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Abstract
We study the identification of direct and indirect
causes on time series with latent variables, and
provide a constrained-based causal feature selec-
tion method, which we prove that is both sound
and complete under some graph constraints. Our
theory and estimation algorithm require only two
conditional independence tests for each observed
candidate time series to determine whether or not
it is a cause of an observed target time series. Fur-
thermore, our selection of the conditioning set
is such that it improves signal to noise ratio. We
apply our method on real data, and on a wide
range of simulated experiments, which yield very
low false positive and relatively low false negative
rates.

1. Introduction
Causal feature selection in time series is a fundamental
problem in several fields (i.e. biology, economics, climate
research (Runge et al., 2019a)). Often the causes of a target
time series need to be detected from a pool of candidate
causes with latent confounders.

While Granger causality (Wiener, 1956; Granger, 1969;
1980) (see def. 3. in Appendix) has been the standard ap-
proach to causal analysis of time series since half a century,
several issues caused by violations of its assumptions (causal
sufficiency, no instantaneous effects) have been described
in the literature (Peters et al., 2017). Several approaches
addressing these problems have been proposed during the
last decades (Hung et al., 2014; Guo et al., 2008). Never-
theless, causal inference in time series is still challenging
without an efficient solution yet, despite the fact that the
time order of variables provide information about the direc-
tion of some edges (Pearl, 2009; Spirtes et al., 1993). The
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discovery of the causal graph from data is largely based on
the graphical criterion of d-separation formalizing the set
of conditional independences (CI) to be expected, based on
the causal Markov condition and causal faithfulness (Spirtes
et al., 1993) (See definitions in App. Sec. 3).

Several authors showed how to derive d-separation based
causal conclusions in time series beyond Granger’s work.
The majority of these works focuses on full graph discov-
ery with conclusions up to Markov-equivalent classes. The
remaining works focus on the problem of causal feature
selection, which means the detection of direct and indirect
causes of a given target time series. In the former group
belong methods such as tsFCI (Entner & Hoyer, 2010) and
SVAR-FCI (Malinsky & Spirtes, 2018), which are inspired
by the FCI algorithm (Spirtes et al., 1993) and the work
from (Eichler, 2007) and (Moneta et al., 2011) (see also
(Runge, 2018; Runge et al., 2019a)). These methods do not
assume causal sufficiency, and as such they need extensive
CI testing. These methods are computationally intensive
with exhaustive searching over all lags and conditioning
sets. Another method of this first group is PCMCI ((Runge
et al., 2019b)), which although it reaches lower rates of false
positives compared to classical Granger causality, it still
relies on the assumption of causal sufficiency. The most
known method among those that focus on the causal feature
selection (latter group) is seqICP (Pfister et al., 2019). How-
ever, seqICP requires sufficient interventions in the dataset,
which should affect only the input and not the target. This
requirement is hard to be met in problems where only ob-
servational data are available. Moreover, in the presence of
hidden confounders, seqICP will detect only a subset of the
ancestors of the target time series.

Here, we focus on the problem of causal feature selection
in time series based on solely observational data, without
assuming causal sufficiency. Under some connectivity as-
sumptions, we construct conditions, which we prove to be
sufficient for direct and indirect causes, and necessary for
direct unconfounded causes, even in the presence of latent
confounders. In contrast to other CI based methods, our
method directly constructs the right conditioning set, with-
out searching over a large set of possible combinations. It
thus avoids statistical issues of multiple hypothesis testing.
In contrast to seqICP, given our assumptions, we prove that
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our method will detect all the unconfounded direct causes of
the target without requiring interventions in the dataset. We
provide experimental results on simulated graphs of vary-
ing numbers of observed and hidden time series, density
of edges, noise levels, and sample sizes. We show that our
method leads to almost zero false positives and relatively
low false negative rates, even in latent confounded environ-
ments, thus outperforming Granger causality among other
methods. Finally, we achieve meaningful results even on
experiments with real data where we cannot validate our
graph assumptions. We call our method SyPI as it performs
a Systematic Path Isolation for causal feature selection in
time series.

2. Theory and Methods
We are given observations from a univariate target time
series Y := (Yt)t∈Z whose causes we wish to find,
and observations from a multivariate time series X :=
((X1

t , . . . , X
d
t ))t∈Z of potential causes (candidates). Also,

we allow an unobserved multivariate time series Ut :=
((U1

t , . . . , U
m
t ))t∈Z, which may act as common cause of the

observed ones; as such, we do not assume causal sufficiency.
We use Qi

t, i, t ∈ Z to refer to any node when we need
not specify if it belongs to an observed or unobserved time
series. * We introduce the following terminology to describe
the causal relations among X,U, Y :

Terminology-Notation:

T1 full time graph is the infinite DAG having Xi
t , Yt and

U j
t as nodes.

T2 summary graph is the directed graph with nodes Q ∈
(X1, ..., Xd, U1, ..., Ud, Y ) containing an arrow fromQj

to Qk for j 6= k whenever there is an arrow from Qj
t to

Qk
s for t ≤ s ∈ Z. (Peters et al., 2017)

T3 Qi
t → Qj

s for t ≤ s ∈ Z means a directed path that
does not include any intermediate observed nodes in
the full time graph (confounded or unconfounded).

