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Abstract

Much of the work in the field of group fairness
addresses disparities between predefined groups
based on protected features such as gender, age,
and race, which need to be available at train, and
often also at test, time. These approaches are
static and retrospective, since algorithms designed
to protect groups identified a priori cannot antic-
ipate and protect the needs of different at-risk
groups in the future. In this work we analyze
the space of solutions for worst-case fairness be-
yond demographics, and propose Blind Pareto
Fairness (BPF), a method that leverages no-regret
dynamics to recover a fair minimax classifier that
reduces worst-case risk of any potential subgroup
of sufficient size, and guarantees that the remain-
ing population receives the best possible level
of service. BPF addresses fairness beyond de-
mographics, that is, it does not rely on prede-
fined notions of at-risk groups, neither at train
nor at test time. Our experimental results show
that the proposed framework improves worst-case
risk in multiple standard datasets, while simulta-
neously providing better levels of service for the
remaining population. The code is available at
github.com/natalialmg/BlindParetoFairness.

1. Introduction

A large body of literature has shown that machine learning
(ML) algorithms trained to maximize average performance
on existing datasets may present discriminatory behaviour
across pre-defined demographic groups (Barocas & Selbst,
2016; Hajian et al., 2016), meaning that segments of the
overall population are measurably under-served by the ML
model. This has sparked interest in the study on why these
disparities arise, and on how they can be addressed (Mitchell
et al., 2018; Chouldechova & Roth, 2018; Barocas et al.,

“Equal contribution 'Duke University, Durham, NC, USA
*University College London, London, UK. Correspondence to:
Natalia Martinez <natalia.martinez@duke.edu>, Martin Bertran
<martin.bertran @duke.edu>.

Proceedings of the 38" International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

2019). One popular notion is group fairness, where the
algorithm has access to a set of predefined demographic
groups during training, and the goal is to learn a model
that satisfies a certain notion of fairness across these groups
(e.g., statistical parity, equality of opportunity) (Dwork et al.,
2012; Hardt et al., 2016); this is usually achieved by adding a
constraint to the standard optimization objective. It has been
shown that optimality may be in conflict with some notions
of fairness (e.g., the optimal risk is different across groups)
(Kaplow & Shavell, 1999; Chen et al., 2018), and perfect
fairness can, in general, only be achieved by degrading the
performance on the benefited groups without improving the
disadvantaged ones. This conflicts with notions of no-harm
fairness such as in (Ustun et al., 2019), which are appropriate
where quality of service is paramount. Notions such as
minimax fairness, commonly known as Rawlsian max-min
fairness from an utility maximization perspective (Rawls,
2001; 2009), combined with Pareto efficiency, naturally
address this no-harm concern (Martinez et al., 2020; Diana
et al., 2020).

Recent works study fairness in ML when no information
about the protected demographics is available, for example,
due to privacy or legal regulations (Kallus et al., 2019). This
is an important research direction and has been identified as
a major industry concern (Veale & Binns, 2017; Holstein
et al., 2019), since many applications and datasets in ML
currently lack demographic records. We therefore study the
problem of building minimax Pareto fair algorithms beyond
demographics, meaning that not only we lack group mem-
bership records but also have no prior knowledge about the
demographics to be considered (e.g., any subset of the pop-
ulation can be a valid protected group, see computationally
identifiable groups (Hébert-Johnson et al., 2018)). This has
the advantage of making the model robust to any potential
demographic even if they are unknown at the time of de-
sign, or change through time; it is also efficient, since the
model offers the best level of service to all the remaining
(i.e., non-critical) population.

Main Contributions. We analyze subgroup robustness,
where a model is minimax fair w.r.t. any group of sufficient
size, regardless of any preconceived notion of protected
groups; we also adhere to the notion of no-harm fairness by
requiring our minimax model to be Pareto efficient (Mas-
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Colell et al., 1995) by providing the best level of service
to the remaining population. A model with these charac-
teristics has a performance guarantee even for unidentified
protected classes.

We show that being subgroup robust w.r.t. an unknown num-
ber of groups, where no individual group is smaller than a
certain size, is mathematically equivalent in terms of worst
group performance to solving a simplified two-group prob-
lem, where the population is divided into high and low risk
groups, thereby providing a clear means to design “univer-
sal” minimax fair ML models. We further show the critical
role of the minimum group size by proving that, for standard
classification losses (cross-entropy and Brier score), there
is a limit to the smallest group size we can consider before
the solution degenerates to a trivial, uniform classifier, a
similar result is also demonstrated for losses where there
is a preferred outcome; a common scenario in fair ML. We
additionally study the cost of blind subgroup robustness
when compared to learning a model that is minimax fair
w.r.t. predefined demographics.

