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A. Theoretical Analysis

We first recap relevant important definitions as well as im-
portant lemmas. We then prove the three main theoretical
results for expected coverage improvement (ECI).

Fill distance is a standard measure of point diversity in the
quasi-Monte Carlo (Joy et al.,|1996)), experimental design
(Pronzato & Miiller, |2012)), and meshfree approximation
(Fasshauer & McCourt, [2015) communities:

Definition 1. (Fill Distance) Given a set of sample points
X, the fill distance is formally defined as the following:

FILL(X, S§) = sup min d(x;,x). (D)
xeSx;€X

In Euclidean space, FILL(X, S) is the radius of the largest
empty ball one can fit in S, and measures the spacing of
X in S. The smaller a set’s fill, the better distributed it is
within S.

There is a notion of minimal fill, in the following sense:

p= Juin FILL(X, S). ()

Low-discrepancy sequences and Latin hypercubes achieve
low fill in simple domains. However, computing the mini-
mal fill is generically NP-hard (Pronzato & Miiller} 2012).
Below, we list two key lemmas regarding fill distance.

Lemma 1. (Pronzato & Miiller, | 2012) Given a set S, let
the greedy solution to the minimal fill (Equation[2)) be the
algorithm that sequentially adds the point in S furthest
away from the closest point in X. The greedy solution to the
minimal fill achieves an approximation ratio of 2 i.e., the fill
of X is bounded above by 2p

Lemma 2. (Pronzato & Miiller, 2012) Let p(n) be the min-
imal fill for n points in a set S i.e., the solution to Equation
2 Then:

lim p(n) =0.
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In other words, as n grows infinitely large, the minimal fill
of n points in S decreases to zero.

Having established these key definitions and lemmas, we
now prove the main three theoretical results for ECI. For
all three, we assume that S is a set of m points, known a
priori. That means we focus only on covering S. We further
assume that all points lie in a metric space, and that there is a
distance function between u, v, v’ such that: i) d(u,v) = 0;
i) d(u,v) = d(v,u); iil) d(u,v) < d(u,v’) +d(v',v).

Theorem 1. If S is dense, ECI produces a dense sequence
of evaluation points in S.

Proof. This is a result of Theorem [3] and Lemma [2] By
Theorem [3] ECI produces a set of points bounded above
by 4p. As n grows to infinity, by Lemma [2] this upper
bound therefore goes to zero. This is equivalent to dense
sampling. O

Theorem 2. If we have a budget of one iteration left, then
EClI is one-step Bayes-optimal among all feasible policies.

Proof. By construction, ECI maximizes the improvement
in utility. It is therefore one-step Bayes-optimal among all
feasible policies. O

Theorem 3. For a fixed and known S, let p =
minx FILL(X,S). For any n, ECI produces a fill bounded
above by 4p. Furthermore, there exists a finite n* for which
ECI produces a 2-approximation ratio of p for all n > n*.

Proof. This proof is divided into two parts, devoted to the
first and second statements, respectively. We first prove
the first statement: For any n, ECI produces a fill bounded
above by 4p.

Let X* = {x}}_, be the optimal solution to Equation ()
i.e., the set of points that minimizes the fill distance. Let r
be ECI neighborhood radius. Let us assume that r» = 2p.

The optimal solution X* covers all points in S with balls of
radius p. This creates a partition of S into n groups, where
each u € S is mapped to its closest x;. Let X = {x;}I"
be the points selected by ECI. There are two cases:
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Case 1: Each x; gets mapped to a different optimal group
in X*. In this case, the ECI points cover all points in .S with
aradius r = 2p.

Case 2: At least two points x;, x; are mapped to the same
optimal group xj,. That means that there is an optimal
group x; that has no ECI point. This contradicts our earlier
selection of X through maximizing ECI; either x; or x; can
cover all points that xj, covers since r = 2p, and swapping
any point in x; by one of these two points would either
increase the coverage or would yield the same coverage but
with largest distance from the selected points.

To conclude this first part, we note that we can run the
greedy solution to the fill distance to get a good initial value
for r: 2p < r < 4p, which gives a final 4-approximation to
the optimal fill.

