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Abstract
We consider model-free reinforcement learning
(RL) in non-stationary Markov decision processes.
Both the reward functions and the state transi-
tion functions are allowed to vary arbitrarily over
time as long as their cumulative variations do
not exceed certain variation budgets. We pro-
pose Restarted Q-Learning with Upper Confi-
dence Bounds (RestartQ-UCB), the first model-
free algorithm for non-stationary RL, and show
that it outperforms existing solutions in terms of
dynamic regret. Specifically, RestartQ-UCB with
Freedman-type bonus terms achieves a dynamic
regret bound of Õ(S

1
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1
3 ∆

1
3HT

2
3 ), where S and

A are the numbers of states and actions, respec-
tively, ∆ > 0 is the variation budget, H is the
number of time steps per episode, and T is the
total number of time steps. We further show
that our algorithm is nearly optimal by estab-
lishing an information-theoretical lower bound
of Ω(S

1
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1
3 ∆

1
3H

2
3T

2
3 ), the first lower bound in

non-stationary RL. Numerical experiments vali-
date the advantages of RestartQ-UCB in terms of
both cumulative rewards and computational effi-
ciency. We further demonstrate the power of our
results in the context of multi-agent RL, where
non-stationarity is a key challenge.

1. Introduction
Reinforcement learning (RL) focuses on the class of prob-
lems where an agent maximizes its cumulative reward
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through sequential interactions with an initially unknown
but fixed environment, usually modeled by a Markov De-
cision Process (MDP). In classical RL problems, the state
transition functions and the reward functions are assumed
to be time-invariant, i.e., stationary. However, station-
ary models cannot capture the time-varying environments
in a wide range of sequential decision-making problems,
such as online advertisement auctions (Cai et al., 2017; Lu
et al., 2019), dynamic pricing (Chawla et al., 2016; Mao
et al., 2018), traffic management (Chen et al., 2020), health-
care operations (Shortreed et al., 2011), and inventory con-
trol (Agrawal & Jia, 2019).

Among others, we want to highlight the connection between
non-stationary RL and multi-agent RL (Littman, 1994). In
multi-agent RL, a set of agents collaborate or compete by
taking actions in a shared environment. Consequently, each
agent is facing a non-stationary environment, especially
when the agents learn and update policies simultaneously,
as the actions of the other agents can alter the environment.
We discuss this connection in greater details in Section 7
and also provide more applications of non-stationary RL to
other important problems, such as sequential transfer and
multi-task RL, in Appendix A.

RL in a non-stationary MDP is highly non-trivial due to
the following challenges. First, similar to stationary RL,
the agent faces the exploration vs. exploitation dilemma:
it needs to explore the uncertain environment efficiently
while maximizing its rewards along the way. In Jaksch et al.
(2010), the authors proposed to leverage the “optimism in
the face of uncertain” principle to guide exploration. An-
other challenge, which is unique to non-stationary RL, is
the trade-off between remembering and forgetting. On the
one hand, since the underlying MDP varies over time, data
samples collected in prior interactions can become obsolete.
In fact, it has been shown that a standard stationary RL algo-
rithm might incur a linear regret if the non-stationarity is not
handled properly (Ortner et al., 2019). On the other hand,
the agent needs to extract a sufficient amount of information
from historical data to inform future decision-making.

To resolve the aforementioned challenges, Ortner et al.
(2019) and Cheung et al. (2020) have proposed algorithms
to guide learning in non-stationary MDPs. Although both
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Setting Algorithm Regret Model-free? Comment
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Table 1: Dynamic regret comparisons for RL in non-stationary MDPs. S and A are the numbers of states and actions, L is
the number of abrupt changes, D is the maximum diameter, H is the number of steps per episode, and T is the total number
of steps. Gray cells denote the results from this paper.

model-based and model-free algorithms have been proposed
for stationary RL, existing solutions for non-stationary RL
are often built upon model-based methods. Nevertheless, it
has been observed that model-based solutions often suffer
from the following shortcomings:

• Time- and space-inefficiency: Model-based methods are
in general more time- and space-consuming, and are less
compatible with the design of modern deep RL architec-
tures (Jin et al., 2018; Zhang et al., 2020).

• Inefficient exploration: In Cheung et al. (2020), an ex-
ample was given to show that under non-stationarity, the
estimated model can incorrectly indicate that transitioning
between states is very unlikely. This suggests that model-
based methods, which try to estimate the latent model, might
suffer “The Perils of Drift” (Cheung et al., 2020).

• Limited applicability: In an important application of
nonstationary RL — decentralized multi-agent RL, the
agents cannot observe the actions taken by the other agents.
This information structure precludes model-based methods,
as the explicit estimation of the state transition functions is
hardly possible without observing all the agents’ actions.

These observations have thus motivated us to turn our atten-
tion to model-free methods, which, instead of maintaining
estimates of the unknown underlying model, directly learn
the Q-values.

Main Contributions. In this paper, we focus on the prob-
lem of designing model-free algorithms with nearly-optimal
performances for non-stationary RL. Our contributions can
be summarized as follows:

1. We introduce an algorithm named Restarted Q-Learning
with Upper Confidence Bounds (RestartQ-UCB), which

is the first model-free algorithm in the general setting of
non-stationary RL. Our algorithm adopts a simple but
effective restarting strategy (Jaksch et al., 2010; Besbes
et al., 2014) that resets the memory of the agent accord-
ing to a calculated schedule. The restarting strategy
ensures that our algorithm only refers to the most up-
to-date experience for decision-making. RestartQ-UCB
also utilizes an extra optimism term (in addition to the
standard Hoeffding/Freedman-based bonus) for explo-
ration to counteract the non-stationarity of the MDP. This
additional bonus term, depending on the local variations
(i.e., the environmental variation in each restarting in-
terval), guarantees that our optimistic Q-value is still an
upper bound of the optimal Q?-value even when the en-
vironment changes. We further show that our algorithm
can easily remove the dependence on local variations,
an assumption commonly made in the literature (Ortner
et al., 2019; Zhou et al., 2020). Our analysis shows that
RestartQ-UCB achieves the lowest dynamic regret bound
when compared to existing works in the literature;

2. We conduct simulations showing that RestartQ-UCB
achieves highly competitive cumulative rewards against
a state-of-the-art solution (Zhou et al., 2020), while only
taking 0.18% of its computation time;

3. We establish the first lower bounds in non-stationary
RL, which suggest that our algorithm is optimal in all
parameter dependences except for an H

1
3 factor, where

H is the episode length;

4. To further showcase the flexibility and potential of non-
stationary RL, we illustrate how it can be utilized to
address the non-stationarity issue inherent in multi-agent
RL. Specifically, we show that RestartQ-UCB can be
readily applied to a multi-agent RL example against a
slowly-changing opponent (Radanovic et al., 2019; Lee
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et al., 2020). The setting we consider is a more practical
and general decentralized learning setting, which entails
model-free solutions.