T4 Qi
t 99K Q

j
s for t ≤ s ∈ Z in the full time graph means

a directed path from Qi
t to Qj

s.

T5 A confounding path between Qi
t and Qj

s in the full
time graph is a path of the form Qi

t L99 Qk
t′ 99K Q

j
s,

t′ ≤ t, s ∈ Z consisting of two directed paths and a
common cause of Qi

t and Qj
s.

T6 A confounded path is an arbitrary path between two
nodes Qi

t, Qj
s in the full-time graph that coexists with

a confounding path between Qi
t andQj

s.

*Since there can only be one target time series Y , by overload-
ing the notation, we use Q to refer to X or U when we already
refer to target’s nodes by Y (Fig. 1).

T7 An sg-unconfounded (summary graph unconfounded)
causal path is a causal path in the full time graph that
does not appear as a confounded path in the summary
graph .

T8 v is a lag for the ordered pair of a time series Xi and
the target Y (Xi, Y ) if there exists a collider-free path
Xi

t - - -Yt+v that does not contain a link of this form
Qr

t′ → Qr
t′+1, with t′ arbitrary, for any r 6≡ i, j, nor

any duplicate node, and any node in this path does not
belong to Xi, Y . See explanatory Figure 1.

T9 We say that a set of time series (X, Y ) have single-lag
dependencies if all the Xi ∈ X have only one lag v for
each pair Xi, Y . Otherwise we refer to multiple-lag
dependencies.

Figure 1 shows some example graphs and the lags between
the candidate and the target time series, based on the defini-
tion T8. The integers defined by the highlighted green path
betweenXi and Y in graphs (a) and (b) are example lags for
the single-lag (a) and multi-lag graph (b) accordingly, while
the path in (c) does not define a lag because it contains a link
Qr

t+1 → Qr
t+2. If the links between the time series were

direct links, then the correct lag for (Xi, Y ) in (c) would be
2.

We now assume that the graph satisfies the following as-
sumptions.

Assumptions:

A1 Causal Markov condition in the full time graph.

A2 Causal Faithfulness in the full time graph.

A3 No backward arrows in time Xi
t′ 6→ Xj

t ,∀t′ > t

A4 Stationary full time graph: the full time graph is in-
variant under a joint time shift of all variables

A5 The full time graph is acyclic.

A6 The target time series Y is a sink node.

A7 There is an arrow Xi
t−1 → Xi

t , Yt−1 → Yt∀i, t ∈ Z.
Note that arrows U i

t−1 → U i
t need not exit, we then

call U memoryless.

A8 There are no arrows Qi
t−s → Qi

t for s > 1.

A9 Every variable U i that affects Y directly (no interme-
diate observed nodes in the path in the summary graph)
or that is connected with an observed collider in the
summary graph should be memoryless (U i

t−1 6→ U i
t )

and should have single-lag dependencies with Y in the
full time graph.†

†Note that this assumption is only required for the complete-
ness of the algorithm against direct false negatives (Theorem 2).
The violation of this assumption does not spoil Theorem 1a/1b.
The existence of a latent variable with memory affecting the
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3 is not a lag

(a) (b) (c)

Figure 1. In (a) we have a single lag depedendency graph, and the integer 2 is the lag for (Xi, Y ). (b) shows a multi-lag dependency
graph where both integers 1 and 2 are lags for (Xi, Y ). On the contrary, the red coloured path in (c) that corresponds to the integer 3 is
not a lag, because it contains the link Qr

t+1 → Qr
t+2.

Note that the first five are usually standard assumptions of
time series analysis and causal discovery, while assumptions
A6 - A9 impose some restrictions on the connectivity of the
graph. We further discuss about the assumptions in Section
5.

Below, we present three theorems for detection of causes in
the full time graph. Theorem 1a provides sufficient condi-
tions for direct and indirect sg-unconfounded causes in
single-lag dependency graphs. Theorem 1b provides suf-
ficient conditions for direct and indirect causes in multi-
lag dependency graphs. Theorem 2 provides necessary
conditions for identifying all the direct sg-unconfounded
causes of a target time series in single-lag dependency
graphs, assuming the imposed graph constraints.

Intuition for proposed conditions in Theorems 1a/1b
and 2: The idea is for each candidate time series Xj to
isolate paths of the formXj

t−1 → Xj
t −−−Yt+wj

, wj ∈ Z,
where no more than one observed node from each time series
belong in ’−−−’, in the full time graph, and extract triplets
(Xj

t−1, X
j
t , Yt+wj ) as in (Mastakouri et al., 2019) (orange

triplet Fig.2). This way we can exploit the fact that if there
is a confounding path between Xj

t and Yt+wj
, then Xj

t will
be a collider that will unblock the path between Xj

t−1 and
Yt+wj when we condition on it. (Mastakouri et al., 2019)
proposed sufficient conditions for causal feature selection in
a DAG (no time-series) where a cause of a potential cause
was known or could be assumed due to time-ordered pair of
variables. Our goal here is to propose both necessary and
sufficient conditions which will identify whether Xj 99K
Yt+wj as in Fig. 2, orXj L99 U 99K Yt+wj . To achieve that,
we need for each candidate time series a conditioning set that
will allow us to isolate the path of interest. As an example,
Fig. 2 depicts with purple the nodes that will consist the
conditioning set for the candidate Xj , as we propose in the

target time series Y directly, or of a latent variable affecting
directly the target with multiple lags renders impossible the ex-
istence of a conditioning set that could d-separate the future of the
target variable and the past of any other observed variable.

