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A. Supplementary Material
A.1. Proofs

Lemma 3.1. Given an hypothesis classH and a finite alphabet A : |A| ≥ 2, problems 3 and 4 have the same minimum
worst-group risk solution R∗ if ρ ≤ 1

|A| .

Proof. For any h ∈ H, let lh = `(h(X), Y ) be the random variable associated with the loss distribution of h induced by the
randomness of X,Y . Let ˆ̀

h,ρ = F−1
lh

(1− ρ) be the 100 ∗ (1− ρ)% percentile of lh, where F−1
lh

(α) = inf{l ∈ R : P (lh ≤
l) ≥ α} is the inverse cdf of lh. It is easy to observe that any distribution p(A | X,Y ), A ∈ A, that satisfies

p(A = a′ | X,Y ) =


1 if `(h(X), Y ) > ˆ̀

h,ρ,

α(X,Y ) ∈ [0, 1] if `(h(X), Y ) = ˆ̀
h,ρ,

0 if `(h(X), Y ) < ˆ̀
h,ρ,

p(A = a) ≥ ρ, ∀a ∈ A,
p(A = a′) = ρ, a′ ∈ A.

(10)

is a solution to
max

p(A|X,Y )
s.t. p(A) � ρ,

max
a∈A

ra(h),

attaining the maximum risk at ra′(h). Here α(X,Y ) ∈ [0, 1] is any tie-breaking assignment such that p(A = a′) = ρ
and p(A = a) ≥ ρ. That is, the worst-case partition greedily assigns A = a′ to all high loss samples until the budget
p(A = a′) = ρ is satisfied, the tie-breaker assignment α(X,Y ) simply indicates that for loss values exactly equal to ˆ̀

h,ρ,
we can make any assignment we wish to as long as p(A = a′) = ρ.

Furthermore, by applying the same reasoning as above, we observe that the simplified distribution p̂(A | X,Y ), A ∈
{0, 1}, p̂(A = 1 | X,Y ) = p(A = a′ | X,Y ) is also a solution to

max
a ∈ {0, 1}
p(A|X,Y )

s.t. p(A) � ρ,

ra(h),

with both achieving the same maximum risk. At this point we have proved the following equivalence:

min
h∈H

max
p(A|X,Y )

s.t. p(A) � ρ,

max
a∈A

ra(h) = min
h∈H

max
a ∈ {0, 1}
p(A|X,Y )

s.t. p(A) � ρ,

ra(h).

We now prove that, in terms of worst case risk, minimizing over h ∈ H is equivalent to minimizing over its respective
Pareto efficient set h ∈ HPA for the left side of the equation and h ∈ HPA={0,1} for the right side.

Looking at the left side equation, we note that for all h̄ ∈ H and p̄(A|X,Y ) : p(A) � ρ, we have a corresponding risk
vector {ra(h̄)}a∈A. Let a′ = arg maxa ra(h̄) be the worst group; by the properties of Pareto optimality, we know that there
exists a model ĥ such that

ĥ ∈ HPA : ra′(ĥ) = ra′(h̄), ra(ĥ) ≤ ra(h̄) ∀a ∈ A \ {a′}.

That is, there exists a Pareto efficient model that achieves the same risk on a′ but less or equal risk in all other coordinates
(note that if h̄ ∈ HPA then h̄ = ĥ). Applying this property we observe that

min
h∈HPA

max
p(A|X,Y )

s.t. p(A) � ρ,

max
a∈A

ra(h) = min
h∈H

max
p(A|X,Y )

s.t. p(A) � ρ,

max
a∈A

ra(h).
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Using similar reasoning, we have that

min
h∈HPA={0,1}

max
a ∈ {0, 1}
p(A|X,Y )

s.t. p(A) � ρ,

ra(h) = min
h∈H

max
a ∈ {0, 1}
p(A|X,Y )

s.t. p(A) � ρ,

ra(h),

and thus,

min
h∈HPA

max
p(A|X,Y )

s.t. p(A) � ρ,

max
a∈A

ra(h) = min
h∈HPA={0,1}

max
a ∈ {0, 1}
p(A|X,Y )

s.t. p(A) � ρ,

ra(h),

We want to restate that the equalities are valid in terms of worst case risk, there may be minimax models h ∈ H that do not
belong to the Pareto set h ∈ HPA

Lemma 3.2. Given Problem 4 with p(Y |X) > 0 ∀X,Y , and let the classification loss be cross-entropy or Brier score.
Let h̄(X) : h̄i(X) = 1

|Y|∀X,∀i ∈ {0, ..., |Y| − 1} be the uniform classifier, and let h̄ ∈ H.