Related Work. Dynamic regret of non-stationary RL has
been mostly studied using model-based solutions. Jaksch
et al. (2010) consider the setting where the MDP is allowed
to change abruptly for L times. A sliding window approach
is proposed in Gajane et al. (2018) under the same setting.
Ortner et al. (2019) generalize the previous setting by allow-
ing the MDP to vary either abruptly or gradually at every
step, subject to a total variation budget. Cheung et al. (2020)
consider the same setting and introduce a Bandit-over-RL
technique that adaptively tunes the algorithm without know-
ing the variation budget. In a setting most similar to ours,
Domingues et al. (2020) investigate non-stationary RL in
the episodic setting, and propose a kernel-based approach
when the state-action set forms a metric space. Their results
can be reduced to an Õ(SA
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lar case. Fei et al. (2020) assume stationary transitions and
adversarial full-information rewards, and their setting is not
directly comparable with ours. Two concurrent works Zhou
et al. (2020) and Touati & Vincent (2020) consider non-
stationary RL in linear MDPs, but their regret bounds,
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duced to the tabular RL setting, respectively, are less compet-
itive than ours. Interested readers are referred to Padakandla
(2020) for a comprehensive survey on RL in non-stationary
environments. Table 1 compares our regret bounds with
existing results that tackle similar settings as ours. It can be
seen that our result is the first one that achieves the optimal
dependence on S and A, and also establishes the tightest
dependence on H/D and T among existing solutions in the
literature, without relying on their assumptions.

Another related line of research studies online/adversarial
MDPs (Yu & Mannor, 2009; Neu et al., 2010; Arora et al.,
2012; Yadkori et al., 2013; Dick et al., 2014; Wang et al.,
2018; Lykouris et al., 2019; Jin et al., 2019), but they mostly
only allow variations in reward functions, and use the static
regret as a performance metric. In addition, RL with low
switching cost (Bai et al., 2019) also shares a similar spirit
as our restarting strategy since it also periodically forgets
previous experiences. However, such algorithms do not
address the non-stationarity of the environment, and their
dynamic regret in terms of the variation budget is unclear.

Non-stationarity has also been considered in bandit prob-
lems. Within different non-stationary multi-armed bandit
(MAB) settings, various methods have been proposed, in-
cluding decaying memory and sliding windows (Garivier &
Moulines, 2011; Keskin & Zeevi, 2017), as well as restart-
based strategies (Auer et al., 2002; Besbes et al., 2014; Alle-
siardo et al., 2017). These methods largely inspired later
research on non-stationary RL. A more recent line of work

developed methods that do not require prior knowledge of
the variation budget (Karnin & Anava, 2016; Cheung et al.,
2019a) or the number of abrupt changes (Auer et al., 2019).
Other related settings considered in the literature include
Markovian bandits (Tekin & Liu, 2010; Ma, 2018), non-
stationary contextual bandits (Luo et al., 2018; Chen et al.,
2019), linear bandits (Cheung et al., 2019b; Zhao et al.,
2020), continuous-armed bandits (Mao et al., 2020), and
bandits with slowly changing rewards (Besbes et al., 2019).

Outline. The rest of the paper is organized as follows: In
Section 2, we introduce the mathematical model of our prob-
lem and necessary preliminaries. In Section 3, we present
our RestartQ-UCB algorithm. A dynamic regret analysis of
RestartQ-UCB is provided in Section 4. In Section 5, we
establish information-theoretical lower bounds. Simulation
results are presented in Section 6. In Section 7, we discuss
the application of our method to multi-agent RL. Finally,
we conclude the paper in Section 8.

2. Preliminaries
Model: We consider an episodic RL setting where an agent
interacts with a non-stationary MDP for M episodes, with
each episode containing H steps. We use a pair of integers
(m,h) as a time index to denote the h-th step of the m-
th episode. The environment can be denoted by a tuple
(S,A, H, P, r), where S is the finite set of states with |S| =
S, A is the finite set of actions with |A| = A, H is the
number of steps in one episode, P = {Pmh }m∈[M ],h∈[H] is
the set of transition kernels, and r = {rmh }m∈[M ],h∈[H] is
the set of mean reward functions. Specifically, when the
agent takes action amh ∈ A in state smh ∈ S at the time
(m,h), it will receive a random reward Rmh (smh , a

m
h ) ∈

[0, 1] with expected value rmh (smh , a
m
h ), and the environment

transitions to a next state smh+1 following the distribution
Pmh (· | smh , amh ). It is worth emphasizing that the transition
kernel and the mean reward function depend both on m and
h, and hence the environment is non-stationary over time.
The episode ends when smH+1 is reached. We further denote
T = MH as the total number of steps.

A deterministic policy π : [M ]× [H]×S → A is a mapping
from the time index and state space to the action space, and
we let πmh (s) denote the action chosen in state s at time
(m,h). Define V m,πh : S → R to be the value function
under policy π at time (m,h), i.e.,

V m,πh (s)
def
= E

[
H∑

h′=h

rmh′ (sh′ , πmh′ (sh′)) | sh = s

]
,

where sh′+1 ∼ Pmh′ (· | sh′ , ah′). Accordingly, the state-
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action value function Qm,πh : S ×A → R is defined as:

Qm,πh (s, a)
def
= rmh (s, a)+

E

[
H∑

h′=h+1

rmh′ (sh′ , πmh′ (sh′)) | sh = s, ah = a

]

For simplicity of notation, we let Pmh Vh+1(s, a)
def
=

Es′∼Pmh (·|s,a) [Vh+1(s′)]. Then, the Bellman equation gives
V m,πh (s) = Qm,πh (s, πmh (s)) and Qm,πh (s, a) = (rmh +
Pmh V

m,π
h+1 )(s, a), and we also have V m,πH+1(s) = 0,∀s ∈ S

by definition. Since the state space, the action space,
and the length of each episode are all finite, there always
exists an optimal policy π? that gives the optimal value
V m,?h (s)

def
= V m,π

?

h (s) = supπ V
m,π
h (s),∀s ∈ S,m ∈

[M ], h ∈ [H]. From the Bellman optimality equation, we
have V m,?h (s) = maxa∈AQ

m,?
h (s, a), whereQm,?h (s, a)

def
=

(rmh + Pmh V
m,?
h+1 )(s, a), and V m,?H+1(s) = 0,∀s ∈ S.

