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A Completeness conditions
A.1 Completeness condition for continuous and categorical confounder

The following two completeness conditions are necessary for the existence of solution for equation (1) and the consistency of
causal effect inference should a solution exist. They are studied as equations (13) and (16) in Tchetgen Tchetgen et al. (2020).

1. For all g 2 L2
PU

and for any a, x, E[g(U)|a, x, z] = 0 PZ � a.s. if and only if g(U) = 0 PU � a.s. This condition
guarantees the viability of using the solution to (1) to consistently estimate the causal effect. Note that since U is
unobserved, this condition cannot be directly tested from observational data.

2. For all g 2 L2
PZ

and for any a, x, E[g(Z)|a, x, w] = 0 PW �a.s. if and only if g(Z) = 0 PZ �a.s. This is a necessary
condition for the existence of a solution to (1). With access to joint samples of (a, x, w, z), in practice one can validate
whether this condition holds and assess the quality of proxies W, Z with respect to completeness condition. This
assessment is beyond the scope of our study.

For a discrete confounder with categorical proxy variables, the combination of conditions 1 and 2 is equivalent to:

3. Both W and Z have at least as many categories as U .

4. For all (a, x), the matrix P where Pij = p(zi|a, x, wj) is invertible, with zi and wj denoting the ith and jth categories
of Z and W , respectively. Moreover, in the discrete case, this condition is necessary and sufficient for the solvability of
Eq.1 as studied extensively in Miao et al. (2018), Tchetgen Tchetgen et al. (2020).

A.2 Falsifying examples of the completeness condition

In this section we aim to provide intuition about the completeness conditions by giving examples of distributions which
falsify them. For simplicity, we work with the completeness of Z on U , which is the statement:

Z is complete for U if and only if for all g which is square-integrable, E[g(u)|z] = 0 PZ � a.s. if and only if g(u) = 0
PU � a.s.

We proceed to provide examples in which the above statement fails to hold true.

• Trivial example. If Z ?? U , then choose any non-zero square integrable g̃ 2 L2(U) and define g = g̃ � E[g̃(U)].
Clearly g 6⌘ 0, but E[g(U)|Z] = E[g(U)] = E[g̃(U)� E[g̃(U)]] = 0

• Merely requiring that Z and U are dependent is not enough. Let U = (X1, X2) and let Z = (X1, X1) where X1 ?? X2

and X1, X2 ⇠ N (0, 1). Thus U and Z are dependent. But let g(U) = X2, then clearly E[g(U)|Z] = E[X2|Z] =
E[X2] = 0 for all Z almost surely. Thus Z is not complete for U .

• The reader might find the above two examples both trivial since they both require some component of U to be
independent of all components of Z. In the most general setting, the completeness condition is falsified if there is a
g 6⌘ 0 2 L2

PZ
which is orthogonal to ⇢(u|z) for all values of z. This is equivalent to saying that:

Z

U

g(u)⇢(u|z)du = 0 (17)

or, Z

Ug+

g+(u)⇢(u|z)du =

Z

Ug�
g�(u)⇢(u|z)du (18)

PZ � a.s., where g+ and g� denotes the function or space restricted where g is positive or negative, respectively. To
see an example where this scenario can arise, and where all components of Z are correlated with all components of U ,
consider the following. Let U ⇠ N (0, 1). Z = f(U) + N (0, 1) = |U | + N (0, 1), where the added gaussian noise is
independent of U . Let g be a square integrable odd function, that is to say, g(�x) = �g(x).
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Then, we may examine the expectation of g given z as follows:

E[g(U)|z] =

Z
1

�1

g(u)⇢(u|z)du (19)

=

Z 0

�1

g(u)⇢(u|z)du +

Z
1

0
g(u)⇢(u|z)du (20)

=

Z 0

1

�g(�v)⇢(�v|z)dv +

Z
1

0
g(u)⇢(u|z)du (21)

=

Z
1

0
g(�v)⇢(�v|z)dv +

Z
1

0
g(u)⇢(u|z)du (22)

=

Z
1

0
�g(v)⇢(�v|z)dv +

Z
1

0
g(u)⇢(u|z)du (23)

=

Z
1

0
�g(u)⇢(�u|z)du +

Z
1

0
g(u)⇢(u|z)du (24)

where (21) is by taking substitution v = �u, (22) is swapping limit (23) is by oddness of g and (24) is by renaming v
as u.

Now, ⇢(u|z) is symmetric in U , this can be seen by considering ⇢(u|z) = ⇢(z|u)⇢(u)
⇢(z) / ⇢(z|u)⇢(u).

⇢(z|u) is symmetric in u because f(u) = |u| is symmetric; ⇢(u) is symmetric because it is a Gaussian; product of
symmetric functions is symmetric.

Therefore,

(24) =

Z
1

0
�g(u)p(u|z)du +

Z
1

0
g(u)p(u|z)du = 0 (25)

Thus no component of Z is independent of U but Z is not complete for U .

Notice that in this case, we were able to construct such a g because f and ⇢ have the same line of symmetry. Although
this is an interesting example of falsification of the completeness condition, it is perhaps an unstable - i.e. we might be
able to restore completeness if we slightly perturb the line of symmetry of f and ⇢.

Remark 3. We note that although the completeness condition can be broken non-trivially by having a non-empty orthogonal

set of p(u|z) for almost all z, these cases might be unstable i.e. by slightly perturbing the joint distribution ⇢(u, z), so we

hypothesize that the completeness condition is generically satisfied under mild conditions.

B Kernel Proxy Variable
B.1 Notation

1. As HP ⌦HQ is isometrically isomorphic to HPQ, we use their features interchangeably, i.e. �(p, q) = �(p)⌦ �(q).

2. k(., .) is a general notation for a kernel function, and �(·) denotes RKHS feature maps. To simplify notation, the
argument of the kernel/feature map identifies it: for instance, k(a, ·) and �(a) denote the respective kernel and feature
map on A. We denote Kaã := k(a, ã).

3. Kernel functions, their empirical estimates and their associated matrices are symmetric, i.e. Kab = Kba and KT

AA
=

KAA. We use this property frequently in our proofs.

B.2 Problem setting for RKHS-valued h

Recall that to estimate h in (1), KPV aims at estimating Gh(a, x, z) to minimize the empirical risk as:

R̃(h) = EAXZY

h
(Y �Gh(A, X, Z))2

i
, where Gh(a, x, z) :=

Z

W

h(a, x, w)⇢(w | a, x, z)dw
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Since h 2 HAXW by Assumption 9, it follows from the reproducing property and the isometric isomorphism between
Hilbert space of tensor products and product of Hilbert spaces that:

Gh(a, x, z) :=

Z

W

h(a, x, w)⇢(w | a, x, z)dw

=

Z

W

hh, �(a, x, w)iHAXW ⇢(w | a, x, z)dw

=

⌧
h,

Z

W

�(a, x, w)⇢(w | a, x, z)dw

�

HAXW

=

⌧
h,

Z

W

[�(a)⌦ �(x)⌦ �(w)]⇢(w | a, x, z)dw

�

HA⌦HX⌦HW

=

⌧
h, �(a)⌦ �(x)⌦

Z

W

�(w)⇢(w|a, x, z)dw

�

HA⌦HX⌦HW

=
⌦
h, �(a)⌦ �(x)⌦ µW |a,x,z

↵
HA⌦HX⌦HW

(26)

where µW |a,x,z denotes a conditional mean embedding of ⇢W | a,x,z , and we used the Bochner integrability (Steinwart &
Christmann, 2008, Definition A.5.20) of the feature map �(w) to take the expectation inside the dot product (this holds e.g.
for bounded kernels). The regularised empirical risk minimization problem on {(ea, ex, ez, ey)j}m2

j=1 can be expressed as:

e⌘AXW = argmin
⌘2HAXW

eL(⌘), where (27)

eL(⌘) =
1

m

m2X

j=1

⇣
eyj �

⌦
⌘, �(ãj)⌦ �(x̃j)⌦ µW |ãj ,x̃j ,z̃j

↵
HA⌦HX⌦HW

⌘2
+ �2k⌘k2HAXW

with µW |eaj ,exj ,ezj denoting the (true) conditional mean embedding of ⇢W |eaj ,exj ,ezj . We will equivalently use the notation

⌘̃AXW [�(ea)⌦ �(ex)⌦ µW |ea,ex,ez] =
⌦
⌘̃AXW , �(ea)⌦ �(ex)⌦ µW |ea,ex,ez

↵
HAXW

to denote the evalation of ⌘̃AXW at �(ea)⌦ �(ex)⌦ µW |ea,ex,ez .

B.3 A representer theorem expression for the empirical solution

Lemma 3. Let b⌘AXW be an empirical solution of (6), where the population conditional mean µW |eaj ,exj ,ezj is replaced by

an empirical estimate bµW |eaj ,exj ,ezj from (38). Then there exists ↵ 2 Rm1⇥m2 such that:

b⌘AXW =
m1X

i=1

m2X

j=1

↵ij�(eaj)⌦ �(exj)⌦ �(wi). (28)

Proof. Consider first the solution e⌘AXW of (27), where a population estimate of the conditional mean embedding µW |eaj ,exj ,ezj
is used in the first stage. By the representer theorem (Schölkopf et al., 2001), there exists � 2 Rm2 such that

e⌘AXW =
m2X

j=1

�j�(eaj)⌦ �(exj)⌦ µW |eaj ,exj ,ezj . (29)

In practice, we do not have access to the population embedding µW |a,x,z . Thus, we substitute in an empirical estimate from
(36),(38); see Stage 1 in Appendix B.4 for details. The empirical estimate of ⌘ remains consistent under this replacement,
and converges to its population estimate as both m1 and m2 increase (Theorem 2): see Appendix B.8 for the proof.

Substituting the empirical estimate bµW |eaj ,exj ,ezj from (38) in place of the population µW |eaj ,exj ,ezj in the empirical squared
loss (27), then ⌘ appears in a dot product with

m2X

j=1

�(ãj)⌦ �(x̃j)⌦
 

m1X

i=1

�i(eaj , exj , ezj)�(wi)

!

| {z }
bµW |ãj ,x̃j ,z̃j

=
m1X

i=1

m2X

j=1

�i(ãj , exj , z̃j)�(ãj)⌦ �(x̃j)⌦ �(wi) (30)
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In other words, ⌘ in the loss is evaluated at m1⇥m2 samples (ãj , x̃j , wi). We know from the representer theorem (Schölkopf
et al., 2001) that solutions b⌘AXW are written in the span of (�(ãj)⌦ �(x̃j)⌦ �(wi)) , i 2 {1, . . . m1}, j 2 {1, . . . m2}.
The Gram matrix of these tensor sample features, appropriately rearranged, is an (m1m2)⇥ (m1m2) matrix,

Ktot := KWW ⌦ (KAA �KXX) ,

where K is the Kroenecker product. Assuming both KWW and KAA �KXX have full rank, then by (Petersen & Pedersen,
2008, eq. 490), the rank of Ktot is m1m2 (in other words, the sample features used to express the representer theorem
solution span a space of dimension m1m2).

It is instructive to note that any empirical solution to (6) can hence be written as a linear combination of features of HAXW ,
with features of w from sample of the first stage {wi}m1

i=1 and features of a and z from the second stage, {ãj , x̃j}m2
j=1.

Remark: We now provide further insight into the double sum form of (28). For simplicity, assume a single joint sample
{(a, z, x, w, y)i}ni=1, so that m1 = m2 = n. Given this sample, it might be tempting to write the Stage 2 KPV regression
solution as single sum, rather than a double sum:

b⌘inc :=
nX

i=1

↵i�(ai)⌦ �(xi)⌦ �(wi). (31)

Unfortunately, this solution is incomplete, and a double sum is needed for a correct solution. To see this, consider the
subspace spanned by features making up the incomplete solution (�(ai)⌦ �(xi)⌦ �(wi))

n

i=1 in (31). The Gram matrix for
these sample features is

Kinc = KWW �KAA �KXX ,

which has size n⇥ n, and rank at most n (i.e., these features span a space of dimension at most n). Conseqently, the full
Representer Theorem solution b⌘AXW cannot be expressed in the form b⌘inc.