We then propose Blind Pareto Fairness (BPF), a simple
learning procedure that leverages recent methods in no-
regret dynamics (Chen et al., 2017) to solve subgroup ro-
bustness subject to a user-defined minimum subgroup size.
Our method is provably convergent and can be used on
classification and regression tasks. We experimentally eval-
uate our method on a variety of standard ML datasets and
show that it effectively reduces worst-case risk and com-
pares favourably with previous works in the area. Although
our work is motivated by fairness, subgroup robustness has
applications beyond this important problem, see for example
(Sohoni et al., 2020a; Duchi et al., 2020).

2. Related Work

A body of work has addressed fairness without explicit
demographics by using proxy variables to impute the pro-
tected population labels (Elliott et al., 2008; Gupta et al.,
2018; Zhang, 2018). These methods contrast with our as-
sumptions by relying on a preconceived notion on what
the protected demographics are (i.e., the protected demo-
graphics are known, but unobserved), since prior knowledge
is needed to design useful proxy variables. Moreover, it
has been reported that these approaches can exacerbate dis-
parities by introducing undesired bias (Chen et al., 2019;
Kallus et al., 2019); aiming to be fair by inferring protected
attributes may be in conflict with privacy or anonymity con-
cerns. These works might need re-training if new protected
classes are identified, since a model trained under these
conditions may be considerably harmful on an unknown
population. This phenomena further supports the value of
blind subgroup robustness.

Individual fairness (Dwork et al., 2012) provides guarantees
beyond protected attributes, but requires predefined simi-
larity functions which may be hard or infeasible to design
for real-world tasks. The works of (Hébert-Johnson et al.,
2017; Kearns et al., 2018) address fairness w.r.t. subgroups
based solely on input features, and while these works greatly
extend the scope of the protected demographics, they still
rely on labeled protected features for guidance. The work of
(Sohoni et al., 2020b) partitions the input space to address
robust accuracy. We note that partitions,' based only on
the input space of the model do not modify the solution of
risk-based Pareto optimal models, since the optimal clas-
sifier for any input value remains unchanged (i.e., there is
no conflict between objectives for any value of the input
space, see Theorem 4.1 in (Martinez et al., 2020)). In our
work we consider subgroups based on both outcome and
all input features, which broadens the scope to all conceiv-
able subgroups based on the information available to the
trainer. For many risk-based measures of utility, such as
crossentropy, Brier score, or {5 regression loss, the optimal
classifier can be expressed as a function of the conditional
output probability p(Y|X), X being the input (features) and
Y the output. In particular, if we only consider groups that
introduce covariate shift (i.e., p(X|A) varies across differ-
ent values of the group membership A) but do not change
the conditional target distribution (p(Y|X, 4) = p(Y|X)
for all A), then the set of Pareto classifiers only contain one
element and the Pareto curve degenerates to the utopia point.
By specifically taking outcomes into account in our partition
function, we allow for robustness to perturbations on the
conditional distribution p(Y'| X, A).

There are two recent approaches that are the closest to our
objective (protecting unknown and unobserved demograph-
ics). One is distributionally robust optimization (DRO)
(Hashimoto et al., 2018; Duchi et al., 2020), where the goal
is to achieve minimax fairness for unknown populations of
sufficient size. Similar to our work, they minimize the risk
of the worst-case group for the worst-case group partition,
they use results from distributional robustness that focus the
attention of the model exclusively on the high-risk samples
(i.e., their model reduces the tail of the risk distribution).
However, they do not explicitly account for Pareto efficiency,
meaning that their solution may be sub-optimal on the pop-
ulation segment that lies below their high-risk threshold, do-
ing unnecessary harm. The other recent method that tackles
the minimax objective is adversarially reweighted learning
(ARL) (Lahoti et al., 2020), where the model is trained to
reduce a positive linear combination of the sample errors,
these weighting coefficients are proposed by an adversary
(implemented as a neural network), with the goal of maxi-
mizing the weighted empirical error. This method focuses

'In this work we consider “partition” and “subgroup” inter-
changeable.
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on computationally identifiable subgroups, meaning that
they can be characterized by a function f : X x Y — [0, 1],
(Hébert-Johnson et al., 2018). However, they do not provide
an optimality guarantee on the adversary, nor do they pose
a constraint on the computationally identifiable subgroups.
Our theoretical results indicate that adding an easily inter-
pretable group size constraint on this subgroup is necessary
so that the worst-case partition does not yield a trival, uni-
form classifier for the optimal adversary; this observation is
validated in experimental results.