Dynamic Regret: The agent aims to maximize the cumula-
tive expected reward over the entire M episodes, by adopt-
ing some policy π. We measure the optimality of the pol-
icy π in terms of its dynamic regret (Cheung et al., 2020;
Domingues et al., 2020), which compares the agent’s pol-
icy with the optimal policy of each individual episode in
hindsight:

R(π,M)
def
=

M∑
m=1

(
V m,?1 (sm1 )− V m,π1 (sm1 )

)
,

where the initial state sm1 of each episode is chosen by an
oblivious adversary (Zhang et al., 2020). Dynamic regret is
a stronger measure than the standard (static) regret, which
only considers the single policy that is optimal over all
episodes combined.

Variation: We measure the non-stationarity of the MDP
in terms of its variation in the mean reward function and
transition kernels:

∆r
def
=

M−1∑
m=1

H∑
h=1

sup
s,a
|rmh (s, a)− rm+1

h (s, a)|,

∆p
def
=

M−1∑
m=1

H∑
h=1

sup
s,a

∥∥Pmh (· | s, a)− Pm+1
h (· | s, a)

∥∥
1
,

where ‖·‖1 is the L1-norm. Note that our definition of
variation only imposes restrictions on the summation of non-
stationarity across two different episodes, and does not put
any restriction on the difference between two consecutive
steps in the same episode; that is, Pmh (· | s, a) and Pmh+1(· |
s, a) are allowed to be arbitrarily different. We further let
∆ = ∆r + ∆p, and assume ∆ > 0.

3. Algorithm: RestartQ-UCB
We present our algorithm Restarted Q-Learning with Ho-
effding Upper Confidence Bounds (RestartQ-UCB Hoeffd-
ing) in Algorithm 1. Replacing the Hoeffding term with a
Freedman-style one will lead to a tighter regret bound, but
the analysis is more involved. For clarity of presentation,
we defer the exposition of the Freedman-based algorithm to
Appendix E.

RestartQ-UCB breaks the M episodes into D epochs, with
each epoch containing K = dMD e episodes (except for the
last epoch which possibly has less than K episodes). The
optimal value of D (and hence K) will be specified later
in our analysis. RestartQ-UCB periodically restarts a Q-
learning algorithm with UCB exploration at the beginning
of each epoch, thereby addressing the non-stationarity of
the environment. For each d ∈ [D], define ∆

(d)
r to be the

local variation of the mean reward function within epoch d.
By definition, we have

∑D
d=1 ∆

(d)
r ≤ ∆r. Define the local

variation of transitions ∆
(d)
p analogously.

Since our algorithm essentially invokes the same procedure
for every epoch, in the following, we focus our analysis on
what happens inside one epoch only (and without loss of
generality, we focus on epoch 1, which contains episodes
1, 2, . . . ,K). At the end of our analysis, we will merge the
results across all epochs.

For each triple (s, a, h) ∈ S × A × [H], we divide the
visitations (within epoch 1) to the triple into multiple stages,
where the length of the stages increases exponentially at
a rate of (1 + 1

H ). Specifically, let e1 = H , and ei+1 =
b(1+ 1

H )eic, i ≥ 1 denote the lengths of the stages. Further,

let the partial sumsL def
= {
∑j
i=1 ei | j = 1, 2, 3, . . . } denote

the set of the ending times of the stages. We remark that the
stages are defined for each individual triple (s, a, h), and
for different triples the starting and ending times of their
stages do not necessarily align in time. Such a definition of
stages is mostly motivated by the design of the learning rate
αt = H+1

H+t in Jin et al. (2018). It ensures that only the last
O(1/H) fraction of samples is given non-negligible weights
when used to estimate the optimistic Qh(s, a) values, while
the first 1 − O(1/H) fraction is forgotten (Zhang et al.,
2020). We set ι def

= log
(

2
δ

)
, where δ is the failure probability.

Recall that the time index (k, h) represents the h-th step of
the k-th episode. At each step (k, h), we take the optimal
action with respect to the optimistic Qh(s, a) value (Line 6
in Algorithm 1), which is designed as an optimistic estimate
of the optimalQk,?h (s, a) value of the corresponding episode.
For each triple (s, a, h), we update the optimistic Qh(s, a)
value at the end of each stage, using samples only from this
latest stage that is about to end (Line 12 in Algorithm 1).
The optimism in Qh(s, a) comes from two bonus terms bkh
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Algorithm 1: RestartQ-UCB (Hoeffding)

1 for epoch d← 1 to D do
2 Initialize: Vh(s)← H − h+ 1, Qh(s, a)← H − h+ 1, Nh(s, a)← 0, Ňh(s, a)← 0,

řh(s, a)← 0, v̌h(s, a)← 0, for all (s, a, h) ∈ S ×A× [H];
3 for episode k ← (d− 1)K + 1 to min{dK,M} do
4 observe sk1 ;
5 for step h← 1 to H do
6 Take action akh ← arg maxaQh(skh, a), receive Rkh(skh, a

k
h), and observe skh+1;

7 řh(skh, a
k
h)← řh(skh, a

k
h) +Rkh(skh, a

k
h), v̌h(skh, a

k
h)← v̌h(skh, a

k
h) + Vh+1(skh+1);

8 Nh(skh, a
k
h)← Nh(skh, a

k
h) + 1, Ňh(skh, a

k
h)← Ňh(skh, a

k
h) + 1;

9 if Nh(skh, a
k
h) ∈ L then

10 // Reaching the end of the stage

11 bkh ←
√

H2

Ňh(skh,a
k
h)
ι+
√

1
Ňh(skh,a

k
h)
ι, b∆ ← ∆

(d)
r +H∆

(d)
p ;

12 Qh(skh, a
k
h)← min

{
Qh(skh, a

k
h),

řh(skh,a
k
h)

Ňh(skh,a
k
h)

+
v̌h(skh,a

k
h)

Ňh(skh,a
k
h)

+ bkh + 2b∆

}
; (∗)

13 Vh(skh)← maxaQh(skh, a);
14 Ňh(skh, a

k
h)← 0, řh(skh, a

k
h)← 0, v̌h(skh, a

k
h)← 0;

and b∆, where bkh is a standard Hoeffding-based optimism
that is commonly used in upper confidence bounds (Jin et al.,
2018; Zhang et al., 2020), and b∆ is the extra optimism that
we need to take into account the non-stationarity of the
environment. The definition of b∆ requires knowledge of
the local variation budget in each epoch, which is a rather
strong assumption in practice. However, we can further
show (later in Theorem 2) that if we simply replace Equation
(∗) in Algorithm 1 with the following update rule:

Qh(skh, a
k
h)← min

{
řh(skh, a

k
h)

Ňh(skh, a
k
h)

+
v̌h(skh, a

k
h)

Ňh(skh, a
k
h)

+ bkh, Qh(skh, a
k
h)

}
, (1)

then our algorithm can achieve the same regret bound with-
out the assumption on the local variation budget.