Lemma 4. Let b⌘AXW be expressed as (28). Then, its squared RKHS norm can be written as:

kb⌘AXW k2HAXW =
m1X

i,r=1

m2X

j,t=1

↵ij ↵rt Kwiwr KeajeatKexjext . (32)

Proof. By using the reproducing property and tensor product properties, we have:

kb⌘AXW k2HAXW = hb⌘AXW , b⌘AXW iFAXW

=

*
m1X

i=1

m2X

j=1

↵ij�(eaj)⌦ �(exj)⌦ �(wi),
m1X

r=1

m2X

t=1

↵rt�(eat)⌦ �(ext)⌦ �(wr)

+

FAXW

=
m1X

i,r=1

m2X

j,t=1

↵ij ↵rt Kwiwr KeajeatKexjext , (33)

where FAXW denotes the Frobenius (or Hilbert–Schmidt) inner product. In (33), we have used the known property of tensor
product: ha⌦ b, c⌦ diL2(H1,H2) = ha, ciH1 ⌦ hb, diH2 , where L2(H1, H2) is the space of Hilbert-Schmidt operators from
H1 to H2. Note that since b⌘AXW = �(W )↵⌦ �( eA, eX), its squared norm can also be written in trace form, as:

kb⌘AXW k2HAXW = hb⌘AXW , b⌘AXW iFAXW

= Tr
�
↵TKWW↵(K eA eA �K eX eX)

 
(34)

using the connection between the Trace and Hilbert Schmidt or Frobenius norm and the reproducing property.

B.4 Kernel Proxy Variable Algorithm

In the previous section, we obtained a representer theorem for the form of the solution to (27), in the event that an empirical
estimate bµW |a,x,z is used for the mean embedding µW |a,x,z , the (true) conditional mean embedding of ⇢W |a,x,z .
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We have two goals for the present section: first, to provide an explicit form for bµW |a,x,z (Stage 1). Second, in (Stage 2), to
learn b⌘AXW , using the empirical embedding bµW |a,x,z learned in stage 1. Theorem 2 show that the empirical estimate of ⌘
remains consistent under this replacement and converges to its true value at population level, see Appendix B.8 for details.
Consistent with the two-stages of the algorithm, we assume that the sample is divided into two sub-samples of size m1 and
m2, i.e., {(a, x, z, w)i}m1

i=1 and {(ea, ex, ey, ez)j}m2
j=1.

Stage 1. Estimating Conditional mean embedding operator bCW |A,X,Z from the first sample, {(a, x, z, w)i}m1
i=1.

As stated in Assumption 7, k(a, ), k(x, ), k(w, ) and k(z, ) are characteristic kernels, and are continuous, bounded by  > 0,
and E[

p
k(·, ·)] <1. We may define the conditional mean embedding operator as in Song et al. (2009):

CW |A,X,Z : HAXW 7! HW , CW |A,X,Z(�(a)⌦ �(x)⌦ �(z)) = E[ (W )|a, x, z].

Following Singh et al. (2019, Theorem 1), it can be shown that

bCW |A,X,Z =  (W ) [KAA �KXX �KZZ + m1�1Im1 ]
�1 [�AXZ(A, X, Z)]T , (35)

where KAA, KXX and KZZ are m1 ⇥m1 kernel matrices and  (W ) is a vector of m1 columns, with �(wi) in its ith
column. By definition (Song et al., 2009), bµW |a,x,z := bCW |A,X,Z (�(a)⌦ �(x)⌦ �(z)), and therefore

bµW |a,x,z =
h
 (W ) [KAA �KXX �KZZ + m1�1]

�1 [�(A)⌦ �X (X)⌦⌥(Z)]T
i
(�(a)⌦ �(x)⌦ �(z))

=  (W )�(a, x, z), (36)

where we applied the reproducing property and used isometric isomorphism between Hilbert space of tensor products and
product of Hilbert spaces, i.e. �A⌦X⌦Z(A, X, Z) = �(A)⌦ �X (X)⌦⌥(Z). We defined �(a, x, z) as a column matrix
with m1 rows :

�(a, x, z) = [KAXZ + m1�1]
�1 Kaxz (37)

where KAXZ = KAA � KXX � KZZ and Kaxz = KAa � KXx � KZz are a m1 ⇥ m1 matrix and a column matrix
with m1 rows, respectively. Note that for any given (a, x, z), µW |a,x,z 2 Span{ (W )}, and its empirical estimate can be
expressed as

bµW |a,x,z =
m1X

i=1

�i(a, x, z)�(wi), 8wi 2 {(a, x, z, w)}m1
i=1. (38)

We now detail the second step where we use bµW |a,x,z to learn the operator ⌘ to minimize the empirical loss (6).

Stage 2. Expressing b⌘AXW using {(ea, ex, ey, ez)j}m2
j=1 and Stage 1.

It follows from (28) that for any {(ea, ex, ez)j}m2
j=1 2 (A, X , Z),

⌦
b⌘AXW , �(ea)⌦ �(ex)⌦ bµW |ea,ex,ez

↵
HAXW

=

*
m1X

i=1

m2X

j=1

↵ij�(eaj)⌦ �(exj)⌦ �(wi), �(ea)⌦ �(ex)⌦ bµW |ea,ex,ez

+

HAXW

=

*
m1X

i=1

m2X

j=1

↵ij�(eaj)⌦ �(exj)⌦ �(wi), �(ea)⌦ �(ex)⌦
(

m1X

s=1

�s(ea, ex, ez)�(ws)

)+

HAXW

=

*
m1X

i=1

m2X

j=1

↵ij�(eaj)⌦ �(exj)⌦ �(wi),
m1X

s=1

�s(ea, ex, ez)�(ea)⌦ �(ex)⌦ �(ws)

+

HAXW

=
m1X

i=1

m1X

s=1

m2X

j=1

↵ij�s(ea, ex, ez) h�(eaj)⌦ �(exj)⌦ �(wi), �(ea)⌦ �(ex)⌦ �(ws)iHAXW

=
m1X

i=1

m1X

s=1

m2X

j=1

↵ij�s(ea, ex, ez)k(wi, ws)k(eaj ,ea)k(exj , ex) (39)
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where k(wi, ws), k(eaj ,ea) and k(exj , ex) denote associated kernels for variables w, a and x. The second equation follows
from (4). Substituting the expression of �s(ea, ex, ez) from (37), we have for any (a, x, z):

b⌘AXW [�(ea)⌦ �(ex)⌦ bµW |ea,ex,ez] =
⌦
b⌘AXW , �(ea)⌦ �(ex)⌦ bµW |ea,ex,ez

↵
HAXW

=
m1X

i=1

m2X

j=1

m1X

s=1

↵ijKwiws

n
[KAA �KXX �KZZ + m1�1]

�1 [KAea �KXex �KZez]
o

s

⇥
Keajea �Kexjex

⇤
(40)

with KAA, KXX and KZZ , m1 ⇥m1 matrices of empirical kernels of A, X and Z estimated from sample 1.

Equation (40) can be written in matrix format as:

⌦
b⌘AXW , �(ea)⌦ �(ex)⌦ bµW |ea,ex,ez

↵
HAXW

=
⇥
Kea eA �Kex eX

⇤
↵TKWW {[KAA �KXX �KZZ + m1�w]�1 [KAea �KXex �KZez]}

This format will be convenient when deriving the closed-form solution for ERM (6).

Finally, combining from eq. (40) and (32), the ERM (6) can be written as a minimization over b↵ 2 Rm1⇥m2 :

b↵ = argmin
↵2Rm1⇥m2

bL(↵), bL(↵) =
1

m2

m2X

q=1

0

@eyq �
m1X

i=1

m2X

j=1

↵ijA
q

ij

1

A
2

+ �2

m1X

i,s=1

m2X

j,t=1

↵ij ↵st Bst

ij
, (41)

denoting Aq

ij
and Bst

ij
as

Aq

ij
= {KwiW [KAA �KXX �KZZ + m1�1]

�1 ⇥KAeaq �KXexq �KZezq
⇤
}
⇥
Keajeaq �Kexjexq

⇤
,

Bst

ij
= Kwiws KeajeatKexjext .

A solution b↵ = [b↵ij ]m1⇥m2 can be derived by solving @bL(↵)
@↵

= 0. As such, b↵ is the solution to the system of the m1 ⇥m2

linear equations,

8(i, j) 2 m1 ⇥m2 :
m2X

q

eyq Aq

ij
=

m1X

s

m2X

t

↵̂st

"
m2X

q

Aq

ij
Aq

st
+ m2 �2 Bst

ij

#
(42)

Remark 4. While the system of equations (42) is linear, deriving the solution requires inversion of a m1m2⇥m1m2 matrix.

With a memory requirement of complexity O(m1m2)2 and O(m1m2)3, respectively, this is not possible in practice for even

moderate sample sizes. We provide a computationally efficient solution in the next section.

B.5 Efficient closed-form solution for b⌘AXW : Proof of Proposition 2

As we explained in the previous section, deriving a solution for ↵ – and consequently empirical estimate of ⌘ – involves
inverting a matrix2 Rm1m2⇥m1m2 , which is too computationally expensive for most applications. In this section, we propose
an efficient method for finding b↵. First, we vectorize the empirical loss (6); second, we employ a Woodbudy Matrix Identity.

B.5.1 VECTORIZING ERM (6)

The empirical risk, bL(↵), is a scalar, and it is a function of ↵, a matrix. The idea of this section is to vectorise ↵ as
v := vec(↵), and express empirical loss as a function of v. Naturally, this requires manipulation both the total expected loss
E(Y � bY )2 and the regularisation. In following sections, we show how to express these terms as functions of v := vec(↵).

Lemma 5. Vectorizing b↵ as bv := vec(b↵), the ERM (41) can be expressed as:

bv = argmin
v2Rm1m2

bL(v), bL(v) =
1

m2
kY � vTDk22 + �2v

TEv (43)
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Where:

C = KWW�( eA, eX, eZ) = KWW [KAA �KXX �KZZ + m1�w]�1 ⇥K
A eA �K

X eX �K
Z eZ

⇤
2 Rm1⇥m2 (44)

D = C ⌦
⇥
K eA eA �K eX eX

⇤
2 R(m1m2)⇥m2 (45)

E = KWW ⌦ (K eA eA �K eX eX) 2 Rm1m2⇥m1m2 , (46)

with ⌦ and ⌦ representing tensor (Kronecker) product and tensor product of associated columns of matrices with the same

number of columns, respectively. Vectorization is defined with regards to the rows of a matrix.

Proof. The proof proceeds in two steps. Assume ⌘ can be written as :

⌘ =
m1X

i=1

m2X

j=1

↵ij�(eaj)⌦ �(exj)⌦ �(wi), (47)

for ↵ 2 Rm1⇥m2 . We first show vectorized form of
mP
q=1

(yq � ⌘[�(aq) ⌦ �(xq) ⌦ bµW |aq,xq,zq
])2, and then that of the

regularization term k⌘k2
HAXW

.

Step 1. vectorized form of
mP
q=1

(yq � ⌘[�(aq)⌦ �(xq)⌦ bµW |aq,xq,zq
])2

Let bv := vecc(b↵), where bv is the column-wise vectorization of ↵̂. That is, for A =


a b
c d

�
, the vectorization is vecc(A) =

2

664

a
c
b
d

3

775. It can be shown that for column-wise vectorization of compatible matrices K, L and M , we have:

vec(KLM) = (MT ⌦K)vecc(L) (48)

This equality is known as Roth’s relationship between vectors and matrices. See:(Macedo & Oliveira, 2013, Eq. 82) for
proof of column-wise vectorization. Now, if as a specific case we define:

M := KWW [KAA �KXX �KZZ + m1�w]�1 ⇥KAeaq �KXexq �KZezq
⇤

L := ↵T

K := Keaq
eA �Kexq

eX =
⇣
K eAeaq

�K eXexq

⌘T

;

In this case, KLM is scalar and 2 R and vec(KLM) = vec([KLM ]T ).

Subsequently, we can write:

vec(KLM) = (MT ⌦K)vecc(L) = vecT
c
(L)(M ⌦KT ). (49)

The second equality uses that transposition and conjugate transposition are distributive over the Kronecker product.

By applying (48) to the matrix form of eq. (40), we obtain:

⌘[�(eaq)⌦ �(exq)⌦ bµW |eaq,exq,ezq ]

= vecT (↵)
h
{KWW [KAA �KXX �KZZ + m1�w]�1 ⇥KAeaq �KXexq �KZezq

⇤
}⌦

⇣
K eAeaq

�K eXexq

⌘i
(50)

Notice, that since the column-wise vectorization of a matrix is equal to the row-wise vectorization of its transpose,
vecc(↵T ) = vec(↵) := v.

To derive the vectorized form of (6), (50) can be expanded for (eaq, exq, ezq) for all q 2 {1, ...m2}. Note that in (49), M is the
q-th column of C defined in (44); and K> is the q-th column of K eA eA �K eX eX . To derive the vectorized form of eq. (27),
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we expand the results of (49) to all columns of underlying matrices. We introduce operator ⌦ as a column-wise Kronecker
product of matrices1. Note that this operator is in fact the column-wise Khatri–Rao product.