3. Problem Formulation
3.1. Minimax Fairness

We first consider the supervised group fairness classification
scenario (Barocas et al., 2019), where we have access to a
dataset D = {(z4,yi,a;)}1; ~ p(X,Y, A)®" containing
n ii.d. triplets. Here X € X denotes the input features,
Y € )Y the categorical target variable, and A € A group
membership. We consider a classifier h € H belonging to
an hypothesis class H whose goal is to predict Y from X,
h: X — AYI=1; note that h(X) can take any value in the
simplex and is readily interpretable as a distribution over
labels Y. Given a loss function £ : AlYI=1 x AIYI=1 5 R+
fairness is considered in the context of a Multi-Objective
Optimization Problem (MOOP), where the objective is to
learn a classifier that minimizes the conditional group risks

r(h) = {ra(h)}taca,
inéiﬁ(rl(h), 141 (R)),
ra(h) = EX,Y\A:a[g(h(X)v Y)]

The solution to this MOOP may not be unique (e.g., the opti-
mal classifier of different groups differs), and therefore there
is a set of optimal (Pareto) solutions that can be achieved. It
is possible that none of these Pareto solutions satisfy some
group fairness criteria (e.g., equality of risk), meaning that
achieving perfect fairness comes at the cost of optimality
(Kaplow & Shavell, 1999; Bertsimas et al., 2011). In this
work we do not to compromise optimality, meaning that
we do not degrade the performance of a low-risk group if it
does not directly benefit another, and consider a minimax
fairness approach (Rawls, 2001; 2009), where the goal is to
find a Pareto optimal classifier that minimizes the worst-case
group risk,

)

pin maxra(h)- 2)

‘H p, represents the set of properly Pareto optimal classifiers
in H given a group set A as defined next.

Definition 3.1. An hypothesis h* € H is Pareto optimal if
h* is Pareto efficient, meanining that Ah' € H : r(h') <
r(h), 2. Given a partition set .A we denote the set of Pareto
hypothesis in H as Hp,,.

r(h) < r(h) ifro(h) < ro(h)VaAIa : re(R) < ror(h)

Note that Definition 3.1 establishes that there is no other
model in the hypothesis class whose associated group risks
are uniformly better for all groups.

3.2. Blind Pareto Fairness

In this work we consider a more challenging problem,
namely Blind Pareto Fairness (BPF), where the group vari-
able A and the conditional distribution p(A|X,Y") are com-
pletely unknown (not just unobserved), even at training
time. Here the goal is to learn a model that has the best
performance on the worst-group risk of the worst partition
density p(A|X,Y") (“sensitive” group assignment), subject
to a group size constraint (p(A=a) > p, Va). We formulate
the following new problem,

R* = min max max 7, (h).
heHp, p(A\X, Y) acA 3)
st.p(A) = p’

Here R* is the minimum worst group error achieved for
the worst partition density with known number of partitions
|A]. Since Hp, is explicitly dependent on p(A|X,Y), the
objective presented in Problem 3 seems ill-defined because
the learner has to pick h from the Pareto hypotheses H p,
before the adversary can pick p(A|X,Y"). However, this
will not be a problem because we consider scenarios where
both the loss function and the hypothesis set are convex,?,
making the minimax and maximin formulations equivalent.
Therefore, p(A|X,Y") can be picked before h, making Hp,

a well-defined set.

One issue with the formulation in Problem 3 is that it is un-
determined in the sense that it admits several worst partition
densities and classifiers for [.A| > 2. Fortunately, Lemma
3.1 shows that the minimum worst group error R* in Prob-
lem 3 is the same as the one achieved if we were to consider
an alternative formulation where a variable A € {0, 1} rep-
resents the worst-group risk membership. This makes the
study of the binary problem attractive when we wish to min-
imize the number of assumptions we make on the protected
groups. Here the objective becomes

min max  rq(h),
R* = "Hra a€{0,1}
P(AIX.Y) @
s.t.p(A) = p

with h*, p*(A|X,Y") achieving this solution. We overload
the notation H p, in the context of Problem 4 to refer to the
Pareto set for a binary group distribution. Figure 1 shows
an example of the risks for the worst and best partitions at
different sizes p achieved with a method that optimizes for

p(A) = pifp(A=a)>pVaec A
*Meaning that for any h, ' € H and X € [0, 1], exists hy €
H : ha(z) = Ah(z) + (1 — AR/ (z)Vz € X.
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the worst case partition, like DRO or our proposed BPF (the
latter shows better performance on the remaining partition
owing to the Pareto constraint), versus deploying a baseline
model that minimizes the empirical risk.