There exists a critical partition size
ρ∗ = |Y|EX [min

y
p(y | X)] ≤ 1

such that the solutions to Problem 4, ∀ρ ≤ ρ∗, are

h∗ = h̄,

R∗ = R̄ =

{
log |Y| if ` = `CE
|Y|−1
|Y| if ` = `BS

.

That is, the solutions to all partitions with size smaller than ρ∗ yield the uniform classifier with constant risk R̄.

Proof. This proof is done in three steps, first we provide an upper bound of the solution of Problem 4, we then show that we
can design a (potentially nonexistent) partition density that achieves this upper bound, and finally, we derive conditions
under which the previously identified partition is guaranteed to exist.

We first prove that for any distributions p(X,Y,A), it follows that

min
h∈H

max
a∈{0,1}

ra(h) ≤ R̄,

meaning that the solution to Problem 4 is upper bounded by the risk associated with the uniform classifier for cross-entropy
and Brier score losses.

This is done by considering that for any distribution p(X,Y,A), the conditional risk of the uniform classifier h̄(X) :
h̄i(X) = 1

|Y|∀X,∀i ∈ {0, ..., |Y| − 1} is

EX,Y |A[`(h̄(X), Y )] = R̄ =

{
log |Y| if ` = `CE
|Y|−1
|Y| if ` = `BS

, ∀p(X,Y,A),

Since h̄ ∈ H, we have that min
h∈H

max
a∈{0,1}

ra(h) ≤ R̄ ∀p(X,Y,A).
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Then we show that if we can design p(A|X,Y ) : p(Y |X,A = 1) = 1
|Y|∀X,Y we have that, under this distribution,

h̄, R̄ = {arg}min
h∈H

max
a∈{0,1}

ra(h), which is the upper bound identified above.

For this assume that we have p(Y |X,A = 1) = 1
|Y|∀X,Y , it then follows that min

h∈H
r1(h) = r1(h̄) = R̄ since h̄ is, by design,

the optimal classifier for group a = 1 and R̄ its best achievable risk. Then ra=1(h) ≥ R̄ ∀h and since ra=1(h̄) = ra=0(h̄)
it follows that

h̄, R̄ = {arg}min
h∈H

max
a∈{0,1}

ra(h).

Finally, we derive a necessary and sufficient condition for the existence of p(A|X,Y ) : p(Y |X,A=1) = 1
|Y| ∀X,Y . Since

we need

p(A=1|X,Y ) =
1

|Y|
p(A=1|X)

p(Y |X)

to be a well-defined distribution, the only degree of freedom available is p(A=1 | X). Note that

p(Y |A=0, X) =
p(Y |X)|Y| − p(A=1|X)

1− p(A=1|X)

1

|Y|
≥ 0 ∀X,Y,

therefore p(A=1|X) ≤ |Y|p(Y |X), ∀Y,X → p(A=1|X) ≤ |Y|min
y∈Y

p(Y =y|X) and therefore

p(A=1) ≤ EX [|Y|min
y∈Y

p(y|X)] = ρ∗.

We also note that min
y∈Y

p(y|X) ≤ 1
|Y| , therefore ρ∗ ≤ 1

Note that the Lemma above can drop the hypothesis p(Y |X) > 0 ∀X,Y by defining a new semi-uniform classifier
h̄(X) : h̄i(X) = 1(i∈Y (X))

|Y(X)| ∀X,∀i ∈ {0, ..., |Y| − 1}, where Y(X) indicates the subset of labels y such that p(y|X) > 0.
The proof proceeds similarly, with the resulting partition size EX [|Y(X)| min

y∈Y(X)
p(y|X)] = ρ∗.