Finally,
m2X

q=1

�
yq � ⌘[�(eaq)⌦ �(exq)⌦ bµW |eaq,exq,ezq ]

�2
= kY � vT C⌦

⇥
K eA eA �K eX eX

⇤
k22 = kY � vTDk22, (51)

with C and D defined by (44) and (45).

Step 2. Expressing k⌘k2
HAXW

in terms of the vector v

For the regularization term in (6), we use the expression of the norm of ⌘ in matrix terms as presented in (34):

k⌘k2
HAXW =Tr

�
↵TKWW↵(K eA eA �K eX eX)

 

= vec(↵)T vec(KWW↵(K eA eA �K eX eX))

= vec(↵)T {KWW ⌦ (K eA eA �K eX eX)T }vec(↵)

= vT {KWW ⌦ (K eA eA �K eX eX)} v (52)

:= vTEv. (53)

Note that the vectorization is row-wise. In the second equality, we used that Trace(ATB) = vec(A)T vec(B) for two
square matrices A and B of the same size. The third equality is the row-wise expression of Roth’s relationship between
vectors and matrices (see Macedo & Oliveira (2013)).

B.5.2 DERIVATION OF THE CLOSED FORM SOLUTION FOR b⌘

We presented the vectorized form of ERM eq. (6) in Lemma 5. Its minimizer bv is the solution to a ridge regression in Rm1m2

and its closed-form is easily available through:

bv =
n⇥

DDT + m2�2E
⇤�1

D
o

y, (54)

with D and E given by (45) and (46), respectively. The solution still requires inversion of DDT , an m1m2 ⇥m1m2 matrix,
however. In the following, we use the Woodbury identity to derive an efficient closed-form solution for eq. (6).
Lemma 6. The closed form solution in eq. (54) can be rearranged as:

bv =
�
�(A,X,Z)⌦I

�
(m2�2I + ⌃)�1 y 2 Rm1m2 (55)

and ⌃ =
h⇣
�T(eaq,exq,ezq)KWW�(eap,exp,ezp)

⌘
(KeaqeapKexqexp)

i

m2⇥m2

, for p, q 2 {1, . . . , m2}, (56)

where �(a,x,z) := �(a, x, z) is defined in (37). Hence, the closed-form solution for v := vec(↵) only involves the inversion
of an m2 ⇥m2 matrix ⌃.

Proof. We start by applying Woobudy identity to eq. (54):

bv =
n⇥

DDT + m2�2E
⇤�1

D
o

y

= E�1D
⇥
m2�2I + DTE�1D

⇤�1
y (57)

=
�
�(A,X,Z)⌦I

�
(m2�2I + ⌃)�1 y 2 Rm1m2 (58)

and ⌃ =
h⇣
�T(eaq,exq,ezq)KWW�(eap,exp,ezp)

⌘
(KeaqeapKexqexp)

i

m2⇥m2

, for p, q 2 {1, . . . , m2} (59)

The final equality, (58), is the outcome of lemma 7.
1
A⌦B = Ai ⌦Bi for all is, columns of matrices A and B. This operation is equivalent of Kronecker product of columns and requires

matrices A and B to have the same number of columns (but they can have a different number of rows). Note that �( eA, eX, eZ)q
= �eaq ,exq ,ezq

and {K eA eA �O eX eX}q = K eAeaq
�O eXexq

, respectively. This operator allows us to express empirical loss in matrix-vector form.
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Lemma 7. We may write DTE�1D = ⌃, where ⌃ =
h⇣
�T(eaq,exq,ezq)KWW�(eap,exp,ezp)

⌘
(KeaqeapKexqexp)

i

m2⇥m2

, for

p, q 2 {1, . . . , m2}.

Proof. We first show that: E�1D = �( eA, eX,eZ)⌦ Im2⇥m2

E�1D =
�
KWW ⌦ (K eA eA �K eX eX)

��1
⇣
KWW�( eA, eX,eZ)⌦

�
K eA eA �K eX eX

�⌘

=
�
K�1

WW
⌦ (K eA eA �K eX eX)�1

� ⇣
KWW�( eA, eX,eZ)⌦

�
K eA eA �K eX eX

�⌘

=
h
. . . ,

�
K�1

WW
⌦ (K eA eA �K eX eX)�1

� ⇣
KWW�(eaq,exq,ezq) ⌦

⇣
K eAeaq

�K eXexq

⌘⌘
, . . .

i

=
h
. . . ,

�
K�1

WW
KWW�(eaq,exq,ezq)

�
⌦

⇣
(K eA eA �K eX eX)�1

⇣
K eAeaq

�K eXexq

⌘⌘
, . . .

i

=
⇥
. . . ,�(eaq,exq,ezq) ⌦ Iq, . . .

⇤
= �( eA, eX,eZ)⌦ Im2⇥m2

For the third equality, we expand ⌦ in terms of the Kronecker product of associated columns of matrices. We then use the
property of the Kronecker product (A⌦B)(C ⌦D) = (AC)⌦ (BD) for compatible A, B, C, and D.

In the second step, we replace E�1D with its equivalent derived in step one, and show that: DT (E�1D) =

DT

⇣
�( eA, eX,eZ)⌦ Im2⇥m2

⌘
=
h⇣
�T(eaq,exq,ezq)KWW�(eap,exp,ezp)

⌘
(KeaqeapKexqexp)

i

m2⇥m2

. First,

DT

⇣
�( eA, eX,eZ)⌦ Im2⇥m2

⌘
=
�
CT⌦

�
K eA eA �K eX eX

� ⇣
�( eA, eX,eZ)⌦ Im2⇥m2

⌘

=

⇢⇣
KWW�( eA, eX,eZ)

⌘T

⌦
�
K eA eA �K eX eX

��⇣
�( eA, eX,eZ)⌦ Im2⇥m2

⌘

Next, let’s take a closer look at individual elements of the matrix [.]qp, the qth row of pth column.
h
DT

⇣
�( eA, eX,eZ)⌦ Im2⇥m2

⌘i

qp

=
n⇣
�T(eaq,exq,ezq)KWW

⌘
⌦
⇣
K eAeaq

�K eXexq

⌘o �
�(eap,exp,ezp) ⌦ Ip

�
(60)

=
⇣
�T(eaq,exq,ezq)KWW�(eap,exp,ezp)

⌘
⌦
⇣⇣

K eAeaq
�K eXexq

⌘
Ip
⌘

(61)

=
⇣
�T(eaq,exq,ezq)KWW�(eap,exp,ezp)

⌘
(KeaqeapKexqexp) (62)

In (60) we have used the property of Kronecker product (A⌦B)(C⌦D) = (AC)⌦ (BD) for compatible A, B, C, and D.

B.6 Estimating the causal effect

Recall that the causal effect (2) is written �(a) =
R
X ,W

h(a, x, w)f(x, w)dxdw . Since h 2 HAXW by Assumption 9, and
using the reproducing property, we can write:

�(a) =

Z

X ,W

h(a, x, w)⇢(x, w)dxdw

=

Z

X ,W

hh, �(a)⌦ �(x)⌦ �(w)iHAXW⇢(x, w)dxdw

= hh, �(a)⌦
Z

XW

�(x)⌦ �(w)⇢(x, w)dxdwiHAXW . (63)

Consequently, bh can be expressed as: bh =
m1P
i=1

m2P
j=1

b↵ij�(eaj) ⌦ �(exj) ⌦ �(wi). We can further replace
R
XW

�(x) ⌦

�(w)⇢(x, w)dxdw by its empirical estimate 1
n

P
n

k=1 �(xk) ⌦ �(wk) from the sample {(x, w)k}nk=1. This leads to the
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Figure 4: Learning an identity map on a non-compact
domain using (Gaussian) kernel ridge regression.

Figure 5: Bias in second stage as a result of using µ̂A|a in Stage 1
(“biased”) vs regressing on �(a) (“unbiased”).

following estimator of the causal effect:

b�(a) = hbh, �(a)⌦
Z

XW

1

n

nX

k=1

�(xk)⌦ �(wk)iHAXW

= h
m1X

i=1

m2X

j=1

b↵ij�(eaj)⌦ �(exj)⌦ �(wi), �(a)⌦ 1

n

nX

k=1

�(xk)⌦ �(wk)iHAXW

=
1

n

m1X

i=1

m2X

j=1

nX

k=1

b↵ijKaeajKxkexjKwkwi . (64)

B.7 An alternative two-stage solution, and its shortcomings

As an alternative solution to kernel proximal causal learning, one might consider using the Stage 1 estimate of
bµW,A|A,X,Z (�(a)⌦ �(x)⌦ �(z)) := bE (�(W )⌦ �(A)|a, x, z), obtained by ridge regression, as an input in Stage 2, which
would allow an unmodified use of the KIV algorithm (Singh et al., 2019) in the proxy setting. This method has both theoreti-
cal and empirical shortcomings, however.

Theoretically, regression from �(a) to �(a) is, in population limit, the identity mapping IHA from HA to HA. This operator
is not Hilbert-Schmidt for characteristic RKHSs, and violates the well-posedness assumption for consistency of Stage 1
regression (Singh et al., 2019).

In practice, predicting �(a) via ridge regression from �(a) introduces bias in the finite sample setting. This is shown in
an example in Figures 4 and 5. In a first stage (Figure 4), the identity map is approximated by ridge regression, where
the distribution ⇢A(a) is Gaussian centred at the origin. This distribution is supported on the entire real line, but for finite
samples, few points are seen at the tails, and bias is introduced (the function reverts to zero). The impact of this bias will
reduce as more training samples are observed (although the identity map will never be learned perfectly, as discussed earlier).
This bias affects the second stage. In Figure 5, the distribution of a for the second stage is uniform on the interval [�3, 3].
This is a subset of the stage 1 support of ⇢A(a), yet due to the limited number of samples from stage 1, bias is nonetheless
introduced near the boundaries of that interval. This bias can be more severe as the dimension of a increases. As seen in
Figure 5, this bias impacts the second stage, where we compare regression from µ̂A|a to y (biased) with regression from
�(a) to y (unbiased). This bias is avoided in our KPV setting by using the Stage 2 input µW |a,z ⌦ �(a) instead of µW,A|a,z

(ignoring x for simplicity).

B.8 Consistency

In this section, we provide consistency results for the KPV approach. For any Hilbert space F , we denote L(F) the space of
bounded linear operators from F to itself. For any Hilbert space G, we denote by L2(F , G) the space of Hilbert-Schmidt
operators from F to G. We denote by L2(F , ⇢) the space of square integrable functions on F with respect to measure ⇢.
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B.8.1 THEORETICAL GUARANTEES FOR STAGE 1

The optimal CW |X,A,Z minimizes the expected discrepancy:

CW |X,A,Z = argmin
C2L2(HAXZ ,HW)

E(C), where E(C) = EWAXZk�(W )� C�(A, X, Z)k2
HW

We now provide a non-asymptotic consistency result for Stage 1. This directly follows the Stage 1 IV proof of Singh et al.
(2019), based in turn on the regression result of Smale & Zhou (2007), and we simply state the main results as they apply in
our setting, referencing the relevant theorems from the earlier work as needed.

The problem of learning CW |A,X,Z is transformed into a vector-valued regression, where the search space is the vector-valued
RKHS H� of operators mapping HAXZ to HW . A crucial result is that HAXZ ⌦HW is isomorphic to L2(HAXZ , HW).
Hence, by choosing the vector-valued kernel � with feature map : (a, x, z, w) 7! [�(a) ⌦ �(x) ⌦ �(z) ⌦ �(w)] :=
�(a)⌦ �(x)⌦ �(z)h�(w), ·iHW , we have H� = L2(HAXZ , HW) and they share the same norm. We denote by L2(A⇥
X ⇥ Z, ⇢AXZ) the space of square integrable functions from A ⇥ X ⇥ Z to W with respect to measure ⇢AXZ , where
⇢AXZ is the restriction of ⇢ to A⇥ X ⇥ Z .
Assumption 12 Suppose that CW |X,A,Z 2 H�, i.e. CW |X,A,Z = argmin

C2H�
E(C).

Definition 1 (Kernel Integral operator for Stage 1). Define the integral operator :

S1 : L2(A⇥ X ⇥ Z, ⇢AXZ) �! HAXZ

g 7�!
Z

�(a, x, z)g(a, x, z)d⇢AXZ(a, x, z).

The uncentered covariance operator is defined by T1 = S1 � S⇤

1 , where S⇤

1 is the adjoint of S1.