Lemma 3.1 shows that the minimum worst risk R* is the
same for problems 3 and 4, hence, we focus our analysis
on the latter throughout the text. There are two main ad-
vantages of working with the binary problem, the first is
that finding the worst partition p(A | X,Y") for a given h
is straightforward when |A| = 2. The second is that, in
general, we may not know the number of groups we wish
to be fair to, and this equivalence shows that it is sufficient
to specify the minimum size a group must have before it is
considered for the purposes of minimax fairness. Moreover,
restricting the minimum size of the partitions to be consid-
ered is an interpretable way of constraining the adversary.

Lemma 3.1. Given an hypothesis class H and a finite al-
phabet, A : |A| > 2, problems 3 and 4 have the same
minimum worst-group risk solution R* for all p where prob-
lem 3 is defined (p < ‘17|).

A question that arises from Problem 4 is how the optimal
classifier and partition function depend on the partition size.
In Lemma 3.2, we show the existence of a critical size p* for
standard classification losses (cross-entropy and Brier score)
whereby solving Problem 4 for partitions smaller than p*
leads to a uniformly random classifier. This result shows
that attempting to be minimax fair w.r.t. arbitrarily small
group sizes yields a trivial classifier with limited practical
utility. Therefore, if one where to consider an adversary
without any capacity restriction this would be it’s optimal
solution, something that we corroborate empirically.

Lemma 3.2. Given Problem 4 with p(Y|X) > 0VX,Y,’
and let the classification loss be cross-entropy or Brier score.
Let

_ L
N

be the uniform classifier, and let h € H. There exists a
critical partition size

P =|V[Exminp(y | X)] <1

h(X) : hi(X) VX,Vie{0,.., |V -1},

such that solutions to Problem 4, ¥p < p*, are h* = h and
_ 1 ift = ¢
V] ift =lps

That is, any partitions smaller than p* yield the uniform
classifier with constant risk R.

In some circumstances, we may wish to address fairness in
situations where there may be a preferred outcome. It is

This restriction can be lifted and a similar result holds, see
Supplementary Material for details.
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Figure 1. Worst and best crossentropy risks achieved by DRO, BPF
and a baseline classifier for varying minimum size partitions (p)
on a synthetic example (see Section A.2). The tradeoffs shown
for DRO and BPF correspond to model pairs that were optimized
for a specific p value (i.e., different points in the tradeoff curve
correspond to different BPF and DRO classifiers). Lower worst
group risks correspond to larger group sizes (p); results for the
same p value are connected with a dashed line. We observe that
BPF is able to achieve the same worst-case group performance that
DRO achieves, but with better results on the non-critical partition
owing to its Pareto optimality constraint, this is especially apparent
on small group sizes. The baseline classifier suffers significantly
larger worst group errors for small partition sizes.

possible to capture this preference with other convex surro-
gate losses such as weighted crossentropy (wCE), defined
as — Zgll w;1(y=1) log h;(x). In this scenario, it is also
worthwhile to analyze the existence of critical classifiers
and partition sizes. The proof presented in Supplementary
Material Section A.1 shows a more general statement for
a broader class of loss functions, including wCE, which
may yield different critical classifiers and partition sizes, the
restriction p(Y|X) > 0 is also lifted.

It is straightforward to prove that R* is non-increasing with
p (see Supplementary Material A.1). A natural question
that arises is what is the additional cost in optimality we
pay if we apply subgroup robustness instead of optimizing
for a known partition. Lemma 3.3 provides an upper bound
for the cost of blind fairness, showing that it is at most the
difference between R* and the risk of the baseline model.
Moreover, the upper bound decreases with larger group size,
and is in no scenario larger than the difference between the
risk of the uniform classifier and the baseline classifier for
BS and CE losses.

Lemma 3.3. Given a distribution p(X,Y") and any prede-

fined partition group p(A'|X,Y) with A’ € A" || A| finite.

Let h, R = {arg} 2111;[1 max rq (h) be the minimax fair so-
cEHa' €A

lution for this partition and its corresponding minimax risk.
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Let h* and R* be the classifier and risks that solve Prob-
lem 4 with p = ming ¢ 4 p(a’). Then the price of minimax
fairness can be upper bounded by
w(h*) — R < R* — minr(h).° 5

Fepre) - R o ©
In the following section, we provide a practical algorithm
that asymptotically,” solves Problem 4 and yields a classifier
that both minimizes the worst-group risk and is also Pareto-
efficient w.r.t. the remaining population. (All proofs are
presented in the Supplementary Material A.1.)

4. Optimization

In order to develop our optimization approach, we begin
by showing that for group sizes p < %, we can drop the
innermost max operator in Problem 4, and we only need to
consider the risk for the a = 1 partition on a partition of size
exactly equal to p (i.e., p(A = 1) = p). This is presented in

the following lemma.