A generalization of Lemma 3.2 is presented next in Lemma A.1 and relies on the following definition

Definition A.1. Given a loss function ` : ∆|Y|−1×∆|Y|−1 → R+, we say that an hypothesis ĥ : X → ∆|Y|−1 is Uniformly
Maximal if it satisfies

ĥ(x), p̂(Y |X = x) = arg min
h(x)∈∆|Y|−1

max
p(Y |X=x)∈∆|Y|−1

EY |X=x`(h(x), Y ), ∀x ∈ X ,

ĥ, R̂ = {arg}min
h:X→∆|Y|−1

EY∼p̂(Y |X)`(h(X), Y ) .

In other words, a hypothesis ĥ is uniformly maximal if it is minimax optimal and is the optimal solution for the maximal
target distribution p̂(Y |X).

Lemma A.1. Given Problem 4 with p(Y |X) > 0 ∀X,Y , and let the classification loss admit a uniformly maximal classifier
ĥ with corresponding distribution p̂(Y |X) and risk R̂. Further, let ĥ ∈ H

There exists a critical partition size

ρ∗ = EX
[

min
y

p(y|X)

p̂(y|X)

]
≤ 1,

such that the solutions to Problem 4, ∀ρ ≤ ρ∗, are h∗ = ĥ and R∗ = R̂.

That is, the solutions to all partitions with size smaller than ρ∗ yield the uniformly maximal classifier ĥ with risk R̂.

Proof. Since ĥ is a uniformly maximal classifier we have that for any distributions p(X,Y,A), it follows that

min
h∈H

max
a∈{0,1}

ra(h) ≤ R̂,
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meaning that the solution to Problem 4 is upper bounded by the risk of the uniformly maximal classifier R̂. This is immediate
by the definition of a uniformly maximal classifier.

Now, in the same fashion as in Lemma 3.2) we show that if we can design p(A|X,Y ) : p(Y |X,A = 1) = p̂(Y |X) ∀X,Y
(maximal distribution) we have that, under this distribution, ĥ, R̂ = {arg}min

h∈H
max
a∈{0,1}

ra(h), which is the upper bound

identified above.

So lets assume that p(Y |X,A = 1) = p̂(Y |X) ∀X,Y , it then follows that min
h∈H

r1(h) = r1(ĥ) = R̂ since ĥ is, by design,

the optimal classifier for group a = 1 and R̂ its best achievable risk. Then ra=1(h) ≥ R̂ ∀h and since ra=1(ĥ) ≥ ra=0(ĥ)
it follows that

ĥ, R̂ = {arg}min
h∈H

max
a∈{0,1}

ra(h).

Now we derive a necessary and sufficient condition for the existence of p(A|X,Y ) : p(Y |X,A= 1) = p̂(Y |X) ∀X,Y .
Since we need

p(A=1|X,Y ) = p̂(Y |X)
p(A=1|X)

p(Y |X)

to be a well-defined distribution, the only degree of freedom available is p(A=1 | X). Note that

p(Y |X) = p(Y |A=0, X)(1− p(A=1|X)) + p̂(Y |X)p(A=1|X) ∀X,Y,
p(Y |A=0, X) = p(Y |X)−p̂(Y |X)p(A=1|X)

(1−p(A=1|X)) ≥ 0, ∀X,Y, 11.

Therefore, p(A=1|X) ≤ p(Y |X)
p̂(Y |X) , ∀Y,X → p(A=1|X) ≤ min

y∈Y
p(Y |X)
p̂(Y |X) which results in

p(A=1) ≤ EX [min
y∈Y

p(y|X)

p̂(y|X)
] = ρ∗.

We also note that min
y∈Y

p(y|X)
p̂(y|X) ≤ 1, therefore ρ∗ ≤ 1.

Note that similar to Lemma 3.2 in Lemma A.1 above we can drop the hypothesis p(Y |X) > 0 ∀X,Y by defining
Y(X) to be the subset of labels y such that p(y|X) > 0, and using the semi-uniformly minimax classifier ĥ(X;Y(X)),
where ĥy(X;Y(X)) is the uniformly maximal classifier over the set Y(X), and is 0∀Y \ Y(X). Likewise, we can
define the corresponding distribution p̂(y|x;Y(x)). The proof proceeds similarly, with the resulting partition size
EX [miny∈Y(X)

p(y|X)
p̂(Y |X;Y(X)) ] = ρ∗.