Assumption 13 Fix �1 <1. For given c2 2 (1, 2], define the prior P(�1, c1) as the set of probability distributions ⇢ on

A⇥X⇥Z⇥W such that a range space assumption is satisfied : 9G1 2 H� s.t. CW |A,X,Z = T
c1�1

2
1 �G1 and kG1k2H�

 �1.

Our estimator for CW |AXZ is given by ERM (5) based on {(a, x, z, w)i}m1
i=1. The following theorem provides the closed-

form solution of (5).

Theorem 4. (Singh et al., 2019, Theorem 1) For any �1 > 0, the solution of (5) exists, is unique, and is given by:

bCW |A,X,Z = (T1 + �1)
�1g1, where T1 =

1

m1

m1X

i=1

�(ai, xi, zi)⌦ �(ai, xi, zi),

and g1 =
1

m1

m1X

i=1

�(ai, xi, zi)⌦ �(wi);

and for any (a, x, z) 2 A⇥ X ⇥ Z , we have bµW |a,x,z = bCW |A,X,Z (�(a)⌦ �(x)⌦ �(z)).

Under the assumptions provided above, we can now derive a non-asymptotic bound in high probability for the estimated
conditional mean embedding, for a well-chosen regularization parameter.

Theorem 5. Suppose Assumptions 5, 7, 12 and 13 hold. Define �1 as:

�1 =

 
83( + 3kCW |A,X,ZkH�) ln(2/�)

p
m1�1(c1 � 1)

! 2
c1+1

Then, for any x, a, z 2 A⇥ X ⇥ Z and any � 2 (0, 1), the following holds with probability 1� �:

kbµW |a,x,z � µW |a,x,zkHW  3rC(�, m1, c1) =: 3

p
�1(c1 + 1)

4
1

c1+1

✓
43( + 3kCW |A,X,ZkH�) ln(2/�)

p
m1�1(c1 � 1)

◆ c1�1
c1+1

,

where bµW |a,x,z = bCW |A,X,Z (�(a)⌦ �(x)⌦ �(z)) and bCW |A,X,Z is the solution of (5).
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Proof. Under Assumption 5 and 7, HA, HX , HZ are separable (see Lemma 4.33 of Steinwart & Christmann (2008)).
Hence, for any (a, x, z) 2 A ⇥ X ⇥ Z , we have : k�(a) ⌦ �(x) ⌦ �(z)kHAXZ = k�(a)kHAk�(x)kHX k�(z)kHZ  3

by Assumption 7. Then, we can write:

kbµW |a,x,z � µW |a,x,zkHW = k( bCW |A,X,Z � CW |A,X,Z) (�(a)⌦ �(x)⌦ �(z)) kHW

 k bCW |A,X,Z � CW |A,X,ZkH�k�(a)⌦ �(x)⌦ �(z)kHAXZ

 3rC(�, m1, c1)

where the last inequality results from Singh et al. (2019, Theorem 2).

B.8.2 THEORETICAL GUARANTEES FOR STAGE 2

The optimal ⌘ minimizes the expected discrepancy:

⌘AXW = argmin
⌘2HAXW

R̃(⌘), where R̃(⌘) = EAXZY

�
Y � ⌘[�(a, x)⌦ µW |a,x,z]

 2
.

Similarly to Stage 1, the problem of learning ⌘AXW is transformed into a ridge regression, where the search space is the
RKHS HAXW of Y-valued functions (Y ⇢ R). We now provide our assumptions to derive non asymptotic results for Stage
2. The approach builds on the Stage 2 proof of Singh et al. (2019), based in turn on (Caponnetto & De Vito, 2007; Szabó
et al., 2016), with modifications made to account for the difference in setting, since the input to our Stage 2 differs from the
case of instrumental variable regression (see proofs for details).
Assumption 14 Suppose that ⌘AXW 2 HAXW , i.e. ⌘AXW = argmin

⌘2HAXW R̃(⌘).

Definition 2 (Kernel integral operator for Stage 2). Define the integral operator :

S2 : HAXW �! HAXW

⌘ 7�!
Z

[µW |a,x,z ⌦ �(a, x)]⌘[�(a, x)⌦ µW |a,x,z]d⇢HW⇥A⇥X (µW |a,x,z, a, x).

The uncentered covariance operator is defined by T2 = S2 � S⇤

2 , where S⇤

2 is the adjoint of S2.

Assumption 15 Fix �2 <1. For given c1 2 (1, 2], define the prior P(�2, b, c2) as the set of probability distributions ⇢
on HAXW ⇥ Y such that:

• A range space assumption is satisfied : 9G2 2 HAXW s.t. ⌘AXW = T
c2�1

2
2 �G2 and kG2kHAXW  �2

• The eigenvalues (lk)k2N⇤of T2 satisfy ↵2  lkk�b2  �2 for b2 > 1, ↵2, �2 > 0.

Theorem 6. Assume Assumptions 5 to 7 and 12 to 15 hold. Assume the assumptions of Theorem 5 hold and define �1

accordingly. Assume also that m1, m2 are large enough (see Proposition 9) and that �2  kT2kLHAXW . Then, for any

✏, � 2 (0, 1), the following holds w.p. 1� ✏� �:

R̃(b⌘AXW )� R̃(⌘AXW )  rH(�, m1, c1, ✏, m2, b2, c2) := 5

⇢
410c2

Y

�2
rC(�, m1, c1)

2

+
410c2

Y

�2
rC(�, m1, c1)

2.4

0

@8 ln2(6/✏)

�2

2

4
(cY + k⌘AXW kHAXW )2(4 + m2�2(�

1
b2
2

⇡/b2

sin(⇡/b2)
�
�

1
b2

2 )

m2
2�2

3

5+

2 ln2(6/✏)

�2


4�2�

c2�1
2 + m2�2�

c2
2

m2
2�2

�
+ �2�

c2�1
2 + k⌘AXW k2HAXW

◆
+ �2�

c2
2

+32 ln2(6/✏)

2

4
(cY + k⌘AXW kHAXW )2(4 + m2�2(�

1
b2
2

⇡/b2

sin(⇡/b2)
�
�

1
b2

2 ))

m2
2�2

3

5+ 8 ln2(6/✏)


4�2�

c2�1
2 + m2�2�

c2
2

m2
2�2

�9=

; .
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Proof. By Proposition 5, we have:

R̃(b⌘AXW )� R̃(⌘AXW )  5 [S�1 + S0 + A(�2) + S1 + S2] .

Then, by Proposition 10, w.p. 1� ✏

3 � �, we have:

S�1 
4

�2
10rC(�, m1, c1)

2c2
Y

, S0 
4

�2
10rC(�, m1, c1)

2ke⌘AXW k2HAXW

where by Proposition 11, w.p. 1� 2✏
3 :

ke⌘AXW k2HAXW

 4

✓
8 ln2(6/✏)

�2


(cY + k⌘AXW kHAXW )2(4 + m2�2N (�2))

m2
2�2

�
+

2 ln2(6/✏)

�2


4B(�2) + m2A(�2)

m2�2

�
+ B(�2) + k⌘AXW k2HAXW

◆
.

Also, by Proposition 7, w.p. 1� 2✏
3 , we have:

S1  32 ln2(6/✏)


(cY + k⌘AXW kHAXW )2(4 + m2�2N (�2))

m2
2�2

�
, S2  8 ln2(6/✏)


4B(�2) + m2A(�2)

m2
2�2

�
.

Finally, by Proposition 6,

A(�2)  �2�
c2
2 , B(�2)  �2�

c2�1
2 , N (�2)  �

1
b2
2

⇡/b2
sin(⇡/b2)

�
�

1
b2

2 .

Combining all the probabilistic bounds yields the final result.

Proof of Theorem 2.

Proof. Ignoring constants in Theorem 6, we have:

S�1 = O

✓
rC(�, m1, c1)2

�2

◆
,

S0 = O

 
rC(�, m1, c1)2

�2
.

 
1

m2
2�

2
2

+
1

m2�
1+1/b2
2

+
1

m2
2�

3�c2
2

+
1

m2�
2�c2
2

+ �c2�1
2 + 1

!!

A(�2) = O(�c2
2 ), S1 = O

 
1

m2
2�2

+
1

m2�
1/b2
2

!
, S2 = O

✓
1

m2
2�

2�c2
2

+
1

m2�
1�c2
2

◆
.

The last term in S0 indicates that S0 dominates S�1. Moreover, since b2 > 1 and c2 2 (1, 2], we have that 1
m2

dominates
1

m2�
3�c2
2

; that 1

m2�
1+1/b2
2

dominates 1
m2�

2�c2
2

; and that 1 dominates �c2�1
2 (since �2 ! 0). For the same reasons, S1

dominates S2.

Hence, we have:

R̃(b⌘AXW )� R̃(⌘AXW ) = O

 
rC(�, m1, c1)2

�2

"
1

m2
2�

2
2

+
1

m2�
1+1/b2
2

+ 1

#
+ �c2

2 +
1

m2
2�2

+
1

m2�
1/b2
2

!
.

By Theorem 5, and by choosing m1 = m
⇣

c1+1
c1�1

2 as stated in Theorem 2, we have successively:

rC(�, m1, c1)
2 = O

✓
m

�
c1+1
c1�1

1

◆
= O(m�⇣

2 ),

which leads to:

R̃(b⌘AXW )� R̃(⌘AXW ) = O

 
1

m2+⇣

2 �3
2

+
1

m1+⇣

2 �2+1/b2
2

+
1

m⇣

2�2

+ �c2
2 +

1

m2
2�2

+
1

m2�
1/b2
2

!
.

The final result is from Szabó et al. (2016, Theorem 5).
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B.8.3 PROOF DETAILS FOR THEOREM 6

First introduce e⌘AXW as the minimizer of the empirical risk of stage 2, when plugging the true µW |a,x,z (instead of its
estimate from Stage 1):

e⌘AXW = argmin
⌘2HAXW

eL(⌘), where eL(⌘) =
1

m2

m2X

j=1

�
eyj � ⌘[�(eaj , exj)⌦ µW |eaj ,exj ,ezj ]

�2
+ �2k⌘k2HAXW . (65)

Similarly to b⌘AXW , it has a closed form solution given below (see Grunewalder et al. (2012, Section D.1)).
Theorem 7. For any �2 > 0, the solutions of (65), exists, is unique, and is given by:

e⌘AXW = (T2 + �2)
�1g2, where T2 =

1

m2

m2X

j=1

⇥
µW |eaj ,exj ,ezj ⌦ �(eaj , exj)

⇤
⌦
⇥
µW |eaj ,exj ,ezj ⌦ �(eaj , exj)

⇤

and g2 =
1

m2

m2X

j=1

⇥
µW |eaj ,exj ,ezj ⌦ �(eaj , exj)

⇤
eyj .

Define also ⌘�2
AXW

as the minimizer of the population version of (65):

⌘�2
AXW

= argmin
⌘2HAXW

L�2(⌘), where L�2(⌘) = EAXY Z

�
Y � ⌘[�(A, X)⌦ µW |a,x,z]

 2
+ �2k⌘k2HAXW . (66)

The excess risk for the KPV estimator can be decomposed in five terms as stated in the following proposition.
Proposition 5. The excess risk of the Stage 2 estimator can be bounded by five terms:

R̃(b⌘AXW )� R̃(⌘AXW )  5 [S�1 + S0 + A(�2) + S1 + S2]

where

S�1 = k
p

T2 � ( bT2 + �2)
�1(bg2 � g2)k2HAXW , S0 = k

p
T2 � ( bT2 + �2)

�1 � (T2 � bT2)e⌘AXW k2HAXW

S1 = k
p

T2 � (T2 + �2)
�1(g2 � T2⌘AXW )k2

HAXW , S2 = k
p

T2 � (T2 + �2)
�1 � (T2 � T2)(⌘

�2
AXW

� ⌘AXW )k2
HAXW

and the residual A(�2) = k
p

T2(⌘
�2
AXW

� ⌘AXW )k2
HAXW .

Proof. The excess risk can be decomposed as:

R̃(b⌘AXW )� R̃(⌘AXW ) = k
p

T2(b⌘AXW � ⌘AXW )k2
HAXW

= k
p

T2

h
(b⌘AXW � e⌘AXW ) + (e⌘AXW � ⌘�2

AXW
) + (⌘�2

AXW
� ⌘AXW )

i
k2
HAXW (67)

Using the operator identity A�1 � B�1 = A�1(B � A)B�1 and Theorem 1, the first term in (67) can be bounded by
5(S�1 + S0), the second one by 5(S1 + S2) and the last one by 5A(�2) (see Szabó et al. (2015, Section A.1.8)). The factor
5 comes from the inequality (

P
n

i=1 ai)2  n
P

n

i=1 a2
i
.