We now prove the second statement: Furthermore, there
exists a finite n* for which ECI produces a 2-approximation
ratio of p for all n > n*. ECl is designed to minimize the
volume coverage; thus, there will exist some n* for which
the ECI is zero for all points. When this occurs, we will
return to selecting the point furthest away from all obser-
vations. Specifically, we can say that ECI’s fill distance
is bounded above by 2p (from Lemma [T)) plus a penalty
e(n; n*) associated with the first n* samples. Asymptoti-
cally this approaches 2p as n increases, which gives us an
approximation ratio of 2. O

A.1. ECI Time Complexity

Computing a point-wise estimate of ECI is linear with
the number of metrics m. Indeed, this is more efficient
than hypervolume-based approaches, which scale super-
polynomially in m. Assuming we want to use /N samples to
estimate ECI, the complexity is O(mN max(c,n)), where
c is the cost of making predictions, and n is the number of
observations. For GP models, c is quadratic in n.

B. Additional Notes on the Pareto Frontier

To further demonstrate the shortcoming of relying only on
the Pareto efficient frontier in multiobjective design prob-
lems, we consider the following scenarios. In the first case,
consider the objective functions

f1(x) = exp(—0.5((x1 — 0.2)2 + (x5 — 0.5)?)),
f2(x) = exp(—0.5((x1 — 0.8)% + (x2 — 0.5)?)).

In the second case, consider the following objective func-
tions

f1(x) = exp(—=0.5((x1 — 0.2)% 4 4(x2 — 0.5)?)),
f2(x) = exp(—0.5((x1 — 0.8)% + 4(x2 — 0.5)%)).

Let us assume the thresholds 7 = (0.88, 0.88). If we try to
optimize (3) and (@) over the domain [0, 1], we can see that

3)

“4)

they have the same Pareto efficient frontier. However, the
satisfactory regions S in the parameter space are different.
We illustrate this difference in Figure[I] In practice, the
different satisfactory regions S yield very different interpre-
tations in the design parameters for the decision makers.
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Figure 1. Comparing Pareto efficient frontier and satisfactory re-
gions from equations (3) and (@). The top figure shows the respec-
tive S in the parameter space, the bottom shows the corresponding
region in the metric space. Both problems share the same Pareto
frontier (labeled in grey circles).

C. Derivation of EZ Policy

Here, we derive the EZ policy. First, we note the symmet-
ric property of mutual information, namely, MI(y;z) =
MI(z; y). We can express the mutual information quantities
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Let us look at MI(z; y) first. Given y, there is no uncertainty
in the binary variable z, thus H(z | y) = 0. This leaves
MI(z;y) = H(z). We should get the same conclusion
from M I(y; z) as well.

MI(y;z) = H(y) —E.[H(y | 2)]
=Hy)— Y, pz=i)Hylz=3j) ©)

j={0,1}

Let o« = =%, and let ¢(-) and ®(-) be the PDF and CDF
of a standard normal distribution respectively. Under the
noiseless assumption, we know that p(z = 0) = p(y >
7) =1 — ®(a). We can also derive H (y|z), where

H(y|z=0) = H(y) + In(1 - &(a)) + 2(10[—(25(;%0)’
H(ylz =1) = H(y) + In(®(e)) — §§§j§

Substituting these quantities back into Equation (), we can
finally conclude that:

MI(y;z) = =(1 = @(a)) In(1 = ®(a)) — B(a) In(P(a))
= H(z),

as expected. Since Z(x) is a Bernoulli random variable, the
maximum of the entropy of a Bernoulli random variable
is achieved when p(Z(z) = 1) = 0.5. This precisely
corresponds to the decision boundary of the S.

D. Experiment Setup

In this section, we detail the setup for all the numerical
experiments presented in the main text.

D.1. Modeling decisions and hyperparameters

Budget: For all REPROBLEM experiments, we set the budget
b to be b = min(100, 40d), where d is the number of input
dimension. We choose the budgets to be 160, 100, and 130
points for the additive manufacturing, EEG, and plasma
physics applications.