The statement in Lemma 3.2 is a direct corollary of this result, since it is straigthforward to observe that ĥ(x) = 1
|Y| is a

uniformly maximal distribution for Brier score and crossentropy; this solution is optimal when p̂(Y |X) = 1
|Y|∀X,Y ∈

X × Y .

Other loss functions that place special emphasis on certain preferred outcomes can also be considered on Lemma 3.2. For
example, weighted crossentropy is defined as

EX,Y [−
∑|Y|
y=1 wy1(Y =y) log hy(X)],

where wy > 0∀y ∈ Y . This loss admits a uniformly maximal classifier ĥ of the form

ĥ(x) = {ĥy(x)}y∈Y , ĥy(x) = h
w0
wy

0 ,∀x ∈ X , ĥ0 :
∑
y ĥ

w0
wy

0 = 1,

with associated distribution p̂(y|x) =
ĥy/wy∑

y′∈Y ĥy′/wy′
. This reduces to ĥ(x) = 1

|Y| for standard crossentropy.

11Note that requiring p(Y |A=0, X) ≤ 1 is unnecessary since
∑
Y p(Y |A=0, X) = 1 holds for any choice of p(A = 1|X)
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Lemma 3.3. Given a distribution p(X,Y ) and any predefined partition group p(A′|X,Y ) with A′ ∈ A′, |A′| finite. Let
ĥ, R̂ = {arg}min

h∈H
max
a′∈A′

ra′(h) be the minimax fair solution for this partition and its corresponding minimax risk. Let h∗

and R∗ be the classifier and risk that solve Problem 4 with ρ = mina′ p(a
′). Then the price of minimax fairness can be

upper bounded by
max
a′∈A′

ra′(h
∗)− R̂ ≤ R∗ −min

h∈H
r(h). (11)

Proof. Observe that ∀A, and for any distribution p(A | X,Y ), A ∈ A and ∀h′ ∈ H we have

min
h∈H

r(h) ≤ r(h′) =
∑
a∈A

p(a)ra(h′) ≤ max
a∈A

ra(h′).

We also have
h∗, p∗(A|X,Y ), R∗ = {arg} min

h∈HPA
max

a ∈ {0, 1}
p(A|X,Y )
s.t. p(A) � ρ

ra(h).

Which, together with Lemma 3.1, implies

max
a′∈A′

ra′(h
∗) ≤ R∗ ≤ max

a∗∈{0,1}
ra∗(h

′).

We combine the two and show
max
a′∈A′

ra′(h
∗)− R̂ ≤ R∗ − R̂

≤ R∗ −min
h∈H

r(h).

Lemma 4.1. Given Problem 4 with minimum group size ρ ≤ 1
2 , the following problems are value equivalent:

RI = min
h∈HPA

max
p(A|X,Y )
s.t.p(A) � ρ

max
a∈{0,1}

ra(h),

RII = min
h∈HPA

max
p(A|X,Y )

s.t. p(A=1)=ρ

r1(h),

RI = RII.

Proof. Following the arguments in the proof of Lemma 3.1 we observe that, for any h ∈ H and A = {0, 1}, we can
consider the partition proposed in Equation 10 with a′ = 1, which is a risk maximizing distribution for that particular h.
This distribution satisfies maxa∈{0,1} ra(h) = r1(h), and also satisfies p(A = 1) = ρ. Following the same reasoning as in
the proof of Lemma 3.1, we can translate this equivalence in terms of worst case risk from the set h ∈ H to the set h ∈ HPA .

Lemma 4.2. Given the problem on the right hand side of Eq. 6, a convex hypothesis classH, and a bounded loss function
0 ≤ `(h(x), y) ≤ C ∀x, y, h ∈ X × Y × H that is strictly convex w.r.t its first input h(x) the following problems are
equivalent:

HI, RI = {arg} min
h∈HPA

max
p(A|X,Y )

s.t. p(A=1) = ρ

r1(h)

HII, RII = {arg}min
h∈H

sup
p(A|X,Y )

s.t. p(A=1) = ρ
p(A=1|X,Y ) > 0, ∀X,Y

r1(h),

RI = RII, HI ⊇ HII,
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Proof. We present this proof in two steps. First, we show that, under the hypothesis class HPA , we can change the
maximum over the set of distributions P (A|X,Y ) : P (A = 1) = ρ for the supremum over the set of distributions
P (A|X,Y ) : P (A = 1) = ρ, P (A = 1|X,Y ) > 0 ∀X,Y . That is,

HIII, RIII = {arg} min
h∈HPA

sup
p(A|X,Y )

s.t. p(A=1) = ρ
p(A=1|X,Y ) > 0 ∀X,Y

r1(h),

RI = RIII, HI ⊇ HIII.