The first two terms S�1, S0 characterize the estimation error due to Stage 1; the middle term A(�2) characterizes the
regularization bias; while the two last terms S1, S2 characterize the estimation error from Stage 2. The goal is now to bound
each term of Proposition 5 separately. For the three last terms from Stage 2, we can benefit from the minimax rates and
results for ridge regression (Caponnetto & De Vito, 2007), see Propositions 6 and 7. Stage 1 requires intermediate results
(Propositions 8 to 10).

We firstly have the following bounds that characterize the relation between ⌘�2
AXW

and ⌘AXW .
Proposition 6. Suppose Assumption 15 holds, which means that ⇢ 2 P(�2, b2, c2) and that the eigenvalues (lk)k2N⇤ of T2

satisfy ↵2  lkk�b2  �2. Then, the residual A(�2), the reconstruction error B(�2), and the effective dimension N (�2)
are defined and bounded as follows:

A(�2) = k
p

T2(⌘
�2
AXW

� ⌘AXW )k2
HAXW  �2�

c2
2 , B(�2) = k⌘�2

AXW
� ⌘AXW k2HAXW  �2�

c2�1
2 ,

N (�2) = Tr
⇥
(T2 + �2)

�1 � T2

⇤
 �

1
b2
2

⇡/b2
sin(⇡/b2)

�
�

1
b2

2 .
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The bounds on A(�2), B(�2) follow from Caponnetto & De Vito (2007, Proposition 3), while the bound on N (�2) follows
from Sutherland (2017). The residual A(�2) and reconstruction error B(�2), which depend on ⇢, control the complexity of
⌘AXW . The effective dimension N (�2) measures the complexity of the hypothesis space HAXW with respect to ⇢HW⇥A⇥X .

Proposition 7. (Caponnetto & De Vito, 2007, Step 2 and 3 of Theorem 4) Assume Assumption 6 and Assumption 14 hold.

Assume also that �2  kT2kLHAXW and m2 � 2C✏N (�2)
�2

. Then, we can bound S1 and S2 from Proposition 5 as follows

w.p. 1� 2✏/3:

S1  32 ln2(6/✏)


(cY + k⌘AXW kHAXW )2(4 + m2�2N (�2))

m2
2�2

�
, S2  8 ln2(6/✏)


4B(�2) + m2A(�2)

m2
2�2

�
.

The following bounds are obtained easily by using the bounds from Theorem 5 on the difference between the estimated
conditional mean embeddings of Stage 1 and the true one.

Proposition 8. Assume the assumptions of Theorem 5 hold and define �1 accordingly. Suppose also that Assumptions 6

and 14 hold. Then, w.p. 1� � :

k bg2 � g2k2HAXW  10rC(�, m1, c1)
2c2

Y
, and kT2 � bT2k2L(HAXW)  410rC(�, m1, c1)

2. (68)

Proof. Using Assumption 6, Theorem 5, and (
P

n

i=1 ai)2  n
P

n

i=1 a2
i
, we have :

k bg2 � g2k2HAXW 
1

m2

m2X

j=1

k
⇥
(bµW |eaj ,exj ,ezj � µW |eaj ,exj ,ezj )⌦ �(eaj , exj)

⇤
eyjk2HAXW

 1

m2

m2X

j=1

k(bµW |eaj ,exj ,ezj � µW |eaj ,exj ,ezj )k2HWk�(eaj , exj)k2HAX ey
2
j
 10rC(�, m1, c1)

2c2
Y

.

On the other hand, using (
P

n

i=1 ai)2  n
P

n

i=1 a2
i

and the identity (a + b)2  2a2 + 2b2, we have:

kT2 � bT2k2L(HAXW)

 2

m2

m2X

j=1

k
⇥
(µW |eaj ,exj ,ezj � bµW |eaj ,exj ,ezj )⌦ �(eaj , exj)

⇤
⌦
⇥
µW |eaj ,exj ,ezj ⌦ �(eaj , exj)

⇤
k2
L(HAXW)

+
2

m2

m2X

j=1

k
⇥
bµW |eaj ,exj ,ezj ⌦ �(eaj , exj)

⇤
⌦
⇥
(µW |eaj ,exj ,ezj � bµW |eaj ,exj ,ezj )⌦ �(eaj , exj)

⇤
k2
L(HAXW)

 2

m2

m2X

j=1

kbµW |eaj ,exj ,ezj � µW |eaj ,exj ,ezjk2HWkµW |eaj ,exj ,ezjk2HWk�(eaj , exj)k2HAX

+
2

m2

m2X

j=1

kbµW |eaj ,exj ,ezj � µW |eaj ,exj ,ezjk2HWkbµW |eaj ,exj ,ezjk2HWk�(eaj , exj)k2HAX

 410rC(�, m1, c1)
2.

Proposition 9. Assume the assumptions of Theorem 5 hold and define �1 accordingly. Let C✏ = 96 ln2(6/✏). Suppose also

that Assumptions 6 and 14 hold. Finally, assume �2  kT2kL(HAXW) and that :

m2 �
2C✏N (�2)

�2
, m1 � m̄(�, c1)), :=

"
8
p

�1(c1 + 1)

4
1

c1+1 �2

#2
c1+1
c1�1 ✓43( + 3kCW |A,X,ZkH�) ln(2/�)

p
�1(c1 � 1)

◆2

.

Then, w.p. 1� ✏

3 � �, we have:

k
p

T2 � ( bT2 + �2)
�1kL(HAXW) 

2p
�2

.
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Proof. We follow the proof of Singh et al. (2019, Proposition 39). Using the Neumann series of I � (T2 � bT2)(T2 + �2)�1,
we have:

k
p

T2 � ( bT2 + �2)
�1kL(HAXW)  k

p
T2 � (T2 + �2)

�1kL(HAXW)

1X

k=0

k(T2 � bT2) � (T2 + �2)
�1kk

L(HAXW).

We first deal with the first term on the r.h.s. Observe that by definition of the operator norm,

k
p

T2 � (T2 + �2)
�1kL(HAXW) = sup

l2(lk)k2N⇤

p
l

l + �2
 1

2
p

�2
,

where the last inequality results from arithmetic-geometric mean inequality (
p

l�2  (l + �2)/2). We now deal with the
second term on the r.h.s. First, we apply the triangle inequality :

k(T2 � bT2) � (T2 + �2)
�1kL(HAXW)  k(T2 � T2) � (T2 + �2)

�1kL(HAXW) + k(T2 � bT2) � (T2 + �2)
�1kL(HAXW).

Since k(T2 + �2)�1kL(HAXW)  1/�2, by Proposition 9 the second term is easily bounded w.p. 1� � as :

k(T2 � bT2) � (T2 + �2)
�1kL(HAXW) 

kT2 � bT2kL(HAXW)

�2
 5rC(�, m1, c1)

�2
.

For a fixed �2, m1 can be chosen so that 5rC(�, m1, c1)/�2  1/4, which legitimates the use of the Neumann series at
the beginning of the proof. This is actually given by setting m1 � m̄(�, c1). By Caponnetto & De Vito (2007, Step 2.1,
Theorem 4), the first term is bounded with probability 1� ✏

3 by:

k(T2 � T2) � (T2 + �2)
�1kL(HAXW) 

1

2
.

for m2 � 2C✏N (�2)
�2

. Hence, we can conclude that for m1 � m̄(�, c1) and m2 � 2C✏N (�2)
�2

, we have w.p. 1� ✏

3 � �:

k(T2 � bT2) � (T2 + �2)
�1kL(HAXW) 

1

2
+

1

4
=

3

4
=) k

p
T2 � ( bT2 + �2)

�1kL(HAXW) 
1

2
p

�2

1

1� 3
4

=
2p
�2

.

We now bound each term separately.

Proposition 10. Assume the conditions of Propositions 8 and 9 hold. We can bound S�1 and S0 from Proposition 5 w.p.

1� ✏

3 � � as follows:

S�1 
4

�2
10rC(�, m1, c1)

2c2
Y

, S0 
4

�2
10rC(�, m1, c1)

2ke⌘AXW k2HAXW .

Proof. Using Proposition 8 and Proposition 9, we have:

S�1  k
p

T2 � (cT2 + �2)
�1k2

L(HAXW)kbg2 � g2k2HAXW 
4

�2
10rC(�, m1, c1)

2c2
Y

,

and similarly we have:

S0  k
p

T2 � ( bT2 + �2)
�1k2

L(HAXW)kT2 � bT2k2L(HAXW)ke⌘AXW k2HAXW 
4

�2
10rC(�, m1, c1)

2ke⌘AXW k2HAXW .

Proposition 11. Let C✏ = 96 ln2(6/✏) and suppose that m2 � 2C✏N (�2)
�2

and that �2  kT2kL(HAXW). Then, w.p. 1�2✏/3

ke⌘AXW k2HAXW

 4

✓
8 ln2(6/✏)

�2


(cY + k⌘AXW kHAXW )2(4 + m2�2N (�2))

m2
2�2

�
+

2 ln2(6/✏)

�2


4B(�2) + m2A(�2)

m2
2�2

�
+ B(�2) + k⌘AXW k2HAXW

◆
.
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Proof. Using the triangle inequality, we have:

ke⌘AXW kHAXW  ke⌘AXW � ⌘�2
AXW

kHAXW + k⌘�2
AXW

� ⌘AXW kHAXW + k⌘AXW kHAXW

= ke⌘AXW � ⌘�2
AXW

kHAXW +
p

B(�2) + k⌘AXW kHAXW

 1p
�2

(S1 + S2) +
p

B(�2) + k⌘AXW kHAXW

Using (
P

n

i=1 ai)2  n
P

n

i=1 a2
i

and Proposition 7, we get the final result.

B.9 Proof of Proposition 1

Let bµXW = 1
nt

P
nt

i=1[�(xi)⌦ �(wi)] and µXW = EXW [�(X)⌦ �(W )]. By Tolstikhin et al. (2017, Proposition 1), we
have w.p. 1� �:

kbµXW � µXW kHXW  rµ(nt, �) 
42 ln(2/�)

nt

:= rµ(nt, �).

Moreover, by Theorem 6, we have w.p. 1� ✏� �:

kb⌘AXW � ⌘AXW kHAXW  rH(�, m1, c1, ✏, m2, b2, c2).

We use the following decomposition for the causal effect :

b�(a)� �(a) = b⌘AXW [bµXW ⌦ �(a)]� ⌘AXW [µXW ⌦ �(a)]

= b⌘AXW [(bµXW � µXW ⌦ �(a)] + (b⌘AXW � ⌘AXW )[µXW ⌦ �(a)]

= (b⌘AXW � ⌘AXW )[(bµXW � µXW )⌦ �(a)] + ⌘AXW [(bµXW � EXW [�(X)⌦ �(W )])⌦ �(a)]

+ (b⌘AXW � ⌘AXW )[µXW ⌦ �(a)].

Therefore, w.p. 1� ✏� �, by Theorem 2, kb⌘AXW � ⌘AXW kHAXW = 0(m�↵) with ↵ 2
n

⇣c2

c2+1 , b2c2
b2c2+1

o
and :

|b�(a)� �(a)|  kb⌘AXW � ⌘AXW kHAXWkbµXW � µXW kHXWk�(a)kHA + k⌘AXW kHAXWkbµXW � µXW kHXWk�(a)kHA

+ kb⌘AXW � ⌘AXW kHAXWkµXW ⌦ �(a)kHAXW

 .rH(�, m1, c1, ✏, m2, b2, c2)rµ(nt, �) + k⌘AXW kHAXW rµ(nt, �) + 3rH(�, m1, c1, ✏, m2, b2, c2)

= O(n
�

1
2

t
+ m�↵).

C Proxy Maximum Moment Restriction
In this section, we propose a novel approach to solve the proximal causal learning using the maximum moment restriction
(MMR) framework (Muandet et al., 2020a). It is based on that proposed by Zhang et al. (2020) for the IV setting. On the
other hand, we adapt it to the proxy setting, with a novel interpretation for h. This is inspired by Miao et al. (2018) and
Tchetgen Tchetgen et al. (2020), but in their formulations h is defined to be the solution of an ill-posed inverse problem,
whereas we view h as a regression function for y, which is more interpretable, as we will detail below.

C.1 Maximum Moment Restriction for Proxy Setting

Notations. (i) Let X denote a measurable space. (ii) Let X denote a random variable taking values in X .

Notice that {Y, A, X, W} are random variables under the generating process governed by Figure 1. Let h 2 ⌦(A⇥W ⇥X )
be a measurable function on A ⇥W ⇥ X . Therefore, h(A, W, X) is a function of random variables, which is a random
variable itself.

Proof of Lemma 1. The proposed method is based on Lemma 1, which shows that any function h 2 ⌦(A⇥W ⇥X ) that
is the solution to Equation (1) must also satisfy the conditional moment restriction (CMR), and vice versa.