Initialization: Before selecting points, each strategy is
given the same list of 3d randomly selected initial points.
We run 20 repetitions for each function, changing the ini-
tial list of points on each repetition. The total number of
observations is 3d + b for each problem.

Rescaling: For the REPROBLEM, we rescale the input do-
main into [0, 1]%, and the output to be in the range of [0, 1].

Thresholds: For each problem, we choose the thresholds 7
so that the satisfactory region S is approximate 3 — 5% of
the domain X. The exception is the additive manufacturing
problem where we use thresholds defined by the original au-
thors. In other words, uniformly sampling from the domain
only has 3 — 5% chance of landing inside of S. We list the 7
before normalization for each problem in Section[D.2HD.5]

Surrogate models: For all experiments, we use indepen-
dent GPs to model each objective function. We assume
the GPs to have zero mean. Furthermore, we fix the hy-
perparameters of the GPs a priori for all the policies. We
randomly select 100 points from the domain and train the
GP hyperparameters by minimizing the negative marginal
log likelihood across 10 restarts. We use the SciPy SLSQP
optimizer to perform the hyperparameter optimization (Vir{
tanen et al., [2020).

Discretization: To facilitate the comparison between poli-
cies we discretize the input space with a pool of points. All
models are given the same pool of points and none of them
can select the same point multiple times. For the REPROB-
LEM we selected around 5000d points. For the additive,
EGG, and plasma application problems, we generate around
2500, 15000 and 10000 points, respectively.

Resolution parameter: We choose the r parameters a pri-
ori for each problem. Our selection is based on a brief
analysis of each problem. Specifically, we make sure that
each point has on average at least 4 neighbors on the above
mentioned pool of points. We list the r values after normal-
ization for each problem in subsequent sections

D.2. Multiobjective design problem suite

We adopt eight multiobjective engineering design problems
presented in the REPROBLEM suite (Tanabe & Ishibuchil
2020). We select all five two-metric problems; these prob-
lems are: four bar truss design, reinforced concrete beam
design, pressure vessel design, hatch cover design, and coil
compression spring design. We also select three three-metric
problems; these are: two bar truss design, welded beam
design, and disc brake design. We follow the numbering
convention from the source code. The r and T parameters
for each problem are shown in Table

D.3. Additive manufacturing

We use the uniform nanocone design problems presented
in [Haghanifar et al.| (2020) with the following parameter
settings (shown in Table[2). We impose the same linear con-
straints on the parameters: bottom diameter > top diameter,
and bottom diameter < maximum cone width. We consider
the thresholds to be Thormat = 0.3 and Toplique = 1.5.
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Figure 2. Median metric values across 20 repetitions for the additive manufacturing application. We plot the fill distance, number of
positive samples, hypervolume, and coverage recall respectively. Shaded region corresponds to values between lower and upper quartiles.
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Figure 3. Median metric values across 20 repetitions for the EEG application. We plot the fill distance, number of positive samples,
hypervolume, and coverage recall respectively. Shaded region corresponds to values between lower and upper quartiles.

Table 1. REPROBLEM description

Name r thresholds 7
RE21 0.08 (2000, 0.02)
RE22 0.04 (250, 125)
RE23 0.08 (20000, 50000)
RE24 0.01 (250, 10)
RE25 0.08 3,2
RE31 0.08 (80, 120, 150)
RE32 0.08 (10, 20, 5)
RE33 0.08 2,3,4)

D.4. EEG for brain activity reconstruction

The domain is simplified from a realistic brain geometry to
concentric spheres of size of 0.085 m, 0.092 m and 0.1 m
for the outer brain, skull and scalp radii, respectively. The
conductivities of the brain, skull and scalp are 0.33 S/m,
0.0125 S/m, 0.33 S/m, respectively. The 28 electrodes on
the scalp are placed approximately evenly distributed (se-

lected from a spiral spherical point selection (Saff & Kui
1997)) on the top half of the head and above the

plane at a 45 degree angle above the nose. The reference
point, at which zero potential is defined, was chosen to be

Table 2. Additive manufacturing design parameters

Design Parameters Bounds (nm)

Max cone width (pitch size) [1, 400]
Bottom diameter [1, 400]
Top diameter [1, 400]
Height [1, 800]

(0,0,0.1) m, though this choice was arbitrary and should
have no impact. To simplify the inverse problem, we con-
sider only a single dipole in the brain.