4. Analysis
In this section, we present our main result—a dynamic
regret analysis of the RestartQ-UCB algorithm. Our first
result on RestartQ-UCB with Hoeffding-style bonus terms
is summarized in the following theorem. Complete proofs
of its supporting lemmas are given in Appendix B.

Theorem 1. (Hoeffding) For T = Ω(SA∆H2), and for
any δ ∈ (0, 1), with probability at least 1−δ, the dynamic re-
gret of RestartQ-UCB with Hoeffding bonuses (Algorithm 1)
is bounded by Õ(S

1
3A

1
3 ∆

1
3H

5
3T

2
3 ), where Õ(·) hides poly-

logarithmic factors of T and 1/δ.

Our proof relies on the following technical lemma, stating
that for any triple (s, a, h), the difference of their optimal

Q-values at two different episodes 1 ≤ k1 < k2 ≤ K is
bounded by the variation of this epoch.

Lemma 1. For any triple (s, a, h) and any 1 ≤ k1 <

k2 ≤ K, it holds that |Qk1,?
h (s, a) − Qk2,?

h (s, a)| ≤
∆

(1)
r +H∆

(1)
p .

Let Qkh(s, a) denote the value of Qh(s, a) at the beginning
of the k-th episode in Algorithm 1. The following lemma
states that the optimisticQ-valueQkh(s, a) is an upper bound
of the optimal Q-value Qk,?h (s, a) with high probability.
Note that we only need to show that the event holds with
probability 1 − poly(K,H)δ, because we can replace δ
with δ/poly(K,H) in the end to get the desired high prob-
ability bound without affecting the polynomial part of the
regret bound.

Lemma 2. (Hoeffding) For δ ∈ (0, 1), with probability at
least 1− 2KHδ, it holds that Qk,?h (s, a) ≤ Qk+1

h (s, a) ≤
Qkh(s, a),∀(s, a, h, k) ∈ S ×A× [H]× [K].

Building upon Lemmas 1 and 2, a complete proof of Theo-
rem 1 is given in Appendix C. We remark that Algorithm 1
relies on the assumption that the local variations b∆ are
known a priori, which is a strong but commonly made as-
sumption in the literature on non-stationary RL (Ortner et al.,
2019; Zhou et al., 2020). To the best of our knowledge, exist-
ing restart-based solutions either crucially rely on this local
variation assumption (Ortner et al., 2019), or suffer a severe
regret degeneration after removing this assumption (Zhou
et al., 2020). Interestingly, in the following theorem, we
show that this assumption can be safely removed in our
approach without affecting the regret bound. The only mod-
ification to the algorithm is to replace the Q-value update
rule in Equation (∗) of Algorithm 1 with the new update
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rule in Equation (1).

Theorem 2. (Hoeffding, no local budgets) For T =
Ω(SA∆H2), and for any δ ∈ (0, 1), with probability at
least 1 − δ, the dynamic regret of RestartQ-UCB with
Hoeffding bonuses and no knowledge of local budgets is
bounded by Õ(S

1
3A

1
3 ∆

1
3H

5
3T

2
3 ), where Õ(·) hides poly-

logarithmic factors of T and 1/δ.

To understand why this simple modification works, notice
that in (∗) we are adding exactly the same value 2b∆ to
the upper confidence bounds of all (s, a) pairs in the same
epoch. Subtracting the same value from all optimistic Q-
values simultaneously should not change the choice of ac-
tions in future steps. The only difference is that the new
“optimistic” Qkh(s, a) values would no longer be strict up-
per bounds of the optimal Qk,?h (s, a) anymore, but only an
“upper bound” subject to some error term of the order b∆.
This further requires a slightly different analysis on how
this error term propagates over time, which is presented as
a variant of Lemma 2 as follows.

Lemma 3. (Hoeffding, no local budgets) Suppose that we
have no prior knowledge of the local variations and re-
place the update rule (∗) in Algorithm 1 with Equation (1).
For δ ∈ (0, 1), with probability at least 1 − 2KHδ, it
holds that Qk,?h (s, a)− 2(H − h+ 1)b∆ ≤ Qk+1

h (s, a) ≤
Qkh(s, a),∀(s, a, h, k) ∈ S ×A× [H]× [K].

Remark 1. The easy removal of the local budget assump-
tion is non-trivial in the design of the algorithm, and to
the best of our knowledge is absent in the non-stationary
RL literature with restarts. In fact, it has been shown in
a concurrent work (Zhou et al., 2020) that removing this
assumption could lead to a much worse regret bound (cf.
Corollary 2 and Corollary 3 therein).

Replacing the Hoeffding-based upper confidence bound
with a Freedman-style one will lead to a tighter regret bound,
summarized in Theorem 3 below. The proof of the theo-
rem follows a similar procedure as in the proof of Theo-
rem 1, and is given in Appendix F. It relies on a reference-
advantage decomposition technique for variance reduction
as coined in Zhang et al. (2020). The intuition is to first learn
a reference value function V ref that serves as a roughly accu-
rate estimate of the optimal value function V ?. The goal of
learning the optimal value function V ? = V ref +(V ∗−Vref)
can hence be decomposed into estimating two terms V ref

and V ∗ − Vref, each of which can be more accurately esti-
mated due to the reduced variance. For ease of exposition,
we proceed again with the assumption that the local vari-
ation budgets are known. The reader should bear in mind
that this assumption can be easily removed using a similar
technique as in Theorem 2.