Theorems below. Fig. 2 visualizes why time-series raise an
additional challenge for identifying sg-unconfounded causal
relations. While the influence of Xj on Y is unconfounded
in the summary graph, the influence Xj

t → Yt+1(≡ Yt+wj
)

is confounded in the full time graph due to its own past; for
example Xj

t and Yt are confounded by Xj
t−1.

onditioning set (a) (b)

Figure 2. An example full-time graph (a) of 2 observed, 1 poten-
tially hidden and 1 target time series. Identifying sg-unconfounded
causal paths in time series is a challenge, as the past of each series
introduces dependencies that are not visible in the summary graph
(b).

Therefore we need to condition on Yt(≡ Yt+wj−1) to re-
move past dependencies. If no other time series were present,
that would be sufficient. However, in the presence of other
time series affecting the target Y , Yt+wj−1 becomes a col-
lider that unblocks dependencies. If, for example, we want
to examine Xi as a candidate cause, we need first to con-
dition on Yt+wi−1 ≡ Yt+1, which is the past of the Yt+wi .
Following, we need to condition on one node from each
time series X \Xi that enter Yt+wi−1 ≡ Yt+1 (which is a
collider) to avoid all the dependencies that might be created
by conditioning on it. It is enough to condition only on these
nodes for the following reason: If a node Xj 6=i has a wj

lag-dependency with Y , then there is an (un)directed path
from Xj

t+wi−wj−1 to Yt+wi−1. If this path is a confound-

ing one, then conditioning on Xj
t+wi−wj−1 is not necessary,

but also not harmful, because the future of this time se-
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ries in the full graph is still independent of Yt+wi
. This

independence is forced by the fact that the Xj
t+wi−wj

is
a collider because of the stationarity of graphs and this
collider is by construction not in the conditioning set. If
Xj , j 6= i is connected with Yt+wi−1 via a directed link
(as in fig. 2), then conditioning on Xj

t+wi−wj−1 is neces-
sary to block the parallel path created by its future values
Xj

t+wi−wj−1 → Xj
t+wi−wj

99K Yt+v. Based on this idea
of isolating the path of interest, we build the conditioning
set as described in Theorem 1a/1b and its almost converse
Theorem 2, where we prove the necessity and sufficiency of
their conditions.

Theorem 1a. [Sufficient conditions for a direct or indirect
sg-unconfounded cause of Y in single-lag dependency
graphs] Assuming A1-A5, A7 and A8 and single-lag depen-
dency graphs, let wi be the minimum lag (see T8) between
Xi and Y . Further, let wij := wi − wj . Then, for every
time series Xi ∈ X we define a conditioning set Si =
{X1

t+wi1−1, X
2
t+wi2−1, ..., X

i−1
t+wi,i−1−1, X

i+1
t+wi,i+1−1,

..., Xn
t+win−1}.

If
Xi

t 6⊥⊥ Yt+wi
| {Si, Yt+wi−1} (1)

and
Xi

t−1⊥⊥ Yt+wi | {Si, Xi
t , Yt+wi−1} (2)

are true, then
Xi

t 99K Yt+wi

and the path between the two nodes is sg-unconfounded.

Proof. (Proof by contradiction)
We need to show that in single-lag dependency graphs,
if Xi

t 699K Yt+wi or if the path Xi
t 99K Yt+wi is sg-

confounded then at least either (1) or (2) is violated.

First assume that there is no directed path between Xi
t

and Yt+wi : Xi
t 699K Yt+wi . Then, there is a confounding

path Xi
t L99 Qj

t′ 99K Yt+wi
, t′ ≤ t without any collid-

ers. (Colliders cannot exist in the path by the definition of
the lag T8.) In that case we will show that either condi-
tion 1 or 2 is violated. If all the existing confounding paths
Xi

t L99 Qj
t′ 99K Yt+wi , t

′ ≤ t contain an observed con-
founder Qj

t′ ≡ Xj
t′ ∈ {Si, Yt+wi−1} (there can be only

one confounder since in this case there are no colliders
in the path), then condition 1 is violated, because we con-
dition on Xj

t′ which d-separates Xi
t and Yt+wi . If in all

the existing confounding paths the confounder node Qj
t′ 6∈

{Si, Yt+wi−1}, t′ ≤ t but some observed non-collider node
is in the path and this node belongs to {Si, Yt+wi−1}, then
condition 1 is violated, because we condition on Si which
d-separates Xi

t and Yt+wi
. If there is at least one con-

founding path and its confounder node does not belong
in {Si, Yt+wi−1} and no other observed (non-collider or
descendant of collider) node which is in the path belongs in

{Si, Yt+wi−1} then condition 2 is violated for the follow-
ing reasons: Let’s name p1 : Xi

t L99 Qj
t′ 99K Yt+wi , t

′ ≤ t.
We know the existence of the path p2 : Xi

t−1 → Xi
t , due to

A7.