To prove this, we start by defining the set of distributions satisfying p(A = 1) as

Qρ,≥ = {p(A|X,Y ) :

∫
p(A = 1|x, y)p(x, y) = ρ ∧ p(A = 1|X,Y ) ≥ 0 ∀X,Y ∈ X × Y},

and the distribution subset on the above equation as

Qρ,> = {p(A|X,Y ) :

∫
p(A = 1|x, y)p(x, y) = ρ ∧ p(A = 1 | X,Y ) > 0 ∀X,Y ∈ X × Y}.

We can then observe that, for any model h and distributions p̂(A|X,Y ) ∈ Qρ,≥ and p̄(A|X,Y ) ∈ Qρ,>, the distribution
pλ(A|X,Y ) = λp̄(A|X,Y ) + (1 − λ)p̂(A|X,Y ) satisfies pλ(A|X,Y ) ∈ Qρ,> ∀λ ∈ (0, 1]. Furthermore, we have, by
linearity of expectation

r1(h; pλ(A|X,Y )) = λr1(h; p̄(A|X,Y )) + (1− λ)r1(h; p̂(A|X,Y ))

≤ λC + (1− λ)r1(h; p̂(A|X,Y )),

r1(h; pλ(A|X,Y )) ≥ (1− λ)r1(h; p̂(A|X,Y ))

where we used explicit notation to indicate what distribution we are using to take expectation and the fact that the loss is
upper bounded by C and lower bounded by 0. Therefore we conclude

lim
λ→0+

pλ(A|X,Y ) = p̂(A|X,Y )

and
lim
λ→0+

r1(h; pλ(A|X,Y )) = r1(h; p̂(A|X,Y )).

Similarily for r0

lim
λ→0+

r0(h; pλ(A|X,Y )) = r0(h; p̂(A|X,Y )).

Since this transformation preserves the entire risk vector r0(h), r1(h), and the results hold for any h ∈ H and p̂(A|X,Y ) ∈
Qρ,≥, they hold in particular for any hypothesis h ∈ HI and its corresponding distribution and group risk vector. From this
we can conclude

{arg} min
h∈HPA

max
p(A|X,Y ) ∈ Qρ,≥

r1(h) ⊇ {arg} min
h∈HPA

sup
p(A|X,Y ) ∈ Qρ,>

r1(h).

Meaning RI = RIII, HI ⊇ HIII

Secondly, we show that, under these conditions, minimizing the supremum over h ∈ HPA is the same as minimizing over
h ∈ H. That is, RIII = RII, HIII = HII.

We observe that, if ` is a strictly convex function w.r.t h, and p(A|X,Y ) ∈ Qρ,>, we can write the following statements.
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Let ĥ, h̄ ∈ arg minh∈HR1(h; p(A|X,Y )) such that ĥ(x) 6= h̄(x) if and only if x in some set X̄ ⊆ X , and let hλ =

λĥ+ (1− λ)h̄ ∈ H ∀λ ∈ [0, 1]. By the strict convexity of ` we have

`(hλ(X), Y ) = λ`(ĥ(X), Y ) + (1− λ)`(h̄(X), Y ) ∀X,Y ∈ X \ X̄ × Y,

`(hλ(X), Y ) < λ`(ĥ(X), Y ) + (1− λ)`(h̄(X), Y ) ∀X,Y ∈ X̄ × Y.