Theorem 3. (Freedman) For T greater than some poly-
nomial of S,A,∆ and H , and for any δ ∈ (0, 1), with

probability at least 1− δ, the dynamic regret of RestartQ-
UCB with Freedman bonuses (presented in Algorithm 2) is
upper bounded by Õ(S

1
3A

1
3 ∆

1
3HT

2
3 ), where Õ(·) hides

poly-logarithmic factors.

5. Lower Bounds
In this section, we provide information-theoretical lower
bounds of the dynamic regret to characterize the fundamen-
tal limits of any algorithm in non-stationary RL.

Theorem 4. For any algorithm, there exists an episodic
non-stationary MDP such that the dynamic regret of the
algorithm is at least Ω(S

1
3A

1
3 ∆

1
3H

2
3T

2
3 ).

Proof sketch. The proof of our lower bound relies on the
construction of a “hard instance” of non-stationary MDPs.
The instance we construct is essentially an MDP with piece-
wise constant dynamics on each segment of the horizon, and
its dynamics experience an abrupt change at the beginning
of each new segment. Specifically, we divide the horizon T
into L segments1, where each segment has T0

def
=
⌊
T
L

⌋
steps

and contains M0
def
=
⌊
M
L

⌋
episodes. Within each segment,

the system dynamics of the MDP do not vary, and we con-
struct the dynamics for each segment in a way such that the
instance is a hard instance of stationary MDPs on its own.
The MDP within each segment is essentially similar to the
hard instances constructed in Osband & Van Roy (2016);
Jin et al. (2018). Between two consecutive segments, the
dynamics of the MDP change abruptly, and we let the dy-
namics vary in a way such that no information learned from
previous interactions with the MDP can be used in the new
segment. In this sense, the agent needs to learn a new hard
stationary MDP in each segment. Finally, optimizing the
value of L and the variation magnitude between consecutive
segments (subject to the constraints of the total variation
budget) leads to our lower bound.

A useful side result of our proof is the following lower bound
for non-stationary RL in the un-discounted setting, which is
the same setting as studied in Gajane et al. (2018), Ortner
et al. (2019) and Cheung et al. (2020).

Proposition 1. Consider a reinforcement learning problem
in un-discounted non-stationary MDPs with horizon length
T , total variation budget ∆, and maximum MDP diameter
D (Cheung et al., 2020). For any learning algorithm, there
exists a non-stationary MDP such that the dynamic regret
of the algorithm is at least Ω(S

1
3A

1
3 ∆

1
3D

2
3T

2
3 ).

1The definition of segments is irrelevant to, and should not be
confused with, the notion of epochs we previously defined.
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6. Simulations
In this section, we empirically evaluate RestartQ-UCB on
reinforcement learning tasks with various types of non-
stationarity. We compare RestartQ-UCB with three base-
line algorithms: LSVI-UCB-Restart (Zhou et al., 2020),
Q-Learning UCB, and Epsilon-Greedy (Watkins, 1989).
LSVI-UCB-Restart is a state-of-the-art non-stationary RL
algorithm that combines optimistic least-squares value itera-
tion with periodic restarts. Q-Learning UCB is simply our
RestartQ-UCB algorithm with no restart. It is a Q-learning
based algorithm that uses upper confidence bounds to guide
the exploration. Epsilon-Greedy is a restart-based algorithm
that uses an epsilon-greedy strategy for action selection.

We evaluate the cumulative rewards of the four algorithms
on a variant of a reinforcement learning task named Bidirec-
tional Diabolical Combination Lock (Agarwal et al., 2020;
Misra et al., 2020). This task is designed to be particu-
larly difficult for exploration. We introduce two types of
non-stationarity to the task, namely abrupt variations and
gradual variations. A detailed discussion on the task set-
tings as well as the configuration of the hyper-parameters is
deferred to Appendix I. The cumulative rewards of the four
algorithms in the abruptly-changing and gradually-changing
environments are shown in Figures 1(a) and 1(b), respec-
tively. All results are averaged over 30 runs.

As we can see, RestartQ-UCB outperforms Q-Learning
UCB and Epsilon-Greedy under both types of environment
variations. For the abruptly-changing environment as an
example, RestartQ-UCB achieves 1.36 and 2.52 times of
the cumulative rewards of Q-Learning UCB and Epsilon-
Greedy, respectively. This demonstrates the importance of
both addressing the environment variations (using restarts)
and actively exploring the environment (using UCB-based
bonus terms) in non-stationary RL. LSVI-UCB-Restart
nearly matches the performance of RestartQ-UCB, which is
unsurprising because both of them use the restarting strat-
egy and optimistic exploration. Nevertheless, LSVI-UCB-
Restart requires a higher time and space complexity. It
needs to store all the history information in one epoch and
solve a regularized least-squares minimization problem at
every time step. This is indeed evidenced by our simulation
results (shown in Figure 1(c)) that RestartQ-UCB only takes
0.18% of the computation time of LSVI-UCB-Restart.

Remark 2. The heavy computation in LSVI-UCB-Restart
mostly comes from the usage of a high-dimensional feature.
In our simulations, we followed Example 2.1 in Jin et al.
(2019) to convert a linear MDP algorithm to a tabular one,
which results in a feature dimension of d = S × A. This
is essentially the most efficient feature encoding when no
special structure is imposed on the tabular MDP. We believe
that designing low-dimensional features for specific MDP
instances can possibly reduce the computations for LSVI-

UCB-Restart by a large amount, and is an interesting future
direction for learning in linear MDPs per se.

7. Application to Multi-Agent RL
In this section, we discuss the application of our non-
stationary RL method to multi-agent RL in episodic stochas-
tic games (Shapley, 1953), which by nature leads to a non-
stationary RL problem from one-agent’s perspective.

7.1. Problem Setup

In general, an N -player episodic stochastic game is de-
fined by a tuple (N , H,S, {Ai}Ni=1, {ri}Ni=1, P ), where (1)
N = {1, 2, . . . , N} is the set of agents; (2) H ∈ N+ is
the number of time steps in each episode; (3) S is the fi-
nite state space; (4) Ai is the finite action space for agent
i ∈ N ; (5) rih : S × A → [0, 1] is the reward function at
step h ∈ [H] for agent i ∈ N , where A = ×Ni=1Ai; and
(6) Ph : S × A → ∆(S) is the transition kernel at step
h ∈ [H], where the next state depends on the current state
and the joint actions of all the agents. The game lasts for
M episodes, and we let T = MH be the total number of
time steps. At each time step (m,h), the agents observe the
state smh ∈ S , and take actions ai,mh ∈ Ai, i ∈ N simultane-
ously. We let amh = (a1,m

h , . . . , aN,mh ). Agent i receives a
reward with an expected value of rih(smh , a

m
h ), and the envi-

ronment transitions to the next state smh+1 ∼ Ph(·|smh , amh ).
For each agent i, a policy is a mapping from the time in-
dex and state space to (possibly a distribution over) the
action space. We denote the set of policies for agent i by
Πi = {πi : [M ] × [H] × S → ∆(Ai)}. The set of joint
policies are denoted by Π = ×Ni=1Πi. Each agent seeks to
find a policy that maximizes its own reward.