(1I) If p1 and p2 have Xi
t in common, then Xi

t is a collider.
Thus, adding Xi

t in the conditioning set would unblock
the path between Xi

t−1 and Yt+wi
.

(1II) If p1 and p2 have Xi
t−1 in common, that means Xi

t−1
lies on p1. Thus Xi

t is not in the path from Xi
t−1 to

Yt+wi
and hence adding Xi

t to the conditioning set
could not d-separate Xi

t−1 and Yt+wi
.

In both cases condition 2 is violated.
Now, assume that there is a directed path Xi

t 99K Yt+wi
but

it is “sg-confounded” (there exist also a parallel confounding
path p3 : Xi

t L99 Qj
t′ 99K Yt+wi , t

′ ≤ t. Then, if p3 and
p2 have Xi

t in common, then condition 2 is violated due
to (1I). If p3 and p2 have Xi

t−1 in common, then condition
2 is violated due to (1II). In all the above cases we show
that if conditions 1 and 2 hold true in single-lag dependency
graphs, then Xi

t is an “sg-unconfounded” direct or indirect
cause of Yt+wi .

Theorem 1b. [Sufficient conditions for a (possibly
confounded) direct or indirect cause of Y in multi-
lag dependency graphs] Assuming A1-A5, A7 and
A8, and allowing multi-lag dependency graphs, let
wi be the minimum lag (see T8) between Xi and Y .
Further, let wij := wi − wj . Then, for every time
series Xi ∈ X we define a conditioning set Si =
{X1

t+wi1−1, X
2
t+wi2−1, ..., X

i−1
t+wi,i−1−1, X

i+1
t+wi,i+1−1,

..., Xn
t+win−1}.

If conditions 1 and 2 of Theorem 1a hold true for the pair
Xi

t , Yt+wi
, then

Xi
t 99K Yt+wi

We can think of Si as the set that contains only one node
from each time series Xj and this node is the one that
enters the node Yt+wi−1 due to a directed or confounded
path (if wj exists then the node is the one at t+ wij − 1).

Proof of Theorem 1b is provided in Sec. 6.2 of the Appendix,
following similar logic with the proof of Theorem 1a.
Remark 1. Theorem 1b conditions hold for any lag as
defined in T8; not only for the minimum lag.
Theorem 2. [Necessary conditions for a direct sg-
unconfounded cause of Y in single-lag graphs]

Let the assumptions and the definitions of Theorem 1a hold,
in addition to Assumptions A6 and A9.

IfXi
t is a direct, “sg-unconfounded” cause of Yt+wi (Xi

t →
Yt+wi ), then cond. 1 and 2 of Theorem 1a hold.
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Proof. (Proof by contradiction)
Assume that the direct path Xi

t → Yt+wi exists and it is
unconfounded. Then, condition 1 is true. Now assume that
condition 2 does not hold. This would mean that the set
{Si, Xi

t , Yt+wi−1} does not d-separate Xi
t−1 and Yt+wi

.
Note that a path p is said to be d-separated by a set of nodes
in Z if and only if p contains a chain or a fork such that
the middle node is in Z, or if p contains a collider such that
neither the middle node nor any of its descendants are in the
Z. Hence, a violation of condition 2 would imply that (a)
there is some middle node of a collider or descendant of a
collider in {Si, Xi

t , Yt+wi−1} and no non-collider node in
this path belongs to this set, or (b) that there is a collider-
free path between Xi

t−1 and Yt+wi that does not contain
any node in {Si, Xi

t , Yt+wi−1}.

(a) There is some middle node of a collider or descendant
of a collider in {Si, Xi

t , Yt+wi−1} and no non-collider
node in this path belongs to this set:
(a1:) If there is at least one path p1 : Xi

t−1 99K
Yt+wi−1 L99 Yt+wi where Yt+wi−1 is a middle node
of a collider and none of the non-collider nodes in
the path belong to {Si, Xi

t}: Such a path could be
formed only if in addition to Xi some Qj

t′ directly
caused Y . Then p1 : Xt−1 99K Yt+wi−1 L99 Qj

t′ →
Yt+wi

, t′ ≤ t+ wi. (Due to our assumption for single-
lag dependencies (see T9) a path of the form Xt−1
99K Yt+wi−1 L99 Xi

s − − − Yt+wi could not exist).
Then, due to stationarity of graphs the node Qj

t′−1
will enter Yt+wi−1. If this Qj

t′ is hidden (Qj
t′ ≡ U j

t′),
then due to A9 this time series will be memoryless
(U j

t′−1 6→ U j
t′). Therefore, the collider Yt+wi−1 in

the conditioning set will not unblock any path be-
tween Xi

t−1 and Yt+wi
that could contain U j

s , s > t′.
If Qj

t′ is observed (Qj
t′ ≡ Xj , j 6= i) then due

to A7 the path p1 will be Xi
t−1 99K Yt+wi−1 L99

Xj
t+wij−1 → Xj

t+wij
→ Yt+wi

. However, this path is

always blocked by Xj
t+wij−1 ∈ Si due to the rule we

use to construct Si. That means a non-collider node in
the conditioning set will necessarily be in the path p1,
which contradicts the original statement.