The method of fundamental solutions (MFS) was used to
simulate the scalp potential by coupling three solutions in
the brain, skull and scalp generated by a proposed dipole
during the iterative optimization process 2015).
The brain, skull and scalp boundaries are populated with
102, 114 and 134 collocations points, respectively, chosen
using the spiral strategy. MFS requires fictitious boundaries
on which to place source points (using the spiral strategy)
outside of the domain where the solution is considered;
we created these boundaries for each of the three regions
through inflation/deflation. For the coupled solution in the
brain, we inflated the brain boundary to a radius of 0.0961 m
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Figure 4. Median metric values across 20 repetitions for the plasma physics problem. We plot the fill distance, number of positive
samples, hypervolume, and coverage recall respectively. Shaded region corresponds to values between lower and upper quartiles.

and placed 40 source points on it. For the coupled solution
in the skull, we deflated the inner boundary to a radius of
0.0791 m and placed 40 source points on it; we also inflated
the outer boundary to 0.105 m and placed 45 source points
on it. For the coupled solution in the scalp, we deflated the
inner boundary to 0.0852 m and placed 45 source points
on it; we also inflated the outer boundary to 0.115 m and
placed 107 source points on it.

For the empirical study, we placed the dipole at
(0.0,-0.017,0.051) m, with moment (0.5,0.4,0.3) A-m.
We consider the thresholds to be 7 = (20,40) uV, ie.,
dipoles are considered satisfactory if the 25th percentile of
the 28 absolute difference values is less than 20 V' and
the 75th percentile is less than 100 x4 V. The optimization
domain was defined to be the direct sum of the ball of ra-
dius 0.085 m (for the dipole location) and the ball of radius
1 A-m(for the dipole moment). The sense of distance (as
needed for the fill distance and the resolution parameter) is
complicated for this problem, given the complicated domain.
Suggested dipoles are considered foo close for resolution
purposes if both the Euclidean distance between dipole lo-
cations is less than 0.02 and the Euclidean distance between
dipole moments is less than 0.25. The fill distance is the
sum of these two Euclidean distances.

D.5. Plasma physics

PyPlasmaOpt paramaterizes each coil as a curve in 3D Carte-
sian coordinates I'(0) = (x(0), y(0), z(6)), where each co-
ordinate admits the following Fourier expansion, e.g., in the
case of x:

Norder
z(f) = co + Z sg sin(k0) + cx, cos(k6).
k=1

For each coil, the parameters c; and s represent the search
space that we must search over. In our paper, we assume
that nyyqer = 1, which provides three parameters for each
of three dimensions, resulting in nine parameters total.

The search space of each parameter is given by [—0.1, 1],
and so our total search space is simply [—0.1, 1]°

We compute the objective function to be minimized by sim-
ulating the stellarator using the given coil shapes (which
solves a certain first order, nonlinear ordinary differential
equation). The resulting summary information from the
simulation is our objective f and contains three general
terms:

f(X) = Rmagnelic (X) + Rtransform(X) + Rshape (X)

The first term quantifies the quasi-symmetry of the magnetic
field —the smaller the first term, the more desirable the
resulting field. The second term locks the solution into a
target rotational transform. The third term penalizes overly
complex coils too impractical to manufacture in real life.

Our objective function is bounded below by zero and is
unbounded from above. We consider the threshold 7 = 10,
which represents a rather modest deviation from the minimal
value.

E. Complete Experiment Results

In this section we present all results for our experiments.
We show the mean and standard error for all problems in
Tables BH5] We also plot each metric as we gather more
observations for the application problems in Figures 2H4]

E.1. Coverage recall sensitivity

The metric coverage recall depends of the choice of pa-
rameter resolution r. During evaluation, we compute the
coverage of each sampled point considering a particular
choice of . In this section we investigate how the coverage
recall metric changes as we vary this parameter. Specifically
we will consider the additive manufacturing results.