For notational convenience, we consider two-player games,
i.e., N = 2. We consider the problem where we can control
the policy of agent 1, while agent 2 is an opponent that
is adapting its own policy in an unknown way. Achieving
sublinear regret in the face of an arbitrarily changing op-
ponent is known to be computationally hard (Radanovic
et al., 2019). Therefore, existing works (Radanovic et al.,
2019; Lee et al., 2020) often focus on a setting where the
opponent is only “slowly changing” its policy over time.
One such example is when the opponent is using a relatively
stable learning algorithm. We also focus on the decentral-
ized setting2, where each agent cannot observe the actions
and rewards of the other agent. This is generally considered

2This setting has been studied under various names in the
literature, including individual learning (Leslie & Collins, 2005),
decentralized learning (Arslan & Yüksel, 2016), online agnostic
learning (Tian et al., 2020), and independent learning (Daskalakis
et al., 2020). It is also related to the broader category of teams and
games with decentralized information structure (Ho, 1980; Nayyar
et al., 2013a;b).
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(a) Abrupt variations

0 1000 2000 3000 4000 5000
Episodes

0

500

1000

1500

2000

2500

3000

3500

Cu
m

ul
at

iv
e 

Re
wa

rd
s

RestartQ-UCB
LSVI-UCB-Restart
Q-Learning UCB
Epsilon-Greedy

(b) Gradual variations

Algorithm Time per episode

RestartQ-UCB 0.102 ms

LSVI-UCB-Restart 57.65 ms

Q-Learning UCB 0.098 ms

Epsilon-Greedy 0.123 ms

(c) Time usage

Figure 1: Cumulative rewards of the four algorithms under (a) abrupt variations, and (b) gradual variations, respectively, as
well as their (c) time usage. Shaded areas denote the standard deviations of rewards. Note that RestartQ-UCB significantly
outperforms Q-Learning UCB and Epsilon-Greedy, and matches LSVI-UCB-Restart while being much more time-efficient.

to be a more practical multi-agent RL paradigm, and also
more challenging than those that we will compare with in
the literature (Radanovic et al., 2019; Lee et al., 2020).

A joint policy induces a probability measure on the sequence
of states and joint actions. For a joint policy π = (π1, π2) ∈
Π, and for each time step (m,h) ∈ [M ]× [H], state s ∈ S ,
we define the state value function for agent 1 as follows:

V m,πh (s)
def
= E

[
H∑

h′=h

r1
(
sh′ , π

1,m
h′ (sh′) , π2,m

h′ (sh′)
)
| sh = s

]
.

For a joint policy (π1, π2), we again evaluate the optimality
of agent 1’s policy π1 in terms of its dynamic regret, which
compares the agent’s policy with the optimal policy of each
individual episode in hindsight:

Rπ
2

(π1,M)
def
=

M∑
m=1

(
sup
π1?

V
m,(π1?,π2)
1 (sm1 )− V m,(π

1,π2)
1 (sm1 )

)
.

The initial state of each episode sm1 is again chosen by an
oblivious adversary.

7.2. Regret Against a Slowly-Changing Opponent

We model the slowly-changing behavior of agent 2 by re-
quiring it to have a low switching cost (Bai et al., 2019; Gao
et al., 2021). This is a standard notion in the literature to
measure the changing behavior of an RL algorithm. We
consider the following definition of the (local) switching
cost from Bai et al. (2019).
Definition 1. The switching cost between any pair of poli-
cies (π, π′) is the number of (h, s) pairs on which π and π′

act differently:

nswitch(π, π′)
def
= |{(h, s) ∈ [H]× S : πh(s) 6= π′h(s)}| .

For a policy trajectory (π1, . . . , πM ) across
M episodes3, its switching cost is defined as

3Here, the superscript of π denotes the index of an episode,
rather than the index of an agent.

Nswitch
def
=
∑M
m=1 nswitch(πm, πm+1).

Bai et al. (2019) develops a learning algorithm that achieves
a switching cost of O(SAH3 log T ), while Zhang et al.
(2020) improves the switching cost to O(SAH2 log T ). For
the sake of generality, we characterize the behavior of agent
2 by assuming that the switching cost of its policy trajectory
is upper bounded by O(T β) for some 0 < β < 1. Clearly,
the two state-of-the-art RL algorithms mentioned above
satisfy this upper bound. A direct application of RestartQ-
UCB leads to the following result for agent 1:
Theorem 5. Suppose that the switching cost of agent 2
satisfies Nswitch = O(T β) for 0 < β < 1. Let agent 1 run
the RestartQ-UCB (Hoeffding/Freedman) algorithm. For
T large enough, the dynamic regret of agent 1 is upper
bounded by Õ(T

β+2
3 ).

7.3. Learning Team-Optimality

Theorem 5 can be readily applied to learning team-optimal
policies in “smooth games”, which is the setting considered
in Radanovic et al. (2019). This corresponds to the setting
where a team of agents learn to collaborate. Before we
present our results, a few definitions are in order.
Definition 2. A stochastic game is called a stochastic team
(or simply a team) if there exists a reward function rh :
S ×A → [0, 1] such that rih = rh,∀i ∈ N , h ∈ [H].
Definition 3. A joint policy π? = (π1?, π2?) ∈ Π is called
team-optimal if

V
(π1?,π2?)
h (s) = sup

π1,π2

V
(π1,π2)
h (s),∀s ∈ S, h ∈ [H],

where V (π1,π2)
h (s)

def
= E[

∑H
h′=h rh′(sh′ , π1

h′ (sh′) , π2
h′(sh′)) |

sh = s] is the value function.

In a stochastic team, the agents share the same objective,
and aim to maximize the team accumulated reward. Team
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optimality is achieved when the joint policy of the agents
induces the highest possible accumulated reward.