(a2:) If there is at least one path p2 : Xi
t−1 99K X

i
t L99

Yt+wi
where Xi

t is a middle node of a collider and
none of the non-collider nodes in the path belongs
to {Si, Yt+wi−1}: This could only mean that there
is a confounder between the target Yt+wi

and Xi
t .

However this contradicts that Xi
t → Yt+wi

is “sg-
unconfounded”.

(a3:) If there is at least one path p3 : Xi
t−1 99K

Xj
t′ L99 Yt+wi

where Xj
t′ ∈ Si with t′ ≤ t + wi − 1

is a middle node of a collider and no non-collider node
in the path belongs to {Si \Xj

t′ , X
i
t , Yt+wi−1}: In this

case, t′ ≡ t + wij − 1 because Xj
t′ ∈ Si. By con-

struction of Si all the observed nodes in X \Xi that
enter the node Yt+wi−1 belong in Si. That means that
Xj

t′ enters the node Yt+wi−1. Hence, in the path p3
Yt+wi−1 will necessarily be a non-collider node which
belongs to the conditioning set. This contradicts the
original statement “and no non-collider node in the
path belongs to {Si \Xj

t′ , X
i
t , Yt+wi−1}”.

(a4:) If a descendant D of a collider G in the path
p4 : Xi

t−1 99K G L99 C 99K Yt+wi
belongs to

the conditioning set {Si, Xi
t , Yt+wi−1} and no non-

collider node in the path belongs to it: Due to the
single-lag dependencies assumption, wC ≡ wi other-
wise there are multiple-lag effects from C to Y . That
means that, independent of C being hidden or not, the
C in the collider path will enter the node Yt+wi−1.
If C ∈ X then because C enters the node Yt+wi−1,
C ∈ {Si, Xi

t , Yt+wi−1}. In the first case Yt+wi−1
only and in the latter case alsoC are a non-collider vari-
able in the path p4 that belongs to the conditioning set,
which contradicts the statement of (a4). If the collider
G ∈ X, as explained in (a3) at least one non-collider
variable in the path will belong in the conditioning set,
which contradicts the statement (a4). Finally, if G and
C are hidden, if wD ≡ wC then the node Yt+wi−1 is
necessarily in the path as a pass-through node, which
contradicts the statement (a4). If wD 6≡ wC then the
single-lag assumption is violated.

(b) There is a collider-free path between Xi
t−1 and Yt+wi

that does not contain any node in {Si, Xi
t , Yt+wi−1}:

Such a path would imply the existence of a hidden con-
founder between Xi

t−1 and Yt+wi or the existence of
a direct edge from Xt−1 to Yt+wi . The former cannot
exist because we know that Xt is an sg-unconfounded
direct cause of Yt+wi

. The latter would imply that there
are multiple lags of direct dependency between Xt and
Yt+wi

which contradicts the assumption of single-lag
dependencies.

Thus, whenever Xi
t → Yt+wi

is an sg-unconfounded causal
path, conditions 1 and 2 are necessary.

Since it is unclear how to identify the lag in T8, we introduce
the following lemmas for the detection of the minimum lag
that we require in the theorems. We provide the proofs of
the lemmas in Appendix Sec. 2.

Lemma 1. If the paths between Xj and Y are directed
then the minimum lag wj as defined in T8 coincides with the
minimum non-negative integer w′j for which Xj

t 6⊥⊥ Yt+w′
j
|

Xj
past(t). The only case where w′j 6≡ wj is when there is a

confounding path between Xj and Y that contains a node
from a third time series with memory. In this case w′j = 0.
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Lemma 2. Theorems 1a/1b and 2 are valid if the minimum
lag wj as defined in T8 is replaced with w′j from lemma 1.

Algorithm 1 SyPI Algorithm for Theorems 1a/1b, 2.

input X, Y
output causes_of_R
nvars = shape(X, 1), causes_of_R= []
w = min_lags(X, Y )
for i = 1 to nvars do

Si =
nvars⋃

j=1,j 6=i

{Xj
t+w[i]−w[j]−1}

pvalue1 = cond_ind_test(Xi
t , Yt+w[i], [Si, Yt+w[i]−1])

if pvalue1 < threshold1 then
pvalue2
= cond_ind_test(Xi

t−1, Yt+w[i], [Si, X
i
t , Yt+w[i]−1])

if pvalue2 > threshold2 then
causes_of_R = [causes_of_R, Xi

t ]
end if

end if
end for

Using Lemma 1 via lasso regression and the two conditions
in Theorems 1a and 2 we build an algorithm to identify
direct and indirect causes on time series. The input is a 2D
array X (candidate time series) and a vector Y (target), and
the output a set with indices of the time series that were iden-
tified as causes. The complexity of our algorithm is O(n)
for n candidate time series, assuming constant execution
time for the conditional independence test.