First, we evaluate different values of r over the range of
[10,70], as a resolution parameter smaller than 10 nm is un-
realistic. We display these results on Figure[5] Notice that
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Figure 5. Marginalized recalls for r over [10, 70]. The top figure

shows the value after 60 samples; the bottom is at the termination.

We also label the » = 35 with dotted line; this is the r value known
a priori for ECI.

for small r values, greedy methods, e.g., ONE-S, tend to per-
form well. When r is small, to the point that it only counts
the coverage contribution of a single point, this metric con-
verges to the number of positive samples (normalized). For
large values of 7, all methods will recover perfect recall.

We also consider the marginalized recall for different distri-
bution of r over the range of [10, 70]. Figure[6] shows the
marginalized recall for  drawn from a uniform distribution
and a Beta(2.5, 3) distribution. We observe that ECI has
slightly lower marginalized recall than EISR and EZ, since it
is more exploratory than these two methods. Therefore, it
has much lower recall values when r is low, as we have just
shown in Figure 5]
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Figure 6. Marginal recall for r from uniform distribution (top) and
Beta(2.5, 3) distribution (bottom).
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Table 3. Application results, consisting of the mean and standard error over 20 independent trials. Best mean value in bold.

Function Methods Fill distance | # Positive 1 Coverage Recall Hypervolume 1
RND 108.22 £3.83 2240+ 0.92 0.42 +£0.01 7.94E-02 £+ 1.32E-03
ONE-S 211.86 £7.77 156.75 + 0.83 0.60 £ 0.00 8.77E-02 £ 3.95E-04
EZ 9237 £5.00 106.05 £ 0.66 0.89 + 0.01 8.52E-02 + 4.35E-04
glass-4d  STRADDLE  79.30 +1.42  21.10 £ 0.54 0.43 £0.01 7.78E-02 4+ 1.23E-03
BO 107.84 £8.38 121.95 £ 0.73 0.82 £0.00 9.07E-02 + 1.62E-04
EISR 102.01 £3.83 121.40 +0.76 0.98 £ 0.00 8.56E-02 + 2.83E-04
ECI 3492 +0.00 56.00 £0.47 1.00 £ 0.00 8.07E-02 +£ 3.65E-04
RND 0.38 + 0.01 4.40 £+ 0.50 0.58 £ 0.03 3.17E+02 + 3.40E+01
ONE-S 0.48 £0.02 31.20 £+ 6.32 0.50 £ 0.08 3.45E+02 + 5.55E+01
EZ 0.44 £0.02 17.95 +3.32 0.58 £0.08 3.45E+02 £ 5.11E+01
eeg STRADDLE  0.41 £ 0.01 2.00 £ 0.35 0.38 = 0.04 2.28E+02 + 3.78E+01
BO 0.52 +0.02 4.30 +0.90 0.35 £ 0.05 2.40E+02 + 4.03E+01
EISR 0.45 +£0.02 22.85+4.72 0.52 +£0.08 3.55E+02 + 5.57E+01
ECI 0.38 + 0.02 8.30 £ 0.87 0.79 £ 0.06 3.65E+02 + 3.38E+01
RND 1.02 £0.01 10.85 £ 0.85 0.19 £0.01 5.63E+00 + 2.59E-01
ONE-S 1.01 £0.01 12.80 £ 0.72 0.20 £ 0.01 5.88E+00 + 1.85E-01
EZ 1.07 £0.02 10.70 + 1.10 0.17 £ 0.01 5.48E+00 + 2.76E-01
plasma STRADDLE 1.07 £0.02 10.70 = 1.10 0.17 £0.01 5.48E+00 + 2.76E-01
BO 1.04 £0.01 12.60 &+ 0.77 0.15 £0.01 5.74E+00 + 1.82E-01
EISR 1.03 £ 0.01 10.55 £ 0.47 0.14 +£0.01 6.08E+00 + 2.41E-01
ECI 0.90 £ 0.01 31.25 £ 0.51 0.65 £+ 0.00 6.64E+00 + 8.00E-02

Table 4. REPROBLEM with three metrics, mean and standard error over 20 independent trials. Best mean in bold.