Lemma 4.1. Given Problem 4 with minimum group size
p < % the following problems are value equivalent:

R'= min max max_ 74(h),
heHp, p(A|X, y) ac{0,1}
st.p(A) = p
R" = min max r1(h), (6)
ML p(AIX)Y)
st.p(A=1)=p
R'= R

We note that the second problem in Eq. 6 is in itself an inter-
esting optimization problem for p > 1/2, since it equates to
efficiently minimizing the risk of the at-risk majority. Next,
Lemma 4.2 shows that the Pareto optimality constraint is
easy to enforce if the base loss function ¢(h(x),y) is both
bounded (i.e., £(h(z),y) < CVx,y,h € X x Y x H), and
strictly convex w.r.t. model h, and if the hypothesis class H
is a convex set as well.

Lemma 4.2. Given the problem on the right hand side of Eq.
6, a convex hypothesis class H, and a bounded loss function
0 </l(h(x),y) < CVz,y,h € X XY x H that is strictly
convex w.r.t its first input h(x), the following problems are
equivalent:

H', R' = {arg} min max r1(h)
heHp , p(A‘X7Y)
st.p(A=1)=p
HT R = {arg} min sup ri(h),
e P(AIX,Y) @

st.p(A=1)=p
p(A=1X,Y) >0, VX,V
RI — ]%II7 HI D) IHII’

°r(h) = Ex v [((h(X),Y)].
"The algorithm is iterative, we prove convergence to the opti-
mal solution with the number of iterations.

where we explicitly add {arg} to discuss the hypotheses
achieving these minimax solutions. The set of hypotheses
H™ are valid solutions to our problem, and correspond to the
set of properly Pareto hypothesis (Geoffrion, 1968) which
have the property of not admitting unbounded tradeoff be-
tween risks, see Definition 2.8.5 in (Miettinen, 2012). The
BS loss satisfies both conditions in Lemma 4.2, CE loss also
satisfies these conditions if the classifier assigns a minimum
label probability for all values. The ¢ regression loss over
a bounded set also satisfies these conditions.

The supremum constraint on Lemma 4.2 is handled by
slightly limiting adversary capacity and ensuring p(A =
11X,Y) > e> 0VX,Y € X x ), which leads to a mini-
max formulation. Furthermore, in the conditions of Lemma
4.2, we can exchange the minimum and the maximum with-
out changing the problem, this leads to a feasible problem
formulation based on importance weighting

: p(A:1|X7Y)
(b | min Exy[F o= ((h(X),Y)]. )
s.t.p(A=1)=p
P(A=1]X,Y)>e

Note that € ensures that a minimal priority is assigned to
each sample, even if belongs to the low-risk group. We solve
Problem 8 using no-regret dynamics (Freund & Schapire,
1999), the solution is the Nash equilibrium of a two-player
zero-sum game, where one player, the adversary, iteratively
proposes partition distributions p(A|X,Y’), the modeler
then responds near optimally with a model A, and incurs
loss r1(h). Based on the history of losses, the adversary
iteratively refines its proposed partition function into the
worst-case partition.

To solve the above problem with parameter € > 0, we lever-
age the theoretical results presented in (Chen et al., 2017)
for improper robust optimization of infinite loss sets with
oracles. We present the results in terms of a finite dataset
with n samples; assume that both players have access to
{zi,yi}y ~ P(X,Y)®", and lett € {0,...,T} indicate
the current round of the zero-sum game. In each round
t, the modeler produces a classifier h* and the adversary
proposes an empirical distribution of p(A|X,Y"), denoted
as o' = {al}?, € U, such that U, = {a : a; €
le,1],>, % = p}, where p is the minimum partition size.

The empirical risk (cost) of round ¢ is L! = L(h!, at), with

T

Note that L(h,a) is the importance-weighted
estimate of ri(h) over the samples in the

dataset, that is EX7y[%f(h(X)ay)] =

Ex v 2= 0(h(X), V).
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In order to find the Nash equilibrium of this game, we use
projected gradient ascent on the adversary, while the mod-
eler uses approximate best response with a y-approximate
Bayesian oracle h* = M (a?),}. In particular, we use a vari-
ant proposed in (Chen et al., 2017) for robust non-convex
optimization. Algorithm 1 shows the proposed approach.