3. Experiments
3.1. Simulated experiments

To test our method, we build simulated full-time graphs,
respecting the aforementioned assumptions. We sampled
100 random graphs for the following hyperparameters and
their tested values: # samples ∈ {500, 1000, 2000, 3000},
# hidden variables ∈ [0, 1, 2], # observed variables ∈
[1, 2, 3, 4, 5, 6, 7, 8], Bernoulli(p) existence of edge among
candidate time series ∈ {0.1, 0.15, 0.2, 0.25}, Bernoulli(p)
existence of edge between candidate time series and
target series ∈ {0.1, 0.2, 0.3}, and noise variance ∈
{10%, 20%, 30%}. Although 10 time series (including hid-
den and target) are considered already many in causal dis-
covery for statistical reasons ((Entner & Hoyer, 2010) ran
up to 9, and (Moneta et al., 2011) up to 8 series), for proof of
concept we also examined a combination of 20, and 30 time
series with 5 hidden. We then calculate the false positive
(FPR) and false negative rates (FNR) for the 100 random
graphs. When constructing the time series, every time step
is calculated as the weighted sum of the previous step of
all the incoming time series, including the previous step of
the current time series. The weights of the adjacent matrix

between the time series are uniformly selected in the range
[0.7, 0.95] if they were not set to zero (we thus prevent too
deterministic relationships or too weak edges, which would
result in almost non-faithful distributions) ‡.

The two CI tests are calculated with partial correlation, since
our simulations are linear, but there is no restriction for
non-linear systems (see extension in Sec.5). For the “lag”
calculation step of SyPI, we use lasso in a bivariate form
between each node in X in the summary graph and Y (for
non-linear relationships this step can be replaced with a non-
linear regressor). We fixed the lasso parameters (λ = 0.001
and cut-off threshold for the coefficients = 0.1) once before
running the experiments, without re-adjusting them for the
different types of graphs. While our method is sound for
both single and multi-lag dependency graphs, it is complete
only for the former type. Thus, we simulated the time series
with single-lags for the main core of the experiments. For
completeness, we tested the performance of SyPI even with
multiple lags, which we present in App. Sec. 6.5.4. More-
over, we compared our method to Lasso-Granger (Arnold
et al., 2007) for 2 hidden and 3, 4 and 5 observed time series.
SyPI operates with two thresholds for the p values of the
two tests, threshold1 for rejecting independence in condition
1, and threshold2 for accepting independence in condition
2. Lasso-Granger (Arnold et al., 2007) operates with one
hyper-parameter: the regularizer λ. To ensure a fair compar-
ison, we tuned the λ for Lasso-Granger (not SyPI) such as
to allow it at least the same FNR as SyPI, for same type of
graphs. We did not do the comparison based on matching
FPR, because Lasso-Granger generates many FPs in the
presence of hidden confounders. For all the experiments,
we used threshold1= 0.01 and threshold2= 0.2 for SyPI.
In addition, we produced ROC curves for the two methods
(see App. Sec. 6.6).

Furthermore, we compared SyPI against seqICP (Pfister
et al., 2019) and PCMCI (Runge et al., 2019b). We simulated
10 different combinations (2 to 6 observed and 1 to 2 hidden
series) Finally, we ran 100 simulations for 5 observed, 2
hidden and 1 target time series (only one combination due
to the very long computation time of tsFCI), sample size
2000, medium density and noise to compare SyPI against
the tsFCI (Entner & Hoyer, 2010). For a fair comparison we
used the same thresholds for all the statistical tests of these
methods (threshold1 = threshold2 = α = 0.05).

3.2. Experiments on real-data

We also examined the performance of SyPI on real data,
where we have no guarantee that our assumptions hold true.
We use the official recorded prices of dairy products in Eu-

‡For completeness, weights in the range [0.2, 0.95] were also
tested leading to some increase in FPR, as expected due to faith-
fulness violation.
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rope (EU) (data provided, App. Sec. 6.4). The target of our
analysis was the variable ’Butter’. According to the pro-
duction pipeline described in (Soliman & Mashhour, 2011),
the first material for ’Butter’ is ’Raw Milk’, and ’Butter’ is
not used as ingredient for the other dairy products in the
list (sink node assumption). Therefore, we can hypothesize
that the direct cause of ’Butter’ prices is the ’Raw Milk’,
and that the rest (other cheese, ’WMP’, ’SMP’, ’Whey Pow-
der’) are not causing ’Butter’. We examine three countries,
two of which provide data for ’Raw Milk’ (Germany ’DE’
(8 time series) and Ireland ’IE’ (6 time series)), and one
where these values are not provided (United Kingdom ’UK’
(4 time series)). This last dataset was on purpose selected
as this would be a good realistic scenario of a hidden con-
founder. In that case our method must not identify any cause.
As we have extremely low sample sizes (<180) identifying
dependencies is particularly hard. For that reason we set 0
threshold on our lag detector and the threshold1 at 0.05 for
accepting dependence in condition 1.