Function Methods Fill distance ||  # Positive T  Coverage Recall 1 Hypervolume 1
RND 0.21 £ 0.01 25.50 £1.02 0.69 £ 0.02 4.65E-05 + 1.81E-06
ONE-S 0.47 + 0.03 98.95 £+ 0.49 0.37 + 0.03 3.78E-05 £ 2.36E-06
EZ 0.17 £ 0.00 62.45 £ 0.67 0.73 £0.01 2.62E-05 £+ 2.85E-06
RE31 STRADDLE  0.18 £ 0.00 18.95 £ 0.72 0.51 £0.02 3.61E-05 £ 3.46E-06
BO 0.33 £0.01 14.95 £ 0.51 0.24 £ 0.01 5.90E-05 £+ 2.21E-07
EISR 0.17 £ 0.00 88.25 £ 0.41 0.57 £ 0.01 6.23E-05 + 8.39E-08
ECI 0.08 + 0.00 49.15 +£0.70 1.00 + 0.00 5.47E-05 £+ 7.82E-07
RND 0.39 £ 0.01 16.75 £ 0.70 0.12 + 0.00 6.60E-13 £+ 1.90E-14
ONE-S 0.66 £+ 0.02 82.20 £+ 1.53 0.10 £ 0.01 7.59E-13 £+ 7.80E-15
EZ 0.66 £+ 0.02 83.05 £ 144 0.11 £+ 0.01 7.74E-13 £ 1.09E-14
RE32 STRADDLE  0.36 £ 0.00 13.10 £ 0.61 0.05 £ 0.00 7.56E-13 + 1.94E-14
BO 0.63 + 0.02 7.40 + 0.58 0.03 + 0.00 6.45E-13 + 4.15E-14
EISR 0.59 +0.02 70.70 £ 2.68 0.09 + 0.01 7.30E-13 £+ 1.40E-14
ECI 0.57 £ 0.02 89.00 + 1.77 0.63 + 0.03 7.61E-13 £+ 8.11E-15
RND 0.34 £ 0.01 23.80 £ 1.01 0.14 £ 0.00 5.53E-05 £+ 1.28E-06
ONE-S 0.60 £0.03  101.55 £+ 0.35 0.18 £0.01 7.03E-05 £ 1.09E-06
EZ 0.26 + 0.01 34.05 £1.43 0.25 + 0.00 2.77E-05 £+ 2.05E-06
RE33 STRADDLE  0.35 £ 0.01 13.70 £ 0.54 0.10 £ 0.00 2.92E-05 £+ 2.05E-06
BO 0.42 £ 0.01 36.55 £ 0.72 0.11 £ 0.00 8.65E-05 + 4.73E-07
EISR 0.24 £0.00 100.05 £+ 0.42 0.23 £ 0.00 7.46E-05 £+ 5.77E-07
ECI 0.27 £0.00  100.95 £ 0.36 0.73 £+ 0.00 7.91E-05 £ 1.36E-07
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Table 5. REPROBLEM with two metrics, mean and standard error over 20 independent trials. Best mean in bold.

