance δ, the bound B on the Euclidean
norm of Θ and the Lipschitz constant φ of the policy. It
is also worth noting that the sample complexity has no ex-
plicit dependence on the dimension d of states. However,
it does depend linearly on the dimension k of the policy
parameter space Θ, and of course in general k will scale
with d. We note that in practical RL, one typically employs
a shallow neural net, with only two or three layers. k is
relatively small in this regime, in contrast to NLP or vision
tasks where models are much larger.

Observe that the sample complexity bound in Theorem 1
has an exponential dependence on C. Recall that in our
framework, as motivated at the end of Section 3.2, C is a
constant, so our algorithm is indeed efficient. Nevertheless,
we remark that as a direct corollary of the work of Du
et al. (2020a), this exponential dependence on C cannot be
improved by a better algorithm or sharper analysis.

More generally, in the context of existing literature, we
provide some intuition for why the EPW condition permits
efficient learning. A major issue that hinders sample effi-
cient RL, in both theory and practice, is that an agent must
plan over the entire horizon H . Roughly speaking, at each
timestep the agent can choose any of |A| actions, so the
total sample complexity required to plan over H timesteps
scales as Ω(|A|H). This is a recurrent theme in the RL liter-
ature, and various prior works have shown that even when
the MDP has some non-trivial structure, in the worst case
such a scaling is unavoidable (Du et al., 2020a; Malik et al.,
2021). Assuming that the MDP satisfies significant linear

structure, is one way to avoid this difficulty. By contrast, we
avoid this difficulty while making no linearity assumptions.
Instead, the EPW condition guarantees that an agent needs
only to plan overC timesteps. Hence we exchange the worst
case Ω(|A|H) scaling for the benign O(|A|2C+2) scaling.

We believe that the EPW condition (or other conditions that
are similar in spirit) is the correct condition for character-
izing when sample efficient RL is possible, at least in RL
domains like video games. By contrast, the linearity as-
sumptions which prominently appear in prior literature, in
addition to lacking clear empirical justification, are quite
brittle. To demonstrate this, we leverage prior work to show
the existence of Generic Games which have only slight non-
linearities, yet cannot be solved sample efficiently. Before
we state this lower bound, we recall two standard definitions.

Definition 2 (Optimal Value Function). The optimal
value function V ?M : S → R of an MDP M is defined
as V ?M(s) = V sM(π?), where π? is an optimal policy ofM.

Definition 3 (Softmax Linear Policy). For an MDPM, a
softmax linear policy π(θ) is parameterized by θ ∈ R|A|×d.
Letting θi denote the ith row of θ, the policy π(θ) satisfies

πais (θ) =
exp(sTθi)∑

aj∈A exp(sTθj)
.

We now demonstrate the existence of Generic Games, which
have only slight nonlinearities, where even approximating
an optimal policy in a sample efficient manner is impossible.
This result is heavily inspired by the recent work of Du et al.
(2020a), and we claim no technical novelty. Rather, the
purpose of this result in our setting, is to further motivate
the importance of studying conditions such as EPW, instead
of assuming that the MDP has linear structure.

Proposition 1. There exists a Generic Game (M, π(Θ)),
where d, k, φ,B are all at most polynomial inH andA, and
π(Θ) is the class of softmax linear policies, such that the
following holds. There exists an unknown neural network
f : Rd → R, where f is a linear combination of two ReLU
neurons, such that V ?M(s) = f(s) for all s ∈ S. Yet, any
algorithm requires Ω(min{|A|H , 2d}) trajectories to find,
with probability at least 3/4, a policy π satisfying

V s0M(π) ≥ V s0M(π(θ?))− 1/4.

We stress that the essence of this result follows from Du
et al. (2020a), and we only make small modifications to their
proof to fit it in our Generic Game setting. We nevertheless
provide a proof sketch in Appendix C. The result shows
the existence of MDPs for which a softmax linear policy
is optimal, and where the optimal value function can be
expressed as a neural network with only two ReLU neurons.
Despite only this slight nonlinearity, sample efficient RL
is impossible. Notice that in the statement of this result,
there is no dependency of π on θ. This is because we do not
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restrict the algorithm to only search over policies lying in
π(Θ). In particular, the policy π mentioned in the result can
be arbitrary, and does not have to lie in π(Θ).

Proposition 1 demonstrates that if the Generic Game is even
slightly nonlinear, as one would expect in practice, sample
efficient RL is impossible. So we must look beyond lin-
earity to obtain a realistic characterization of when sample
efficient RL is possible. Our EPW condition, which makes
no linearity assumptions, is one example of this.

5. Discussion
In this paper, we studied structural conditions which permit
sample efficient RL in continuous state spaces, with a focus
on conditions that are typical in popular RL domains such
as Atari games. We introduced the EPW condition, which
in contrast to prior work, makes no linearity assumptions
about the MDP structure. We provided an algorithm which
provably solves MDPs satisfying EPW. We analyzed the
sample complexity of this algorithm, and showed it requires
a number of trajectories that is a lower order polynomial
of the horizon length and other relevant problem dependent
quantities. We also showed that MDPs which have very
slight nonlinearities (but do not satisfy EPW) cannot be
solved sample efficiently. Our analysis thus highlights the
important need to look beyond linear structure, in order to
establish the sample efficiency of RL in popular domains.

A number of open questions remain. First, while our EPW
condition is directly motivated by RL gaming domains such
as Atari, it is unclear whether EPW is satisfied by other
RL application domains such as robotics. A natural direc-
tion for future work is to study these domains more closely,
and identify structure that permits sample efficient RL in
such domains. Second, recall that our algorithm requires
access to a particular computational oracle. As discussed,
we made this computational abstraction since we placed
minimal restrictions on the policy class, so in the worst case
obtaining such an oracle could be intractable. Nevertheless,
we suspect that when using a neural network policy class
with an appropriate architecture, one could approximate
this oracle efficiently. It would be interesting to precisely
characterize when this is possible. Third, it would be inter-
esting to see whether a variant of our theoretically justified
algorithm can be deployed in practice. Using our theoretical
insight to design a pragmatic method, with strong empirical
performance, is an important direction for future work.
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