Since we cannot control the behavior of agent 2, its be-
havior might be sub-optimal and drive us away from team-
optimality. To avoid such scenarios, we impose a structural
assumption that allows us to quantify the distance from
optimality. In particular, we assume that the team is (λ, µ)-
smooth, following the definition in Radanovic et al. (2019).

Definition 4. (Adapted from Definition 1 in Radanovic et al.
(2019)) A two-player stochastic team is (λ, µ)-smooth if
there exists a pair of policies (π1?, π2?) such that for every
policy pair (π1, π2) and every h ∈ [H], s ∈ S:

V
(π1?,π2?)
h (s) ≥ V (π1,π2)

h (s),

V
(π1?,π2)
h (s) ≥ λ · V (π1?,π2?)

h (s)− µ · V (π1,π2)(s).

The (λ, µ)-smoothness ensures that agent 2’s sub-optimal
behavior only has a bounded negative impact on the
joint value. Our definition of smoothness is adapted
from Radanovic et al. (2019), where the infinite-horizon
average-reward setting is considered. We adapt it to the
finite-horizon case. This notion of smoothness is motivated
by the definition of smooth games in Roughgarden (2009);
Syrgkanis et al. (2015), as stated in Radanovic et al. (2019).

Applying our RestartQ-UCB algorithm would lead to the
following theorem, which implies that the time-average
return of the agents converges to a λ

1+µ factor of the team-
optimal value as T grows. This is the same factor as has
been achieved in Radanovic et al. (2019).

Theorem 6. Let π2 denote the policy of agent 2, and sup-
pose that the switching cost of agent 2 satisfies Nswitch =
O(T β) for 0 < β < 1. Assume that the team problem is
(λ, µ)-smooth. Let agent 1 run the RestartQ-UCB algorithm,
and let π1 denote its induced policy. For T large enough,
the return of the algorithm is lower bounded by:

M∑
m=1

V
(π1,π2)
1 (sm1 )≥ λ

1 + µ

[
M∑
m=1

V
(π1?,π2?)
1 (sm1 )−Õ(T

β+2
3 )

]
.

Remark 3. (Comparison with Radanovic et al. (2019)
and Lee et al. (2020).) It might first appear to the
reader that our regret guarantee is weaker than the
bounds of O(Tmax{1− 3

7α,
1
4}) and O(Tmax{1− 3

2α,0}) given
in Radanovic et al. (2019) and Lee et al. (2020), respectively,
where α can be essentially translated4 to 1− β. However,
we would like to emphasize that our setting significantly
generalizes the other two works and is inherently more chal-
lenging due to the following facts: First, we are considering

4The other two works model the slowly-changing behavior of
agent 2 using the small “policy change magnitude” criterion. Our
setting is in this sense not completely comparable with theirs.

a learning problem where the transition and reward func-
tions are unknown; the other two works essentially consider
planning with a known MDP model. Second, we are us-
ing the more challenging dynamic regret as a measure of
optimality, while the other two use the static regret. Third,
we study decentralized learning, where each agent cannot
observe the actions and rewards of the other agent; the al-
gorithms proposed in the other two works critically rely on
the observation of the other agent’s policies.

Remark 4. (Significance of model-freeness.) Decentralized
multi-agent RL is generally only possible with model-free
approaches (see, e.g., Arslan & Yüksel (2016); Tian et al.
(2020); Daskalakis et al. (2020)); model-based methods
proceed by explicitly estimating the transition and reward
functions, which crucially relies on observing the other
agents’ actions. This further demonstrates the flexibility and
significance of model-free methods, when one addresses the
non-stationarity issues in multi-agent RL through the lens
of non-stationary RL.

8. Concluding Remarks
In this paper, we have considered model-free reinforce-
ment learning in non-stationary episodic MDPs. We
have proposed an algorithm named RestartQ-UCB that
adopts a simple restarting strategy. RestartQ-UCB with
Freedman-type bonus terms achieves a dynamic regret of
Õ(S

1
3A

1
3 ∆

1
3HT

2
3 ), which nearly matches the information-

theoretical lower bound Ω(S
1
3A

1
3 ∆

1
3H

2
3T

2
3 ). Numerical

experiments have validated the advantages of RestartQ-UCB
in terms of both cumulative rewards and computational ef-
ficiency. A multi-agent RL example has been considered
as an application to illustrate the power of our method. An
interesting future direction would be to close the Õ(H

1
3 )

factor gap between the upper and lower bounds that we have
established for the non-stationary RL problem. It would
also be interesting to explore if non-stationary RL can be
helpful in other multi-agent RL scenarios.
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Arslan, G. and Yüksel, S. Decentralized Q-learning for
stochastic teams and games. IEEE Transactions on Auto-
matic Control, 62(4):1545–1558, 2016.

Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. E.
The nonstochastic multiarmed bandit problem. SIAM
Journal on Computing, 32(1):48–77, 2002.

Auer, P., Gajane, P., and Ortner, R. Adaptively tracking the
best bandit arm with an unknown number of distribution
changes. In Conference on Learning Theory, pp. 138–158,
2019.

Azar, M. G., Osband, I., and Munos, R. Minimax regret
bounds for reinforcement learning. In International Con-
ference on Machine Learning, pp. 263–272, 2017.

Bai, Y., Xie, T., Jiang, N., and Wang, Y.-X. Provably effi-
cient Q-learning with low switching cost. In Advances in
Neural Information Processing Systems, pp. 8004–8013,
2019.

Besbes, O., Gur, Y., and Zeevi, A. Stochastic multi-armed-
bandit problem with non-stationary rewards. In Advances
in Neural Information Processing Systems, pp. 199–207,
2014.

Besbes, O., Gur, Y., and Zeevi, A. Optimal exploration–
exploitation in a multi-armed bandit problem with non-
stationary rewards. Stochastic Systems, 9(4):319–337,
2019.

Bowling, M. and Veloso, M. Rational and convergent learn-
ing in stochastic games. In International Joint Confer-
ence on Artificial Intelligence, volume 17, pp. 1021–1026.
Lawrence Erlbaum Associates Ltd, 2001.

Brunskill, E. and Li, L. Sample complexity of multi-task
reinforcement learning. In Uncertainty in Artificial Intel-
ligence, pp. 122, 2013.

Busoniu, L., Babuska, R., and De Schutter, B. A comprehen-
sive survey of multiagent reinforcement learning. IEEE
Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), 38(2):156–172, 2008.