Function Methods Fill distance |  # Positive 1 Coverage Recall T Hypervolume 1
RND 0.35 + 0.01 14.05 £ 0.69 0.09 + 0.00 6.62E-03 + 3.06E-04
ONE-S 0.34 +£0.01 100.20 £ 0.25 0.45 4+ 0.00 1.04E-02 £+ 1.33E-04
EZ 0.23 +£0.00 52.20 £ 1.10 0.25 +£0.00 3.57E-03 £+ 3.15E-04
RE21 STRADDLE  0.28 £ 0.00 22.70 £ 0.61 0.09 £+ 0.00 3.59E-03 £ 3.04E-04
BO 0.47 +0.01 36.95 + 0.63 0.09 + 0.00 1.30E-02 + 7.57E-06
EISR 0.20 + 0.00 97.55 £0.22 0.18 + 0.00 8.18E-03 £ 1.85E-04
ECI 0.22+0.00  100.20 £ 0.25 0.69 + 0.00 9.05E-03 4+ 9.92E-05
RND 0.17 £ 0.00 26.75 £ 091 0.20 £ 0.01 5.80E-07 £+ 1.32E-08
ONE-S 0.36 +£0.02  32.00 £ 10.18 0.04 £ 0.01 2.61E-07 &+ 2.79E-08
EZ 0.33 +0.02 4.85+1.53 0.03 + 0.00 2.62E-07 4+ 2.72E-08
RE22 STRADDLE  0.21 £ 0.00 9.60 £ 0.47 0.06 + 0.00 2.42E-07 £+ 2.60E-08
BO 0.38 + 0.01 2.50 +0.34 0.02 + 0.00 2.31E-07 4+ 2.73E-08
EISR 0.20 £ 0.00 9.60 £ 0.43 0.05 £+ 0.00 3.49E-07 £ 2.01E-08
ECI 0.11 + 0.00 97.10 + 0.38 0.79 + 0.00 7.63E-07 + 3.82E-09
RND 0.40 4+ 0.01 21.20 + 0.85 0.15 +0.01 8.28E-04 + 1.81E-05
ONE-S 0.67+£0.02 101.35+0.33 0.09 + 0.01 9.55E-04 £+ 1.54E-05
EZ 0.26 + 0.01 65.30 + 1.12 0.31 £0.01 8.50E-04 £ 1.44E-05
RE23 STRADDLE  0.27 £ 0.00 25.95+0.79 0.14 £+ 0.00 8.14E-04 £ 2.14E-05
BO 0.47 £ 0.02 53.25+0.97 0.18 +0.00 1.00E-03 + 9.59E-07
EISR 0.30 + 0.01 96.95 £ 0.43 0.35 + 0.00 9.75E-04 4+ 5.45E-06
ECI 0.37 + 0.01 98.80 £ 0.38 0.82 + 0.00 9.00E-04 + 3.42E-06
RND 0.10 £ 0.01 12.90 + 0.96 0.26 £+ 0.02 6.09E-03 £+ 1.08E-04
ONE-S 0.07 £ 0.01 79.60 + 0.25 0.77 £ 0.01 7.19E-03 £ 3.25E-05
EZ 0.04 + 0.00 39.45 + 043 0.46 + 0.01 2.81E-03 + 3.78E-04
RE24 STRADDLE  0.04 £+ 0.00 44.45 + 1.04 0.58 4+ 0.01 4.91E-03 + 2.51E-04
BO 0.19 + 0.02 50.95 £ 1.68 0.19 + 0.01 7.67E-03 £ 3.65E-06
EISR 0.05 £ 0.00 76.95 + 0.21 0.69 £ 0.01 7.51E-03 4+ 4.23E-06
ECI 0.02 + 0.00 68.15 £ 0.36 1.00 £ 0.00 7.05E-03 4+ 2.85E-05
RND 0.24 + 0.01 11.40 £ 0.71 0.52 + 0.03 3.14E-09 + 1.06E-10
ONE-S 0.42 +0.02 98.20 + 0.53 0.42 +0.02 3.33E-09 £+ 1.62E-10
EZ 0.39 +0.01 98.00 £+ 0.47 0.57 + 0.04 3.64E-09 £ 1.09E-10
RE25 STRADDLE  0.17 £ 0.00 13.65 + 0.48 0.45 +£0.01 3.52E-09 £+ 4.97E-11
BO 0.24 +£0.01 40.80 + 0.49 0.75 £ 0.01 4.16E-09 + 4.57E-12
EISR 0.11 £+ 0.00 81.40 £+ 0.38 0.97 + 0.00 4.09E-09 + 1.57E-11
ECI 0.08 + 0.00 29.70 £ 0.65 1.00 £ 0.00 3.59E-09 + 3.43E-11
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