Since for any h ∈ H we can write

r1(h) =

∫
x∈X̄

∫
y∈Y

p(x, y)p(a = 1|X,Y )

ρ
`(h(X), Y )dxdy

+

∫
x∈X\X̄

∫
y∈Y

p(x, y)p(a = 1|X,Y )

ρ
`(h(X), Y )dxdy,

and we need r1(hλ) ≥ R1(h̄) = r1(ĥ), using the inequalities from the strict convexity of ` we note that X̄ must satisfy

∫
x∈X̄

∫
y∈Y

p(x, y)p(a = 1|X,Y )

ρ
dxdy = 0,

or, equivalently, since {x, y : p(A = 1|x, y) > 0)} = X × Y by hypothesis

∫
x∈X̄

∫
y∈Y

p(x, y)dxdy = 0.

From this we conclude that ĥ and h̄ can differ only in a zero-measure set, and thus r0(ĥ) = r0(h̄). Since all viable
hypotheses ĥ and h̄ inHII share the same risk vector (not only the group one risk value), then these hypotheses are all Pareto
efficient. This then proves that ĥ, h̄ ∈ arg minHPA r1(h; p(A|X,Y )) for any p(A|X,Y ) ∈ Qρ,>, and thusHIII = HII.

Lemma 4.3. Consider the setting of Algorithm 1, with parameter ε > 0, and η = max
α∈Uε,ρ

||α||2√
2T
≤
√

nρ
2T with Uε,ρ =

{α : αi ∈ [ε, 1],
∑
i
αi
n = ρ}, and L a 1-Lipschitz function w.r.t. α, let P be a uniform distribution over the set of models

{h1, . . . , hT }, and let R∗ be the minimax solution to the loss presented in Eq. 9. Then we have

max
α∈Uε,ρ

Eh∼PL(h,α) ≤ γR∗ +

√
2nρ

T
.

Proof. We observe that loss function L(h, α) is concave (linear) w.r.t. α, and the set Uε,ρ is convex, with maximum norm
max
α∈Uε,ρ

||α||2 ≤
√
nρ. For each ε > 0 we are therefore able to use Theorem 7 in (Chen et al., 2017) to state

max
α∈Uε,ρ

Eh∼PL(h, α) ≤ γ min
h∈H

max
α∈Uε,ρ

L(h, α) + max
α∈Uε,ρ

||α||2

√
2

T
,

≤ γ min
h∈H

max
α∈Uε,ρ

L(h, α) +

√
2nρ

T
.
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Lemma 4.4. Given p(A=1|X,Y )≥ε,∀X,Y , p(A=1)=ρ, and a bounded loss function 0≤`(h(X), Y )≤C,∀X,Y, h
we denote the expected and empirical importance weighted risk as r1(h) = EX,Y [p(A=1|X,Y )

p(A=1) `(h(X), Y )] and r̂1(h) =∑n
i=1

p(A=1|xi,yi)
np(A=1) `(h(xi), yi) respectively. Where h ∈ H and |H| is the dimension of the hypothesis set. Under these

conditions, the following PAC bound holds

P

(
max
h∈H
|r1(h)− r̂1(h)| ≥ C

ρ

√
log
(
2|H|/δ

)
2n

)
≤ δ

Proof. For a fixed h and a given distribution p(A = 1|X,Y ), the random variable p(A=1|X,Y )
p(A=1) `(h(X), Y ) ∈ [0, Cρ ]. Then,

we can apply Hoeffding’s concentration inequality and get

P (|r1(h)− r̂1(h)| ≥ ψ) ≤ 2 exp
(−2nψ2ρ2

C2

)
.

Then, applying the union bound, we can extend this result for all h ∈ H we have

P (max
h∈H
|r1(h)− r̂1(h)| ≥ ψ) ≤ 2|H| exp

(−2nψ2ρ2

C2

)
= δ.

Writing ψ as a function of δ we have that

P

(
max
h∈H
|r1(h)− r̂1(h)| ≥ C

ρ

√
log
(
2|H|/δ

)
2n

)
≤ δ.

A.2. Comparing DRO and BPF on 0-loss distributions.

The methodology proposed in DRO (Hashimoto et al., 2018; Duchi et al., 2020) produces (constrained) minimax solutions
that are not guaranteed to be Pareto efficient. In the context of Lemma 4.2, for any value of ρ, we can interpret any solution
to Problem 4 to be a special subset of the potential solutions to the DRO objective. In particular, let h∗ be a solution to
Problem 4 with parameter ρ, and let lh = `(h∗(X), Y ) be the random variable associated with the loss distribution of h. Let
ˆ̀
h,ρ = F−1

lh
(1− ρ) be the 100 ∗ (1− ρ)% percentile of lh. In this scenario, the hypothesis h∗ is a valid solution to the DRO

objective with parameter η = ˆ̀
h,ρ.