Cai, H., Ren, K., Zhang, W., Malialis, K., Wang, J., Yu, Y.,
and Guo, D. Real-time bidding by reinforcement learning
in display advertising. In International Conference on
Web Search and Data Mining, pp. 661–670, 2017.

Chawla, S., Devanur, N. R., Karlin, A. R., and Sivan, B.
Simple pricing schemes for consumers with evolving val-
ues. In ACM-SIAM Symposium on Discrete Algorithms,
pp. 1476–1490, 2016.

Chen, C., Wei, H., Xu, N., Zheng, G., Yang, M., Xiong,
Y., Xu, K., and Li, Z. Toward a thousand lights: De-
centralized deep reinforcement learning for large-scale
traffic signal control. In AAAI Conference on Artificial
Intelligence, pp. 3414–3421, 2020.

Chen, Y., Lee, C.-W., Luo, H., and Wei, C.-Y. A new
algorithm for non-stationary contextual bandits: Ef-
ficient, optimal, and parameter-free. arXiv preprint
arXiv:1902.00980, 2019.

Cheung, W. C., Simchi-Levi, D., and Zhu, R. Hedging the
drift: Learning to optimize under non-stationarity. arXiv
preprint arXiv:1903.01461, 2019a.

Cheung, W. C., Simchi-Levi, D., and Zhu, R. Learning to
optimize under non-stationarity. In International Confer-
ence on Artificial Intelligence and Statistics, pp. 1079–
1087, 2019b.

Cheung, W. C., Simchi-Levi, D., and Zhu, R. Reinforce-
ment learning for non-stationary Markov decision pro-
cesses: The blessing of (more) optimism. arXiv preprint
arXiv:2006.14389, 2020.

Daskalakis, C., Foster, D. J., and Golowich, N. Independent
policy gradient methods for competitive reinforcement
learning. Advances in Neural Information Processing
Systems, 33, 2020.

Davis, T., Burch, N., and Bowling, M. Using response func-
tions to measure strategy strength. In AAAI Conference
on Artificial Intelligence, 2014.

Dick, T., Gyorgy, A., and Szepesvari, C. Online learning in
Markov decision processes with changing cost sequences.
In International Conference on Machine Learning, pp.
512–520, 2014.



Near-Optimal Model-Free Reinforcement Learning in Non-Stationary Episodic MDPs

Domingues, O. D., Ménard, P., Pirotta, M., Kaufmann, E.,
and Valko, M. A kernel-based approach to non-stationary
reinforcement learning in metric spaces. arXiv preprint
arXiv:2007.05078, 2020.

Fei, Y., Yang, Z., Wang, Z., and Xie, Q. Dynamic regret
of policy optimization in non-stationary environments.
arXiv preprint arXiv:2007.00148, 2020.

Freedman, D. A. On tail probabilities for martingales. The
Annals of Probability, pp. 100–118, 1975.

Gajane, P., Ortner, R., and Auer, P. A sliding-window
algorithm for Markov decision processes with arbitrar-
ily changing rewards and transitions. arXiv preprint
arXiv:1805.10066, 2018.

Gao, M., Xie, T., Du, S. S., and Yang, L. F. A provably effi-
cient algorithm for linear Markov decision process with
low switching cost. arXiv preprint arXiv:2101.00494,
2021.

Garivier, A. and Moulines, E. On upper-confidence bound
policies for switching bandit problems. In International
Conference on Algorithmic Learning Theory, pp. 174–
188, 2011.

Ho, Y.-C. Team decision theory and information structures.
Proceedings of the IEEE, 68(6):644–654, 1980.

Jaksch, T., Ortner, R., and Auer, P. Near-optimal regret
bounds for reinforcement learning. Journal of Machine
Learning Research, 11:1563–1600, 2010.

Jin, C., Allen-Zhu, Z., Bubeck, S., and Jordan, M. I. Is
Q-learning provably efficient? In Advances in Neural
Information Processing Systems, pp. 4863–4873, 2018.

Jin, C., Jin, T., Luo, H., Sra, S., and Yu, T. Learning
adversarial MDPs with bandit feedback and unknown
transition. arXiv preprint arXiv:1912.01192, 2019.

Kaplanis, C., Shanahan, M., and Clopath, C. Continual re-
inforcement learning with complex synapses. In Interna-
tional Conference on Machine Learning, pp. 2497–2506,
2018.

Karnin, Z. S. and Anava, O. Multi-armed bandits: Com-
peting with optimal sequences. In Advances in Neural
Information Processing Systems, pp. 199–207, 2016.

Keskin, N. B. and Zeevi, A. Chasing demand: Learning
and earning in a changing environment. Mathematics of
Operations Research, 42(2):277–307, 2017.

Lee, C.-W., Luo, H., Wei, C.-Y., and Zhang, M. Linear
last-iterate convergence for matrix games and stochas-
tic games. arXiv preprint arXiv:2006.09517v1, 2020.
Available at https://arxiv.org/pdf/2006.09517v1.pdf.

Leslie, D. S. and Collins, E. J. Individual Q-learning in
normal form games. SIAM Journal on Control and Opti-
mization, 44(2):495–514, 2005.

Littman, M. L. Markov games as a framework for multi-
agent reinforcement learning. In International Confer-
ence on Machine Learning, pp. 157–163. 1994.

Lu, J., Yang, C., Gao, X., Wang, L., Li, C., and Chen,
G. Reinforcement learning with sequential information
clustering in real-time bidding. In International Confer-
ence on Information and Knowledge Management, pp.
1633–1641, 2019.

Luo, H., Wei, C.-Y., Agarwal, A., and Langford, J. Ef-
ficient contextual bandits in non-stationary worlds. In
Conference On Learning Theory, pp. 1739–1776, 2018.

Lykouris, T., Simchowitz, M., Slivkins, A., and Sun, W.
Corruption robust exploration in episodic reinforcement
learning. arXiv preprint arXiv:1911.08689, 2019.

Ma, W. Improvements and generalizations of stochastic
knapsack and Markovian bandits approximation algo-
rithms. Mathematics of Operations Research, 43(3):789–
812, 2018.

Mao, W., Zheng, Z., Wu, F., and Chen, G. Online pricing for
revenue maximization with unknown time discounting
valuations. In International Joint Conference on Artificial
Intelligence, pp. 440–446, 2018.

Mao, W., Zhang, K., Xie, Q., and Başar, T. POLY-
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