Algorithm 1 Blind Pareto Fairness

Require: Inputs: Dataset {(z;,y;)}7,, partition size p
Require: Hyper-parameters: rounds 7', parameter 7, ad-
versary boundary coefficient € > 0, y-approximate
Bayesian solver M(-) ~ argminyc, L(h, -)
Initialize a® = & = {p}?,
Initialize classifier and loss
h® =M(a), L’ = L(h°, &)
forroundt =1,...,7T do
Adversary updates partition function by projected
gradient ascent:

al « at~! + Vo L(ht, &) = at~! _’_né(i;:w)

p
d(—H(at),ue’pz{aiaiE[671], i%:p}’
U,
Solver approximately solves for the current partition:
ht + M(&)
end for

Return: Classifier AT

The proposed Algorithm 1 is an instantiation of Algorithm
3 in (Chen et al., 2017) for oracle efficient improper robust
optimization with infinite loss sets. To implement the pro-
jection operator Huw (+), we use a variant of the algorithm
proposed in (Duchi et al., 2008) for projections onto the sim-
plex that also contemplates the hypercube constraint [e, 1].
This projection update only requires access to the last risk
evaluation on each sample during the training stage, making
it a scalable and lightweight addition to the standard super-
vised training scenario. We can then immediately leverage
the results in Theorem 7 in (Chen et al., 2017) to show that
the algorithm converges.

Lemma 4.3. Consider the setting of Algorithm I, with

_ el g o
parameter ¢ > 0, and n = arggfﬂ T < V55 with
Uep = {a: o € [e,1],>, % = p}, and L a 1-Lipschitz

function w.r.t. o, let P be a uniform distribution over the set
of models {h', ... hT}, and let R* be the minimax solution
to the loss presented in Eq. 9. Then we have

2np
< * —_—
arggfp ErwpL(h, o) < AR* 44/ T

As in (Chen et al., 2017), we use h” instead of the ensemble
{h',...,hT}. We use stochastic gradient descent (SGD)

8this produces an hypothesis with up to -y times more risk than
the optimal solution for parameter o

as our ~y-approximate Bayesian oracle, in practice, we al-
ternate a single epoch of SGD with the adversary update
for simplicity. We note that the 1-Lipschitz constraint can
be relaxed to any G-Lipschitz function by working through
the no regrets guarantees for projected gradient descent of
G-Lipschitz functions in the proof provided in (Chen et al.,
2017).

Figure 2 shows how the performance of the recovered clas-
sifiers (trained for a given partition size p) is optimal for its
own partition size, but sub-optimal for other p values. These
curves give a better picture on how risks are being traded
off across samples.
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Figure 2. Crossentropy and error rates of BPF classifiers for vary-
ing (evaluation) partition sizes p evaluated on the UCI Adult
dataset. Each individual curve denotes the performance of a unique
BPF classifier, trained for a particular p, across a range of eval-
uation partition sizes on the test set. The uniform classifier is
shown for reference. We observe how performance is traded off
between low and high risk groups for varying partition sizes, in
particular, smaller training partition sizes yield uniformly worse
performance on the best group, no matter the evaluation partition
size. Conversely, optimality on the worst group is dependent on
how matched the train and test partition sizes are.

Generalization

For a fixed, known distribution p(A=1|X,Y) it is straight-
forward to prove the following PAC bound for 71 (h).

Lemma 4.4. Given p(A = 1|X,Y) > VXY,
p(A = 1) = p, and a bounded loss function
0 < Uh(X),Y) < CVX,Y,h we denote the ex-
pected and empirical importance weighted risk as

ri(h) = EX,y[%f(h(X),Yﬂ and 71 (h

~—
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Dy %‘Z’%’i)ﬁ(h(xi), y;) respectively. Where h € H
and |H| is the dimension of the hypothesis set. Under these
conditions, the following PAC bound holds

C
P — ) > 2
I,?eagh“l(h) F1(h)| > 5

log (2[#/9)

<4
2n -

We observe that the upper bound on the generalization error
P(A=1X.Y) .o
p(A=1)

upper bound by %. Note that, for the special distribution
presented in Lemma 3.2, there is no generalization error
since the risk of the resulting classifier is, by construction,
distribution invariant. Although this is the case for small p
values in ideal scenarios, in practice we may still be able to
over-fit to a small fraction of our samples in a way that still
leads to larger-than-random errors in test samples.

degrades for small p values, since the ratio

5. Experimental Results

We experimentally validate our methods and theoretical
results on a variety of standard datasets, we compare perfor-
mance against DRO (Hashimoto et al., 2018), ARL (Lahoti
et al., 2020), and a baseline classifier (empirical risk mini-
mization). We show the trade-offs of each method on their
worst group and the remaining population. As presented
below (see Figure 3), the baseline method performs best on
the low-risk population, but it suffers from large, fat tails
in terms of loss distribution. We also show how both DRO
and BPF empirically achieve the theoretical results laid in
Lemma 3.2, with BPF having better results on the low-risk
population than DRO, owing to the Pareto optimality con-
straint. Moreover, if the adversary’s network on the ARL
framework is given enough capacity, it degrades to the uni-
form (trivial) solution presented in Lemma 3.2 since it does
not control for other restrictions on the partitions learned
(e.g., group size). We also show that the performance of
ARL can vary with adversarial network capacity (e.g., depth
and width of the network). However, translating this to the
effective size of the worst case partition being optimized is
not easy to interpret or evaluate beforehand.