The reverse is not true in general, not all DRO solutions are Pareto efficient solutions, consider a simple binary classification
scenario X ×Y = [0, 1]× {0, 1}, with joint distribution p(x)p(y|X) = U [−1, 1]δy=1 and crossentropy loss. It is simple to
see that h(x) = 1 is the only solution to Problem 4 for any value of ρ, however, the solution to

min
h:X→[0,1]

EX,Y [(−Y log(h(X))− (1− Y ) log(1− h(X))− η)+ + η]

is any function that satisfies h(x) ≥ eη, ∀x ∈ [0, 1]. Which may yield sub-optimal classifiers even when a simple, 0-loss
classifier is available. A numerical example of this is presented in the Figure 4, where we have a 1 dimension input
X ∼ U [−1, 1] and binary target variable Y ∈ {0, 1}. Note that we define p(Y = 1|X) such that there is zero conditional
entropy for X ≤ −0.5 or X ≥ 0.5; the major differences between DRO and BPF are observed in this noise-free, which was
also illustrated in Figure 1. In this case we can see that, even though perfect classification is possible in some regions of the
data distribution, DRO does not achieve perfect loss but BPF does. Although in practice some datasets may not present these
noise free regions, using BPF does not sacrifice performance on the worst group. It can also control for best/worst group
tradeoffs via the ε parameter (in case one wishes to sacrifice less performance on the best group), and has the advantage of
providing the worst empirical distribution on the training data.
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Figure 4. Synthetic data example with single-dimensional input X ∼ U [−1, 1] and binary target variable Y ∈ {0, 1}. Image on the
left shows the conditional probability p(Y = 1|X) and some samples in blue. Images on the center and right show different solutions
achieved by DRO and BPF respectively. It is worth noting that the classifiers recovered by each method are different, in particular, BPF is
able to provide better service than DRO on noise-free regions of the input space without sacrificing performance elsewhere (X ≤ −0.5
and X ≥ 0.5)

Figure 5. Performance comparison between DRO and BPF on the synthetic example presented in Figure 4. First two columns correspond
to cross entropy performance on worst and best groups respectively, the latter two correspond to error rate on those same groups.

A.3. Additional Results

Similar to Table 1, tables 3 and 4 compare the performance of the competing methods (Baseline, ARL, DRO and BPF) on a
predefined demographic. For the law school dataset we considered gender and outcome; race and outcome was considered
for the Compas and MIMIC-III datasets. Table 5 show the demographic composition of worst groups based on the mentioned
populations. It is worth noting that for these particular predefined groups there is no major difference between DRO and
BPF.

Group Prop(%) ARL.15 DRO .15 BPF .15 ARL.25 DRO .25 BPF .25 ARL.4 DRO .4 BPF .4

White,Male 48.2% 68.9% 85.3% 86.8% 68.9% 94.1% 94.1% 68.9% 94.1% 94.1%
White,Female 35.5% 70.5% 85.2% 87.0% 70.5% 94.4% 94.5% 70.5% 94.4% 94.4%
Nonwhite,Male 7.8% 59.5% 76.6% 77.5% 59.5% 81.9% 82.0% 59.5% 81.9% 81.9%
Nonwhite,Female 8.5% 58.8% 75.9% 76.7% 58.8% 80.9% 80.9% 58.8% 80.9% 80.9%

Table 3. Accuracy on law school dataset across gender and ethnicity partitions (groups given no special consideration by the algorithms).
Results shown for ARL, DRO and BPF models for varying partition sizes.