Proof. Let " be a random variable representing the residual of h(A, W, X) with respect to Y :

" := Y � h(A, W, X). (69)
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Suppose that h is the solution to (1). Then, taking the conditional expectation of (69) conditioned on A, Z, X yields

E["|A, Z, X] = E[Y |A, Z, X]� E[h(A, W, X)|A, X, Z]

= E[Y |A, Z, X]�
Z

W

h(A, w, X)f(w|A, Z, X)dw

= 0.

In the last term of the second equality, we take expectation over W because it is the only variable not being held fixed by
conditioning. The last equality holds because h is the solution to (1) by definition.

Note that we have derived the condition typical in additive noise instrumental variable (IV) models (Hartford et al., 2017;
Dikkala et al., 2020; Bennett et al., 2019; Zhang et al., 2020; Muandet et al., 2020b). A more general term for this type
of conditions is called conditional moment restrictions (CMR) (Newey, 1993). This interpretation allows us to approach
the problem of learning h from a different perspective. That is to say, we look for h for which the conditional moment
restriction is zero. This contrasts with the typical two-stage approach of learning h, for which the objective is to find h such
that EAXZY [(Y � EW [h(A, W, X)|A, Z, X])2] is minimized.

Connection to IV. Typical formulation of IV models assumes the following structural model:

Xiv YivZiv
✏iv

fiv

Figure 6: DAG of an instrumental variable model

where in particular Ziv ?? ✏iv . Additionally, an additive noise model for generating Yiv is typically assumed, and the noise
is assumed to have zero mean. In mathematical terms, these amount to

Yiv = fiv(Xiv) + ✏iv, E[✏iv] = 0, E[✏iv|Ziv] = 0 a.s.

Remark 5. We make two comparisons between the IV setting and our proxy setting.

1. In the IV setting, Yiv = fiv(Xiv) + ✏iv is proposed as the structural equation for Yiv; in contrast, in our proxy setting

Y = h(A, X, W ) + ✏ is not a structural equation, as it does not remain invariant under interventions. For readers

unfamiliar with the concept of structural equations, we refer to Pearl (2000). We thus offer the interpretation that

Y = h(A, W, X) + ✏ is a regression equation whose noise term has mean zero when conditioning on A, Z, X .

2. In the IV setting, authors make the assumption of additive noise models for the structural equation of Yiv, and fiv
is then the causal effect of Xiv on Yiv, i.e. fiv(Xiv) = E[Yiv|do(Xiv)]. In our setting, the solution h of the integral

equation (1) directly gives us the causal effect, hence no additive noise assumption is made and our approach is entirely

nonparametric.

3. Lemma 1 establishes the connection between a class of problems that can be formulated in terms of an integral equation

like (1) and those that satisfy the CMR. Hence, we believe this result can be applied more broadly to problems that

share similar structure to our setting.

Proof of Lemma 2

Proof. Since g 2 HAZX , we may write g(A, Z, X) = hg, k((A, Z, X), ·)i, thus we have

Rk(h) = sup
g2HAZX ,kgk1

(E[(Y � h(A, W, X))hg, k((A, Z, X), ·)i])2

= sup
g2HAZX ,kgk1

(E[hg, (Y � h(A, W, X))k((A, Z, X), ·)i])2

= sup
g2HAZX ,kgk1

(hg, E[(Y � h(A, W, X))k((A, Z, X), ·)]i)2

= kE[(Y � h(A, W, X))k((A, Z, X), ·)]k2
HAZX

.
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The second equality is due to linearity of an inner product, and we remark that it still holds despite h and g sharing variables
A and X , because (Y � h(A, W, X)) 2 R as opposed to HAWX . The last equality is due to the fact that HAZX is a vector
space, and E[(Y � h(A, W, X))k((A, Z, X), ·)] 2 HAZX by assumption.

Then,

Rk(h) = hE[(Y � h(A, W, X))k((A, Z, X), ·), E[(Y � h(A, W, X))k((A, Z, X), ·)i
= E[h(Y � h(A, W, X))k((A, Z, X), ·), (Y 0 � h(A0, W 0, X 0))k((A0, Z 0, X 0), ·)i]
= E[(Y � h(A, W, X))(Y 0 � h(A0, W 0, X 0)k((A, Z, X), (A0, Z 0, X 0)))],

as required.

C.2 Analytical Solution for PMMR

Suppose further that h also lies in an RKHS HAZX endowed with the kernel function l. Then, we can use the representer
theorem (Schölkopf et al., 2001) to derive a close-form solution for h. We note that the risk functional Rk is different from
standard least squares risk since it involves independent data samples as well as the kernel function k. Nevertheless, the
empirical risk still applies to data samples {yi, ai, wi, xi, zi}ni=1, so the representer theorem still apply on RKHS features
{l((ai, wi, xi), ·)}ni=1. This is to say, that by the representer theorem,

ĥ(a, w, x) =
nX

i=1

↵il((ai, wi, xi), (a, w, x)),

for some (↵1, . . . , ↵n) 2 Rn. Hence, we may rewrite the optimization problem as

↵̂ = argmin
↵2Rn

(y � L↵)>W (y � L↵) + �↵>L↵ (70)

where Lij = l((ai, wi, xi), (aj , wj , xj)) and Wij = k ((ai, zi, xi), (aj , zj , xj)). The solution to (70) can be found by
solving the first-order stationary condition, resulting in the closed-form expression:

↵̂ = (LWL + �L)�1LWy.

It can be shown that HX1⇥···⇥Xm is isometrically isomorphic to HX1 ⌦ · · ·⌦HXm . In the latter, the kernel of the outer-
product RKHS can be decomposed into the product of the kernels of the children RKHSes:

k(x,x0) = k1(x1, x
0

1)k2(x2, x
0

2) · · · km(xm, x0

m
).

Hence, we may use an alternative closed-form formulation of h with the product kernels

ĥ(a, w, x) =
nX

i=1

↵̂ilA(ai, a)lW(wi, w)lX (xi, x)

C.2.1 APPLYING THE REPRESENTATION THEOREM TO PMMR

First, we quote the representation theorem.

Theorem 8. Consider a positive-definite real-valued kernel k : X ⇥ X ! R on a non-empty set X with a corresponding

reproducing kernel Hilbert space Hk. Let there be given

• a training sample (x1, y1) , . . . , (xn, yn) 2 X ⇥ R,

• a strictly increasing real-valued function g : [0,1)! R, and

• an arbitrary error function E :
�
X ⇥ R2

�n ! R [ {1},
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which together define the following regularized empirical risk functional on Hk :

f 7! E ((x1, y1, f (x1)) , . . . , (xn, yn, f (xn))) + g(kfk)

Then, any minimizer of the empirical risk

f⇤ = argmin
f2Hk

{E ((x1, y1, f (x1)) , . . . , (xn, yn, f (xn))) + g(kfk)} , (⇤)

admits a representation of the form:

f⇤(·) =
nX

i=1

↵ik (·, xi)

where ↵i 2 R for all 1  i  n.

In our case, we have

E : (X ⇥ R2)n ! R [ {1}

{((ai, wi, xi, zi), h(ai, wi, xi), yi)}ni=1 7!
nX

i,j=1

(yi � h (ai, wi, xi)) (yj � h (aj , wj , xj)) k ((ai, zi, xi) , (aj , zj , xj))

n2

so the representer theorem gives us h(a, w, x) =
P

n

i=1 ↵il ((ai, wi, xi) , (a, w, x)).

C.3 PMMR Algorithm

PMMR algorithm to estimate h and derive causal effect is summarized below:

Algorithm 2 PMMR Algorithm
input :1. Train data {zt

i
, wt

i
, at

i
, yt

i
, xt

i
}n
i=1. 2. Kernel functions l for HAWX and k for HAZX with bandwidths �k and �l

respectively. 3. Regularisation parameter �. 4. Nyström approximation size M .
output :ĥ(a, w, x)

1 /* Write x for the matrix containing xi in the ith row. */
2 For all 1  i  n, 1  j  n, Kij  k((ai, zi, xi), (aj , zj , xj))
3 For all 1  i  n, 1  j  n, Lij  l((ai, wi, xi), (aj , wj , xj))

4 Do Nyström approximation for K/n2, decomposing into K/n2 = Ũ Ṽ ŨT

5 ↵̂ ��1[I � Ũ(��1ŨTLŨ + Ṽ �1)�1ŨT��1L]Ũ Ṽ ŨTy

6 ĥ(a, w, x) l((a, w, x), (at,wt,xt))

C.4 Consistency and Convergence Rates

In this section, we provide a consistency result of the causal estimate as well as the convergence rate of the PMMR solution.
For this, we will need the consistency result of the kernel mean embedding.

Lemma 8 (Proposition A.1, Tolstikhin et al. (2017)). In the following, the authors present a general result whose special

cases establishes the convergence rate of n�1/2
for kµk(Pn)� µk(P )kF when F = Hk and F = L2(Rd). They denote

Pn(X) := 1
n

P
n

i=1 �Xi .

Let (Xi)ni=1 be random samples drawn i.i.d. from P defined on a separable topological space X . Suppose g : X ! H is

continuous and

sup
x2X

kg(x)k2
H

< Ck <1 (71)

where H is a separable Hilbert space of real-valued functions. Then, for any 0 < �  1 with probability at least 1�� we have

����
Z

X

g(x)dPn(x)�
Z

X

g(x)dP (x)

����
H


r

Ck

n
+

r
2Ck log(1/�)

n
= r(n, �). (72)
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C.4.1 PMMR CONSISTENCY

Definition 3. For clarity, we define the following variables.

• h0(a, x, w) is a solution to (1).

• ĥn is the solution of a learning algorithm with sample size n.

• �(a) := EWX [h0(a, W, X)] = E[Y |do(a)].

• �̂n(a) := EWX [ĥn(a, W, X)].

• �̂m

n
(a) := 1

m

P
m

i=1 ĥn(a, wi, xi) with {wi, xi}mi=1 ⇠i.i.d. PWX .

• �̂(a): where m and n are clear in context, we abuse the notation to write �̂(a) to denote the estimator for �(a) from

our algorithm.

• µX denotes the kernel mean embedding of a random variable X .

• µ̂m

X
denotes the empirical estimate of µX , given by µ̂m

X
= 1

m

P
m

i=1[�(xi ⇠ PX)]. Where clear from context, we omit

the superscript m, and just use µ̂X to denote finite-sample estimator of µX .

Lemma 9 (Causal consistency). If ĥn

P�! h0, then �̂m

n
(a)

P�! �(a) as m, n!1.

Proof. For brevity, in the proof that follows, we write µ := µXW and µ̂m := µ̂m

XW
.

Since �(a) = hh, µ(PWX )⌦ �(a)i and �̂m

n
(a) = hĥn, µ̂m(PWX )⌦ �(a)i, we can verify that

�̂m

n
(a)� �(a) = hĥn, �(a)⌦ µ̂mi � hh0, �(a)⌦ µi (73)

= hĥn, �(a)⌦ µ̂mi � hĥn, �(a)⌦ µi+ hĥn, �(a)⌦ µi � hh0, �(a)⌦ µi (74)

= hĥn, �(a)⌦ (µ̂m � µ)i+ hĥn � h0, �(a)⌦ µi (75)

Thus, by the Cauchy-Schwartz inequality, we have for all a,

|�̂m

n
(a)� �(a)|  kĥkHAWX k�(a)kHAkµ̂m � µkHAW + kĥn � h0kHAWX k�(a)kHAkµkHAW (76)

From Lemma 8, by setting g to be the feature map on A⇥W , we have

kµ̂m � µk 
r

Ck

m
+

r
2Ck log(1/�)

m
=: r(m, �) (77)

with probability at least 1� �.

Moreover, we know that ĥn

P�! h0. This is to say, for any ✏, �, 9N s.t.

kĥn � h0kHAWX  ✏, 8n � N (78)

with probability at least 1� �.

Therefore, reflecting on (76) we observe that kµkHAW is bounded because we assume bounded kernels, kĥkHAWX
P�!

kh0kHAWX by assumption, and kh0kHAWX is constant, kĥn � h0kHAWX and kµ̂m � µkHAW uniformly converge to zero
in probability, which we have just shown.

Therefore, sup
a2A

{�̂m

n
(a)� �(a)} P�! 0.