Datasets. We used four standard fairness datasets for com-
parison. The UCI Adult dataset (Dua & Graff, 2017) which
contains 48, 000 records of individual’s annual income as
well as 13 other attributes, including race, gender, relation-
ship status, and education level. The target task is income
prediction (binary, indicating above or below 50K’). The
Law School dataset (Wightman, 1998) contains law school
admission data used to predict successful bar exam candi-
dates; in our examples we limit ourselves to UGPA, LSAT
scores and family income as input covariates. The COMPAS
dataset (Barenstein, 2019) which contains the criminal his-
tory, serving time, and demographic information such as sex,

age, and race of convicted criminals. The goal is prediction
of recidivism per individual.” Lastly we used the MIMIC-III
dataset, which consists of clinical records collected from
adult ICU patients at the Beth Israel Deaconess Medical
Center (Johnson et al., 2016). The objective is predicting
patient mortality from clinical notes. We analyze clinical
notes acquired during the first 48 hours of ICU admission
following the pre-processing methodology in (Chen et al.,
2018), ICU stays under 48 hours and discharge notes are ex-
cluded from the analysis. Tf-idf statistics on the 1, 000 most
frequent words in clinical notes are taken as input features.

UCT Adult

Law school Compas MIMIC-III
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Figure 3. Cross-entropy (CE) and error rate (Error) metrics on best
and worst groups as a function of group size for BPF, DRO, ARL,
and baseline classifiers; results for very high capacity adversarial
networks for ARL (ARL HC) are also shown, random classifier
shown for reference. Results are provided for UCI adult, law
school, COMPAS, and MIMIC-III datasets. Cross-entropy of both
ARL and baseline classifiers for the worst group are very large for
small group size, DRO and BPF both approximate the theoretical
result shown in Lemma 3.2. The main experimental difference
between DRO and the proposed BPF is that BPF exhibits better
results on the best group partition than DRO for the same level of
worst group performance, owing to the Pareto restriction on the
BPF classifier resulting in no-unnecessary-harm for any group (see
also Figure 1). Error results largely mimic the observations on the
cross-entropy metric. Results are reported on held out (test) data.

This dataset is the source of extensive and very legitimate
controversy in the fairness community, and is here used for bench-
marking only.
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Setup and Results. We train BPF for 18 minimum group
sizes p = {0.05,...,0.9} and ¢ = 0.01, we report cross-
entropy loss and error rate,'” on the worst partition of the
dataset (i.e., average over the worst 100 x p% samples based
on cross-entropy loss), the values for the remaining low risk
group is also reported to evaluate optimality. DRO models
were trained on 18 equispaced values of their threshold pa-
rameter (1) € [0, 1]). For ARL, we tried four configurations
for their adversarial network (adversary with 1 or 2 hidden
layers with 256 or 512 units each), we additionally evalu-
ated the same setup when the ARL adversary has access
to the learned features of the classifier network, this setup
still falls within the computationally identifiable scenario
in their work, but offers a more challenging adversary, we
denote these latter experiments as (ARL HC). The classifier
architecture for BPF, ARL, and DRO was standardized to
a single-layer MLP with 512 hidden units. In all cases we
use cross-entropy loss and same input data. Results cor-
respond to the best hyper-parameter for each group size;
mean and standard deviations are computed using 5-fold
cross-validation, all figures are reported on held out (test)
data. Further implementation details are provided in Sup-
plementary Material, Section A.4.

Figure 3 shows the performance of the best and worst groups
across partition sizes. Both DRO and BPF recover results
close to the random classifier for the smaller group sizes,
which aligns with the results shown in Lemma 3.2, that
is, below a certain partition size (e.g., p ~ 0.3 for adult
dataset) the average cross-entropy of the worst group is the
risk of the uniform classifier (log2). We observe that the
performance of ARL seems to be dataset dependent, but is
generally able to reduce worst-case risks w.r.t. the baseline
classifier for small partition sizes. The high capacity ARL
(ARL HC) behaves as expected in most cases, producing re-
sults much more closely aligned with the uniform classifier,
this supports our theoretical results stating that an uncon-
strained adversary should converge to the uniform classifier.
Altogether, both BPF and DRO have the best performance;
they are consistently able to recover the best worst group
risk, and do well on preserving performance on the remain-
ing samples. BPF also provides an explicit description of
the worst group partition, and the option to control trade-
offs between groups with the use of the ¢ parameter. In
some situations, the difference between these two methods
can become more pronounced, but this is dataset depen-
dent. Additional details on this comparison are provided in
Supplementary Material, Section A.2.