A.4. Experimental Details

To train the BPF classifier with standard SGD, we use the minibatch version of Eq.9

L(h,α) =
1

nb

∑nb
i=1 αi`(h(xi), yi)

ρ
,

where nb is the batch size, this loss is simply the minibatch equivalent of the importance-weighted loss

Ei∼i|A=1[`(h(xi), yi)] = E
i∼U [

α1

Nρ
,...,

αN
Nρ

]
[`(h(xi), yi)] = Ei∼U [1,...,N ][

αi
ρ
`(h(xi), yi)]
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Group Prop(%) ARL.15 DRO .15 BPF .15 ARL.25 DRO .25 BPF .25 ARL.4 DRO .4 BPF .4

Black 8.5% 50.0% 52.8% 51.3% 50.0% 62.6% 60.6% 50.0% 74.7% 73.2%
White 79.3% 50.0% 52.8% 51.2% 50.0% 62.6% 60.6% 50.0% 74.5% 73.1%
Asian 2.7% 50.0% 52.7% 51.2% 50.0% 62.2% 60.2% 50.0% 73.8% 72.4%
Hispanic 3.5% 50.0% 53.1% 51.4% 50.0% 63.9% 61.7% 50.0% 77.3% 75.6%
Other 6.0% 50.0% 52.8% 51.2% 50.0% 62.3% 60.4% 50.0% 74.1% 72.6%

Table 4. Accuracy across gender and ethnicity partitions (groups given no special consideration by the algorithms) in the MIMIC-III
dataset for ARL, DRO and BPF models for varying partition sizes.

Group/Outcome prop(%) BPF .15 BPF .30 BPF .40

Law school

White,Male/0 1.5% 4.5% 2.6% 1.5%
White,Male/1 46.6% 36.9% 44.0% 46.6%
White,Female/0 1.2% 3.5% 2.0% 1.2%
White,Female/1 34.3% 27.6% 29.7% 34.3%
Nonwhite,Male/0 1.1% 3.2% 1.8% 1.1%
Nonwhite,Male/1 6.7% 9.2% 8.4% 6.7%
Nonwhite,Female/0 1.3% 3.8% 2.2% 1.3%
Nonwhite,Female/1 7.2% 11.4% 9.3% 7.2%

Compas

African-American/0 24.7% 24.7% 24.7% 24.7%
African-American/1 27.1% 27.1% 27.1% 27.1%
Caucasian/0 20.9% 20.9% 20.9% 20.9%
Caucasian/1 13.4% 13.4% 13.4% 13.4%
Hispanic/0 5.2% 5.2% 5.2% 5.2%
Hispanic/1 3.1% 3.1% 3.1% 3.1%
Other/0 3.6% 3.6% 3.6% 3.6%
Other/1 2.0% 2.0% 2.0% 2.0%

MIMIC-III

Black/0 7.6% 5.2% 5.2% 6.3%
Black/1 1.0% 3.4% 3.2% 2.2%
White/0 70.0% 48.4% 48.4% 58.7%
White/1 9.2% 31.0% 31.1% 20.7%
Asian/0 2.4% 1.7% 1.7% 2.0%
Asian/1 0.3% 1.1% 1.1% 0.8%
Hispanic/0 3.2% 2.2% 2.2% 2.7%
Hispanic/1 0.3% 0.9% 0.9% 0.6%
Other/0 5.3% 3.6% 3.6% 4.4%
Other/1 0.7% 2.4% 2.5% 1.6%

Table 5. Demographic composition of worst groups as a function of minimum partition size on the law school and Compas dataset. BPF
homogenizes outcomes across partitions and protected attributes.

The training parameters used for all methods presented in the main paper are summarized in the following table

All methods are implemented using the same codebase on PyTorch. Experiments are run on a single GeForce RTX 2080 Ti
and take less than 1 hour wall time each. The code is available at github.com/natalialmg/BlindParetoFairness.

https://github.com/natalialmg/BlindParetoFairness
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Method DRO ARL ARL HC BPF

Learning rate 1 exp−5 1 exp−5 1 exp−5 1 exp−5
Batch size 128 128 128 128
Training Loss cross entropy cross entropy cross entropy cross entropy
Network architecture (512,) (512,) (512,) (512,)

Custom parameter η = {0, 0.05, . . . , 1}

(512,512,) ,
(512,),

(256,256,),
(256,)

(512,512,),
(512,),

(256,256,),
(256,) ρ = {0.05, ..., 0.9}, ε = 0.01

Table 6. Summary of training parameters per method for all presented experiments. Network architecture is the number and size of the
hidden layers of the classifer; for ARL and ARL HC, the adversarial network architecture is presented in the same format on the custom
parameter row.