Lemma 10. Suppose Rk has at least one minimiser in HAWX and PAWX is a finite Borel measure with full support, i.e.,

supp[PAWX ] = A ⇥ W ⇥ X . Then, Rk has a unique minimiser in HAWX if and only if the following condition holds:

(⇤) 8g 2 HAWX , EAWX [g(A, W, X)|A, Z, X] = 0 PAZX -almost surely if and only if g(a, w, x) = 0
PAWX�almost surely.
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Proof. To prove that Rk has a unique minimiser in HAXW , we need i) A minimiser to Rk exists in HAWX ii) It is unique.
By Assumption 4 and Miao et al. (2018, Appendix, Conditions (v)-(vii)), a minimiser exists in L2(A ⇥ W ⇥ X , PAWX ) -
we further require Rk has a minimiser in HAWX by assumption. We still need to show uniqueness.

( =) ) Suppose that there exist two different functions h1 and h2 that minimise Rk. Then, it follows from Zhang
et al. (2020, Theorem 1) that E[Y � h1|A, Z, X] = E[Y � h2|A, Z, X] = 0 PAZX�almost surely. This means that
EAWX [h1(A, W, X)� h2(A, W, X)|A, Z, X] = 0 PAZX�almost surely. Suppose (⇤) is true, we must have g(a, w, x) =
h1(a, w, x)� h2(a, w, x) = 0 PAWX�almost surely. As a result, g is the zero function in L2(A ⇥ W ⇥ X , PAWX ) and
for any other functions f 2 L2(A ⇥ W ⇥ X , PAWX ), hg, fiL2(A⇥W⇥X ,PAWX ) = 0.

Now, we describe briefly the integral operator representation of our kernel function l and consequently a representation of
the RKHS inner product. A more detailed discussion can be found in, e.g., Sejdinovic & Gretton (2014).

Integral operator of kernel on HAWX . Let l : (A ⇥ W ⇥ X )2 ! R be the kernel function on A ⇥ W ⇥ X . We
define an operator Sl : L2(A ⇥ W ⇥ X , PAWX )! C(A ⇥ W ⇥ X ), where C(A ⇥ W ⇥ X ) is the space of continuous
functions on A ⇥ W ⇥ X , as

(Slf)((a, w, x)) =

Z
l((a, w, x), (a0, w0, x0))f((a0, w0, x0)) dPAWX ((a0, w0, x0)), f 2 L2(A ⇥ W ⇥ X , PAWX )

(79)
where Sl can be shown to be well-defined (Sejdinovic & Gretton, 2014), and Tl = Il � Sl its composition with the inclusion
Il : C(A ⇥ W ⇥ X ) ,�! L2(A ⇥ W ⇥ X , PAWX ). Tl is said to be the integral operator of kernel l.

It can be shown that the symmetry of l implies the integral operator is self-adjoint; the positive definiteness of l implies that
Tl is a positive operator, i.e., all eigenvalues are non-negative; continuity of l imples Tl is compact by the Arzela-Ascoli
theorem. Then, by the Spectral theorem (Sejdinovic & Gretton, 2014, Theorem 49), any compact, self-adjoint operator can
be diagonalised in an appropriate orthonormal basis.

Relating the RKHS norm with the L2�norm. Further supposing that PAWX has full support, i.e., supp[PAWX ] =
A ⇥ W ⇥ X , then Mercer’s theorem says that for a continuous kernel l on a compact metric space with a finite Borel
measure of full support, we can decompose the kernel function l using its at most countable set J of strictly positive

eigenvalues {�j}j2J and eigenfunctions {ej}j2J .

l((a, w, x), (a0, w0, x0)) =
X

j2J

�jej((a, w, x))ej((a
0, w0, x0)) (80)

where the convergence is uniform on (A ⇥ W ⇥ X )2 and absolute on each (a, w, x), (a0, w0, x0) 2 A ⇥ W ⇥ X . See
Sejdinovic & Gretton (2014, Section 6.2) for further details.

Then, we may construct the RKHS HAWX based on the integral operator Tl and its associated eigenfunctions {ej}j2J ,
which depend on the underlying measure PAZX , as

HAWX =

8
<

:f =
X

j2J

ajej

(
ajp
�j

)
2 l2(J)

9
=

; (81)

with an inner product h
P

j2J
ajej ,

P
j2J

bjejiHAWX =
P

j2J

ajbj

�j
. Note that

�
aj/

p
�j

 
2 l2(J) implies that f 2

L2(A ⇥ W ⇥ X , PAWX ). Thus, aj = hf, ejiL2(A⇥W⇥X ,PAWX ).

Now, recall that g(a, w, x) = h1(a, w, x)� h2(a, w, x) is a zero function in L2(A ⇥ W ⇥ X , PAWX ), which also means
that kgkHAWX =

p
hg, gi

HAWX
= 0. Therefore, h1(a, w, x) = h2(a, w, x) for all (a, w, x) 2 A ⇥W ⇥ X as norm

convergence in RKHS implies pointwise convergence (Steinwart & Christmann, 2008, pp. 119). By contradiction, the
minimizer of Rk must be unique.

( (= ) Suppose (⇤) does not hold, i.e., (A, Z, X) is not complete for (A, W, X), then there exists g 2 HAWX such that
g 6= 0 and EAWX [g(A, W, X)|A, Z, X] = 0, PAZX�almost surely. Then, for any minimizer h of Rk (if it exists), h + Cg
for some constant C is also a minimizer, so it cannot be unique.
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Theorem 9 (Causal consistency of PMMR). Assume H is a real-RKHS, k : (A ⇥ Z ⇥ X )2 ! R is bounded, ⌦(h) is

convex, �
P�! 0. Moreover, assume Z is complete for W , i.e., for all g 2 L2[PW ], E[g(W )|Z] = 0, PZ�almost surely if

and only if g(W ) = 0, PW�almost surely. Then, ĥn

P�! h0.

Proof. Given ⌦(h) is convex in h, we prove consistency based on Newey & McFadden (1994, Theorem 2.7), which requires
(i) Rk(h) is uniquely minimized at h0; (ii) R̂V (h) + �⌦(h) is convex; (iii) R̂V (h) + �⌦(h)

P�! Rk(h) for all h 2 H.

Since H is a real-RKHS, which is a vector space, it is convex because for any x, y 2 H, a 2 [0, 1], ax + (1 � a)y 2 H
by closure of vector spaces. Since H is convex, Rk is convex (Zhang et al., 2020, Theorem 5). By assumption, A, Z, X is
complete for W . Then, by Lemma 10, Rk is minimized at h0. Since H is open, h0 is in the interior of H.

Since R̂V (h) =
�� 1
n

P
n

i=1(yi � h(ai, wi, xi))k((ai, zi, xi), ·)
��2
Hk

, by the law of large numbers, we have that 1
n

P
n

i=1(yi�

h(ai, wi, xi))k((ai, zi, xi), ·)
P�! E[(Y � h(A, W, X))k((A, Z, X), ·)]. Then R̂V (h)

P�! Rk(h) for all h 2 H by the
Continuous Mapping Theorem (Mann & Wald, 1943) since k · kHk is continuous. As �

P�! 0, R̂V (h) + �⌦(h)
P�! Rk(h)

by Slutsky’s Theorem (Van der Vaart, 2000, Lemma 2.8). Since ⌦(h) is convex, R̂V (h) + �⌦(h) is convex since addition
preserves convexity. Thus, by Newey & McFadden (1994, Theorem 2.7), ĥn

P�! h0.

Corollary 1. Assume H is a real-RKHS, k : (A ⇥ Z ⇥ X )2 ! R is bounded, ⌦(h) is convex, and �
P�! 0. Moreover,

assume (A, Z, X) is complete for W , then the causal effect estimate �̂m

n

P�! 0 as m, n!1.

Proof. By Theorem 9, the conditions guarantee that ĥn

P�! h0. Then, by Lemma 9 �̂m

n
(A)

P�! �(A).

C.4.2 PMMR CONVERGENCE RATE

To provide the convergence rate of PMMR, we will first provide an alternative interpretation of PMMR as a linear ill-
posed inverse problem in the RKHS (Nashed & Wahba, 1974; Carrasco et al., 2007). Let �(a, x, w) := k((a, x, w), ·) and
'(a, x, z) := k((a, x, z), ·) be the canonical feature maps. Then, the unregularized PMMR objective can be expressed as

Rk(h) = kE[(Y � h(A, X, W ))'(A, X, Z)]k2
HAXZ

= kE[Y '(A, X, Z)]� E[h(A, X, W )'(A, X, Z)]k2
HAXZ

= kg � Thk2
HAXZ

,

where
g :=

Z
Y '(A, X, Z) d⇢(A, X, Y, Z), Th :=

Z
h(A, X, W )'(A, X, Z) d⇢(A, X, W, Z). (82)

Here ⇢(A, X, Y, Z) and ⇢(A, X, W, Z) are the restrictions of ⇢(A, X, W, Y, Z) to A⇥ X ⇥ Y ⇥ Z and A⇥ X ⇥W ⇥ Z ,
respectively. By Assumptions 6 and 7, g 2 HAXZ and T is a bounded linear operator from HAXW to HAXZ . Let T ⇤ :
HAXZ ! HAXW be an adjoint operator of T such that hTu, viHAXZ = hu, T ⇤viHAXW for all u 2 HAXW and v 2 HAXZ .

Based on the above formulation, we can rewrite the PMMR regularized objective and its empirical estimate as follow:

R�(h) = kg � Thk2
HAXZ

+ �khk2
HAXW

, bR�(h) = kĝ � bThk2
HAXZ

+ �khk2
HAXW

, (83)

where ĝ and bT are the empirical estimates of g and T based on the i.i.d. sample (ai, xi, wi, yi, zi)ni=1 from ⇢(A, X, W, Y, Z):

ĝ :=
1

n

nX

i=1

yi'(ai, xi, zi), bTh :=
1

n

nX

i=1

h(ai, xi, wi)'(ai, xi, zi). (84)

Likewise, we denote by bT ⇤ an adjoint operator of bT , i.e., for f 2 HAXZ ,

T ⇤f :=

Z
f(A, X, Z)�(A, X, W ) d⇢(A, X, W, Z), bT ⇤f :=

1

n

nX

i=1

f(ai, xi, zi)�(ai, xi, wi). (85)
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Cross-covariance operator. We can view the operator T as an element of the product RKHS HAXW ⌦HAXZ , i.e., for
h 2 HAXW ,

Th =

Z
h(A, X, W )'(A, X, Z) d⇢(A, X, W, Z)

=

Z
hh, �(A, X, W )iHAXW '(A, X, Z) d⇢(A, X, W, Z)

=

Z
[�(A, X, W )⌦ '(A, X, Z)] h d⇢(A, X, W, Z)

=

Z
�(A, X, W )⌦ '(A, X, Z) d⇢(A, X, W, Z)

�
h.

Thus, T = E[�(A, X, W )⌦'(A, X, Z)] 2 HAXW ⌦HAXZ and is a (uncentered) cross-covariance operator mapping from
HAXW to HAXZ (Baker, 1973; Fukumizu et al., 2004). Likewise, T ⇤ = E['(A, X, Z)⌦�(A, X, W )] 2 HAXZ ⌦HAXW .
The cross-covariance operator T is Hilbert-Schmidt, and kTk  kTkHS = kTkHAXW⌦HAXZ where k · kHS denotes a Hilbert-
Schmidt norm (Fukumizu et al., 2006, Lemma 3). The latter equality holds because the space of Hilbert-Schmidt operators
HS(H1, H2) forms Hilbert space which are isomorphic to the product space H1 ⌦H2 given by the product kernel.

PMMR solutions. Based on (83), we can define the PMMR solutions in the population limit and in the finite sample
regime respectively as

h� := arg min
h2HAXW

R�(h) = (T ⇤T + �I)�1T ⇤g (86)

ĥ� := arg min
h2HAXW

bR�(h) = ( bT ⇤ bT + �I)�1 bT ⇤ĝ (87)

The solution (86) is obtained by noting that R�(h) = hh, T ⇤Th + �h� 2T ⇤giHAXW + kgk2
HAXZ

whose Frechet derivative
is zero only if (T ⇤T + �I)h = T ⇤g. The solution in (87) can be obtained in a similar way. Let h0 be the solution that
uniquely minimizes the unregularized risk R(h). Then, we can decompose the estimation bias into two parts:

ĥ� � h0 = (ĥ� � h�) + (h� � h0). (88)

The first part ĥ� � h� corresponds to an estimation error of the regularized solution h�, whereas the second part h� � h0 is
the regularization bias. Hence, we can obtain the convergence rate of ĥ� by first characterizing the rates of the regularization
bias and estimation error separately, and then choosing the regularization parameter � such that both rates coincide.