4. Results
4.1. Simulated graphs

We tested SyPI for varying edge-density, noise levels, sam-
ple sizes, and number of observed and hidden time series.
Figures 7a-9h in App. Sec. 6.5.1 depict the FPR and FNR for
all these combinations. Overall, SyPI yielded FPR below 1%
for sample size > 500, independent of noise level, density,
or size of the graphs. FNR for the direct causes (indicated
with red) ranges between 12% for small and sparse graphs
and 45% for very large and dense graphs. Fig. 3 shows the
behaviour of our algorithm in moderately dense graphs, for
2000 sample size, 20% noise variance and varying number
of hidden series. We see that the FPR is close to zero, in-
dependent of the number of hidden variables. Although the
total FNR increases with the number of series, the FNR that
corresponds to direct causes (dashed lines), remains below
40%. We focus on the missed direct causes because SyPI is
complete only for the direct ones (see Th. 2). Edge-density
does not seem to affect the rates as shown in App. Sec. 6.5.2.
Finally, as explained on Sec. 3.1 we tested the behaviour
of SyPI on much larger graphs, with 20 and 30 time series
(5 hidden). The FPRwas 0.8%± 2.9 for the 20 series, and
0.8%± 2.3 for the 30. The FNR for the direct causes was
accordingly 22.7%± 20.3 and 15.6%± 18.7.

4.2. Comparison against other methods

First, we compare our algorithm against the widely used
Lasso-Granger method. Fig. 4 shows that even in such con-
founded graphs (2 hidden time series) SyPI yields almost
zero FPR, for similar or even lower total FNR than Lasso-
Granger, which yields up to 16% FPR. Moreover, Fig. 10 in
the Appendix shows that the ROC curve of SyPI is above

the ROC curve of Lasso-Granger for all operating points,
indicating that SyPI outperforms the latter, as expected due
to its robustness to hidden confounders. Figure 5 shows the
comparison of SyPI with PCMCI and seqICP. As we can see,
SyPI has the lowest FPR (< 1.5%) compared to PCMCI and
seqICP for all type of tested graphs, and lower both direct
(20−40%, dashed lines) and total (solid lines) FNR than se-
qICP, which yielded up to 12% FPR and around 95% FNR.
This is not surprising, as with hidden confounders seqICP
will detect only a subset of the ancestors AN(Y). PCMCI
yielded up to 25% FPR and around 25% FNR. Finally, we
compared our method against tsFCI (Entner & Hoyer, 2010)
for one combination due to the very long execution time
tsFCI required (5 observed, 2 hidden, 1 target) over 100
random graphs. SyPI yielded significantly smaller average
FPR than tsFCI with comparable variance (2.8% ± 8.5)
than tsFCI (15.4%± 22.9), yet almost twice as large FNR
(25.1%± 29.5) than tsFCI (13.3%± 24.1).

4.3. Experiments on real data

We applied SyPI on the dairy-product prices for ’DE’, ’IE’
and ’UK’. SyPI successfully identified ’Raw Milk’ as the
direct cause of ’Butter’ in the ’IE’ dataset, correctly rejecting
the remaining 4 nodes (100% TPR, 100% TNR). In ’DE’,
’Raw Milk’ was correctly identified with only one false
positive (’Edam’); the remaining 6 nodes were rejected
yielding 100% TPR and 84% TNR. Most importantly, in
the ’UK’ dataset where no measurements for ’Raw Milk’
were provided (hidden confounder), SyPI correctly did not
identify any cause (100% TNR). Finally, in (Mastakouri
& Schölkopf, 2020) the SyPI method which we present
here, was applied on Covid-19 infections cases yielding
meaningful results on the causal tracking of the pandemic
in Germany, on large graphs with noisy, confounded data.

5. Discussion
5.1. Efficient conditioning set

In contrast to other approaches, and due to the narrower
goal of our method, SyPI does not search over a large set of
possible combinations to identify the right conditioning sets.
Instead, for each potential cause Xi, it directly constructs
its ‘separating set’ for the nodes Xi

t−1 and Yt+wi
(cond. 2),

from a pre-processing step that identifies the nodes that enter
Yt+wi−1 (Si). The resulting set {Si, Yt+wi−1, X

i
t} contains

therefore covariates that enter the outcome node Yt+wi
, and

not the potential cause Xi
t−1. Adjustment sets that include

parents of the potential cause node are considered ineffi-
cient in terms of asymptotic variance of the causal effect
estimate, as they can reduce the variance of the cause if they
are strongly correlated with it, and thus reduce the signal
(Henckel et al., 2019).
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Figure 3. FPR and FNR for varying number of hidden (columns) and observed series (x-axis), noise variance and sample size 2000, for
medium density. FPR is very low (< 1.2%) for any number of hidden series. Although the total FNR increases with the graph size, the
FNR for the direct causes (dashed lines), for which our method is complete, remains < 40%.

Figure 4. SyPI vs Lasso-Granger, for sample size 2000, 2 hidden series, 20% noise variance, for varying number of observed time series
(columns) and edges density (x-axis). As we see, SyPI performs with significantly lower FPR (< 1%) than Lasso-Granger, for similar
or even lower FNR (direct + indirect). In contrast, Lasso-Granger reaches up to 16% FPR. Not tuning λ led to even larger FPR for
Lasso-Granger.