Although none of the compared models address disparities
along predefined populations, we can nonetheless observe
how each classifier performs on these groups. Table 1 shows

Error rate is computed on the randomized classifier Y ~
h(X).

accuracy conditioned on different demographics for each
competing method on the Adult dataset. We observe that
the different methods achieve results close to the uniform
classifier for small partition sizes as expected. In many
cases, the results for BPF are better than ARL and DRO for
each protected attribute (at same p value). We also observe
that on several minorities, the BPF model provides the best
utility values out of all the competing methods, BPF is also
the best model at preserving worst group performance.

Table 2 shows how target labels and predefined sensitive
groups are represented in the high risk group identified by
BPF, values reported on held out data. We observe that, for
low partition sizes, outcomes are balanced across groups
(in concordance with Lemma 3.2). As the partition size
increases, the composition of the high risk group becomes
more similar to the base distribution. Similar results to
tables 1 and 2 are provided in Supplementary Material A.3
for the remaining datasets.

Method/p  White  Black  Asian-Pacl  Other
Prop(%) 85.6%  9.6% 2.9% 1.8%
ARL .15  49.1% 51.9% 50.2% 52.8%
DRO .15  50.5% 50.0% 49.5% 50.1%
BPF .15 52.3% 52.5% 51.0% 53.5%
ARL .35  60.3% 65.9% 59.5% 63.8%
DRO .35 57.4% 59.4% 57.3% 59.5%
BPF .35 65.0% 69.7% 64.1% 68.5%
ARL .45  68.6% 77.5% 68.6% 74.3%
DRO .45  80.2% 88.0% 79.1% 86.9%
BPF 45  80.2% 88.0% 79.1% 86.9%

Table 1. Accuracy across demographic partitions (groups given no
special consideration by the algorithms) in the Adult dataset for
ARL, DRO and BPF models for varying partition sizes.

Group Prop(%) BPF.15 BPF.35 BPF .45
Proportion on Worst Partition, Ethnicity/Income
White/0 64.2 43.8 44.8 53.5
White/1 21.4 453 449 35.6
Black/0 8.5 2.7 3.0 4.6
Black/1 1.1 2.9 2.5 1.8
Asian-Pacl/0 2.1 1.8 1.7 1.9
Asian-Pacl/l 0.8 2.0 1.8 1.4
Other/0 1.5 0.4 0.4 0.8
Other/1 0.3 1.0 0.8 0.5

Table 2. Demographic composition of worst groups as a function
of minimum partition size on the Adult dataset. BPF homogenizes
outcomes across partitions and protected attributes. For larger
group sizes, the demographics of the partition approach that of the
baseline population.
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6. Discussion

In this work we formulate and analyze subgroup robustness,
particularly in the context of fairness without demographics
or labels. Our goal is to recover a model that minimizes
the risk of the worst-case partition of the input data subject
to a minimum size constraint, while we additionally con-
strain this model to be Pareto efficient w.r.t. the low-risk
population as well. This means that we are optimizing for
the worst unknown subgroup without causing unnecessary
harm on the rest of the data. We show that it is possible to
protect high risk groups without explicit knowledge of their
number or structure, only the size of the smallest one, and
that there is a minimum partition size under which the ran-
dom classifier is the only minimax option for cross-entropy
and Brier score losses.

We propose BPF, an algorithm that provably converges to
a properly Pareto minimax solution, it requires minimal
modifications to the standard learning pipeline of a standard
model, and can scale easily to large datasets. Our results on a
variety of standard fairness datasets show that this approach
reduces worst-case risk as expected, and produces better
models than competing methods for the low-risk population,
thereby avoiding unnecessary harm. It identifies high risk
samples and is easy to interpret since the user can control the
optimal adversary through the use of a target worst partition
size.

If a policymaker has a desired risk tradeoff instead of a
target group size, we can search for the smallest partition
size achieving this tradeoff using the proposed BPF; this
now guarantees that the recovered model can satisfy this
risk tradeoff for the worst possible partition up to size p,
and for any smaller partition size there exists a partition
such that this tradeoff is violated. Moreover, the tradeoffs
between the worst and best group for a fixed group size p
can be controlled with the weight’s lower bound e.

Future work includes incorporating additional domain-
specific constraints on the worst partition and developing an
algorithm that combines BPF with knowledge about some
subgroups that must be protected as well.
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