(2, 1) (3, 1) (4, 1) (5, 1) (6, 1) (1, 2) (2, 2) (3, 2) (4, 2) (5, 2)
0.0%

20.0%

FP
R

SyPI

PCMCI

seqICP

(2, 1) (3, 1) (4, 1) (5, 1) (6, 1) (1, 2) (2, 2) (3, 2) (4, 2) (5, 2)
(#observed,#hidden)

0%

100%

FN
R

SyPI direct causes

SyPI direct & indirect

PCMCI

seqICP

Figure 5. Comparison of SyPI against seqICP and PCMCI, for ten types (# observed, # hidden time series) of graphs. FPR and FNR are
reported over 20 random graphs of each type. Our method SyPI has the lowest FPR (< 1.5%) and direct-FNR 20 − 40% (dash line).
SeqICP yielded 12% FPR and 95% FNR. This is not surprising, as with hidden confounders seqICP will detect only a subset of AN(Y ).
PCMCI yielded 25% FPR and 25% FNR for a = 0.05.

Instead, adding nodes that explain variance in the outcome
node -as we do here- can contribute to a better SNR for the
dependences under consideration.

5.2. Non-linear systems & Multiple-lags

SyPI can be used for both linear and non-linear relations
among the time series. For the linear case, a partial corre-
lation test is sufficient to examine the conditional depen-

dencies, while in the non-linear case KCI (Zhang et al.,
2012), KCIPT (Doran et al., 2014) or FCIT (Chalupka et al.,
2018) could be used. Although SyPI is robust against FPs
in “multiple-lags” graphs (see App. Fig. 11), Theorem 2
conditions are necessary only for “single-lags” (see T9). We
could allow for “multiple-lags” if we were willing to condi-
tion on larger sets of nodes, which would significantly affect
the statistical outcome. Right now, we require at most one
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node from each observed time series for the conditioning
set. In a naive approach, n coexisting lags would require n
nodes from each series to be added in the conditioning set.
We further discuss future directions on multiple-lags in App.
Sec. 6.6

5.3. Graph assumptions

Assumptions A1-A4 are often made in most constrained-
based methods on time series. In addition, A7, A8 assure
that X are time series with dependency from their previous
time step. Therefore, although our assumptions seem many,
they boil down to the graphical constraints that are required
to avoid the problem that auto-lag hidden confounders create
by inducing infinite-lag associations. This is a well known
issue in which also (Malinsky & Spirtes, 2018) don’t find
causal relationships as stated in there. The graph simplifi-
cation we impose by A9 aims to avoid this problem. This
is a trade-off that we do not consider extreme, given the
hardness of the problem of hidden confounding and the very
few CI tests that we require. Finally the assumption A6 was
added in order to be able to handle instantaneous effects
with only the two tests that we require. This assumption
could be replaced by a lighter one if we assumed that Y has
no descendants that belong in its set of candidate causes (as
shown in (Mastakouri & Schölkopf, 2020)). An alternative
future step could be to expand the method to check both
directions between target and candidates (candidate feature
→ target and candidate feature ← target). This would of
course result in twice as many tests, but it could replace A6.

5.4. Conclusion

We presented a causal feature selection method for time se-
ries that is build on only two CI-based conditions, which we
proved that are necessary and sufficient for a time series to
causally influence a target one, even in the possible presence
of latent confounders, subject to some connectivity assump-
tions that seemed hard to avoid. The proposed algorithm
scales linearly with the number of time series and requires
a well defined conditioning set that contributes to the SNR.
Our experiments on real data yielded meaningful results and
on simulations particularly low FPR.

References
Arnold, A., Liu, Y., and Abe, N. Temporal causal modeling

with Graphical Granger Methods. pp. 66–75, 2007.

Chalupka, K., Perona, P., and Eberhardt, F. Fast conditional
independence test for vector variables with large sample
sizes. ArXiv, abs/1804.02747, 2018.

Doran, G., Muandet, K., Zhang, K., and Schölkopf, B. A
permutation-based kernel conditional independence test.

In Proceedings of the 30th Conference on Uncertainty in
Artificial Intelligence, pp. 132–141, 2014.

Eichler, M. Causal inference from time series:
What can be learned from Granger causality. In
Proceedings of the 13th International Congress of Logic,
Methodology and Philosophy of Science, pp. 1–12.
King’s College Publications London, 2007.

Entner, D. and Hoyer, P. O. On causal discovery from time
series data using FCI. Probabilistic graphical models, pp.
121–128, 2010.

EU. European union prices of dairy prod-
ucts. https://ec.europa.eu/info/
food-farming-fisheries/farming/
facts-and-figures/markets/prices/
price-monitoring-sector/.

Granger, C. W. J. Investigating causal relations by econo-
metric models and crossspectral methods. Econometrica,
37:424–438, 1969.

Granger, C. W. J. Testing for causality, a personal
viewpoint., volume 2. 1980.

Guo, S., Seth, A. K., Kendrick, K. M., Zhou, C., and Feng,
J. Partial granger causality-Eliminating exogenous inputs
and latent variables. Journal of Neuroscience Methods,
172(1):79 – 93, 2008.
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