CHARACTERIZING THE REGULARIZATION BIAS

To control the regularization bias, we impose a regularity condition on the true unknown h0. Following Carrasco et al.
(2007), we assume that h0 belong to a regularity space H� = (T ⇤T )� for some positive �. The following is a restatement of
Carrasco et al. (2007, Def. 3.4); see, also Smale & Zhou (2007) for a similar condition.

Definition 4 (�-regularity space). The �-regularity space of the compact operator T is defined for all � > 0, as the RKHS

associated with (T ⇤T )� . That is,

H� =

8
<

:h 2 N (T )? such that

1X

j=1

hh, �ji
↵2�
j

<1

9
=

; (89)

with the inner product

hf, gi� =
1X

j=1

hf, �jihg, �ji
↵2�
j

(90)

for f, g 2 H� .

In what follows, we will make the following assumption on h0.
Assumption 16 h0 2 H� for � 2 (0, 2].
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Proposition 12 (Regularization bias). Let T : HAXW ! HAXZ be an injective compact operator. Then, if Assumption 16

holds and h� is defined by (86), we have

kh� � h0k2HAXW
= O(�min(�,2)). (91)

Proof. Carrasco et al. (2007, Proposition 3.12)

CHARACTERIZING THE ESTIMATION ERROR

Proposition 13 (Estimation error). Let h� = (T ⇤T + �I)�1T ⇤g be the regularized solution given by (86) and ĥ� =
( bT ⇤ bT + �I)�1 bT ⇤ĝ, then

kĥ� � h�kHAXW  d(�)k bT ⇤ĝ � bT ⇤ bTh0k+ d(�)k bT ⇤ bT � T ⇤Tk kh0 � h�kHAXW
.

where d(�) := kb��k = k( bT ⇤ bT + �I)�1k.

Proof. To simplify the notation, we will use �� := (T ⇤T + �I)�1 and b�� := ( bT ⇤ bT + �I)�1 throughout the proof. First,
we have

ĥ� � h� = b�� bT ⇤ĝ � ��T ⇤g = b�� bT ⇤

⇣
ĝ � bTh0

⌘
+ b�� bT ⇤ bTh0 � ��T ⇤Th0| {z }

(?)

. (92)

Then, we can write (?) as

b�� bT ⇤ bTh0 � ��T ⇤Th0 = b��( bT ⇤ bT � T ⇤T )h0 + b��T ⇤Th0 + ��T ⇤Th0

= b��( bT ⇤ bT � T ⇤T )h0 + (b�� � ��)T ⇤Th0

(a)
= b��( bT ⇤ bT � T ⇤T )h0 + b��(T ⇤T � bT ⇤ bT )��T ⇤Th0

(b)
= b��( bT ⇤ bT � T ⇤T )h0 + b��(T ⇤T � bT ⇤ bT )h�

= b��( bT ⇤ bT � T ⇤T )(h0 � h�), (93)

where we applied the identity A�1�B�1 = A�1(B�A)B�1 to b����� to get (a), and (b) holds because h� = ��T ⇤Th0.
Combining (92) and (93) yields

ĥ� � h� = b�� bT ⇤(ĝ � bTh0) + b��( bT ⇤ bT � T ⇤T )(h0 � h�).

Consequently, we have

kĥ� � h�kHAXW  d(�)k bT ⇤ĝ � bT ⇤ bTh0k+ d(�)k bT ⇤ bT � T ⇤Tk kh0 � h�kHAXW
,

where d(�) := kb��k = k( bT ⇤ bT + �I)�1k as required.

By Proposition 12, Proposition 13, and (88), we can see that the rate of convergence of the estimation bias kĥ� � h0k
depends on the following quantities: (i) A sequence of regularization parameters � which will govern the rate of convergence
of the regularization bias kh� � h0k. (ii) The rate of convergence to infinity of d(�). (iii) The rates of convergence of
k bT ⇤ bT � T ⇤Tk and k bT ⇤ĝ � bT ⇤ bTh0k which are governed by the estimation of T and g. In the next section, we provide the
rates for these intermediate quantities.

RATES OF INTERMEDIATE QUANTITIES

Since we will deal with random variables taking values in Hilbert spaces, we need the following concentration inequality.
Lemma 11 (Bennett inequality in Hilbert space). Let H be a Hilbert space and ⇠ be a random variable with values in H.

Assume that k⇠k  M < 1 almost surely. Denote �2(⇠) = E[k⇠k2]. Let {⇠i}ni=1 be independent random drawers of a

random variable ⇠. Then, with probability at least 1� �,

�����
1

n

nX

i=1

[⇠i � E[⇠i]]

����� 
2M log(2/�)

n
+

r
2�2(⇠) log(2/�)

n
.
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Lemma 12 (Consistency of ĝ, bT , and bT ⇤). Suppose that Assumptions 6 and 7 holds. Let �2
g

and �2
T

be defined by

�2
g

:= E[kY '(A, X, Z)k2], �2
T

:= E[k�(A, X, W )k2k'(A, X, Z)k2].

Then, each of the following statements holds true with probability at least 1� �:

kĝ � gk  2cY 3 log(2/�)

n
+

r
2�2

g
log(2/�)

n

k bT � Tk  26 log(2/�)

n
+

r
2�2

T
log(2/�)

n

k bT ⇤ � T ⇤k  26 log(2/�)

n
+

r
2�2

T
log(2/�)

n

Proof. Let ⇠g(a, x, y, z) := y'(a, x, z). It follows from Assumptions 6 and 7 that

k⇠g(a, x, y, z)k  |y|k'(a, x, z)k = |y|
p

k(a, a)k(x, x)k(z, z)  cY 3.

Hence, we have

ĝ =
1

n

nX

i=1

⇠g(ai, xi, yi, zi), g = E[⇠g(A, X, Y, Z)].

If �2
g

= E[k⇠k2] = E[kY '(A, X, Z)k2], it follows from Lemma 11 that

kĝ � gk  2cY 3 log(2/�)

n
+

r
2�2

g
log(2/�)

n

with probability at least 1� �. Next, to bound k bT �Tk, recall that we can express bT and T as elements of HAXW ⌦HAXZ

as follows:

bT =
1

n

nX

i=1

�(ai, xi, wi)⌦ '(ai, xi, zi), T =

Z
�(A, X, W )⌦ '(A, X, Z) d⇢(A, X, W, Z).

Let ⇠T (a, x, w, z) := �(a, x, w)⌦ '(a, x, z) 2 HAXW ⌦HAXZ . Then, by Assumption 7,

k⇠T (a, x, w, z)k = k�(a, x, w)kk'(a, x, z)k 
p

k(a, a)k(x, x)k(w, w)
p

k(a, a)k(x, x)k(z, z)  6. (94)

As a result, we can express bT and T as

bT =
1

n

nX

i=1

⇠T (ai, xi, wi, zi), T = E[⇠T (A, X, W, Z)]. (95)

Letting �2
T

:= E[k⇠T k2] = E[k�(A, X, W )k2k'(A, X, Z)k2] and applying Lemma 11 yields with probability at least 1��

k bT � Tk  k bT � TkHAXW⌦HAXZ 
26 log(2/�)

n
+

r
2�2

T
log(2/�)

n
. (96)

The bound on k bT ⇤ � T ⇤k can be obtained using similar proof techniques, so we omit it for brevity.

Lemma 13. k bT ⇤ bT � T ⇤Tk = O(1/
p

n).

Proof. First, we have

k bT ⇤ bT � T ⇤Tk = k bT ⇤ bT � bT ⇤T + bT ⇤T � T ⇤Tk
 k bT ⇤ bT � bT ⇤Tk+ k bT ⇤T � T ⇤Tk
= k bT ⇤( bT � T )k+ k( bT ⇤ � T ⇤)Tk
 k( bT ⇤ � T ⇤)( bT � T )k+ kT ⇤( bT � T )k+ k( bT ⇤ � T ⇤)Tk
 k bT � Tk2 + 2kTkk bT � Tk.
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Hence, the rate of convergence of k bT ⇤ bT � T ⇤Tk is dominated by the rate of k bT � Tk which, according to Lemma 12, is in
the order of O(1/

p
n).

Lemma 14. k bT ⇤ĝ � bT ⇤ bTh0k = O(1/
p

n).

Proof. First, we have

k bT ⇤ĝ � bT ⇤ bTh0kHAXW = k( bT ⇤ĝ � T ⇤Th0) + (T ⇤Th0 � bT ⇤ bTh0)kHAXW

= k( bT ⇤ĝ � T ⇤g) + (T ⇤Th0 � bT ⇤ bTh0)kHAXW

= k( bT ⇤ĝ � bT ⇤g) + ( bT ⇤g � T ⇤g) + (T ⇤Th0 � bT ⇤ bTh0)kHAXW

 k bT ⇤ĝ � bT ⇤gkHAXW| {z }
(A)

+ k bT ⇤g � T ⇤gkHAXW| {z }
(B)

+ kT ⇤Th0 � bT ⇤ bTh0kHAXW| {z }
(C)

.

Next, we will bound each term separately.

Probabilistic bound on (A). Since bT ⇤ is a Hilbert-Schmidt operator in HAXZ ⌦HAXW , we have by Assumption 7 that
k bT ⇤k  k bT ⇤kHS  3. Consequently, k bT ⇤ĝ � bT ⇤gkHAXW = k bT ⇤(ĝ � g)kHAXW  k bT ⇤kkĝ � gkHAXZ  3kĝ � gkHAXZ .
By Lamma 12, we have with probability at least 1� �,

(A)  2cY log(2/�)

n
+

1

3

r
2�2

g
log(2/�)

n
. (97)

That is, (A) = O(1/
p

n).

Probabilistic bound on (B). Using Lemma 12, we have k bT ⇤g � T ⇤gk  k bT ⇤ � T ⇤kkgkHAXZ = O(1/
p

n).

Probabilistic bound on (C). kT ⇤Th0 � bT ⇤ bTh0kHAXW  kT ⇤T � bT ⇤ bTkkh0kHAXW = O(1/
p

n) by Lemma 13.

Since (A), (B), and (C) are all in the order of O(1/
p

n), k bT ⇤ĝ � bT ⇤ bTh0k = O(1/
p

n) as required.

Probabilistic bound on kb�k. Assume �  kT ⇤Tk and n � 2C✏N (�)��1. Then, with probability at least 1 � ✏/3,
kb�k  1/�.

Proof. Assume

k(T ⇤T � bT ⇤ bT )(T ⇤T + �I)�1k  1

2
. (98)

Using the Neumann series of I � (T ⇤T � bT ⇤ bT )(T ⇤T + �)�1, we have

( bT ⇤ bT + �I)�1 = (T ⇤T + �I)�1(I � (T ⇤T � bT ⇤ bT )(T ⇤T + �I)�1)�1

= (T ⇤T + �I)�1
1X

k=0

((T ⇤T � bT ⇤ bT )(T ⇤T + �I)�1)k.

Hence,

k( bT ⇤ bT + �I)�1k = k(T ⇤T + �I)�1k
1X

k=0

k(T ⇤T � bT ⇤ bT )(T ⇤T + �I)�1kk

 k(T ⇤T + �I)�1k 1

1� k(T ⇤T � bT ⇤ bT )(T ⇤T + �I)�1k
 2k(T ⇤T + �I)�1k.

where the last inequality results from (98). On the other hand, by the spectral theorem,

k(T ⇤T + �I)�1k = sup
l2(lk)1k=0

1

l + �
 1

�
,
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where (lk)1k=0 are the eigenvalues of T ⇤T . We now prove (98). We have

k(T ⇤T � bT ⇤ bT )(T ⇤T + �I)�1k  k(T ⇤T � bT ⇤ bT )kk(T ⇤T + �I)�1k  k(T
⇤T � bT ⇤ bT )k

�

The last term is smaller than O(1/
p

n) with high probability.

FINAL STEP

We have shown that k bT ⇤ bT � T ⇤Tk = O(1/
p

n) and k bT ⇤ĝ � bT ⇤ bTh0k = O(1/
p

n), and are now in a position to provide
the rate of convergence of the estimation bias kĥ� � h0k.

C.5 Proof of Theorem 3

Theorem statement. Suppose that h0 2 H� for some � > 0 and the conditions of Lemma 12, 13, and 14 hold. If
n

1
2�

1
2 min( 2

�+2 ,
1
2 ) is bounded away from zero, and � = n�

1
2 min( 2

�+2 ,
1
2 ), then

kĥ� � h0k = O
⇣
n�

1
2 min( 2

�+2 ,
1
2 )
⌘

. (99)

Proof. Suppose that k bT ⇤ bT � T ⇤Tk = O(1/↵n) and k bT ⇤ĝ � bT ⇤ bTh0k = O(1/�n). Then, it follows from Proposition 13
and Carrasco et al. (2007, Proposition 4.1) that

kĥ� � h0k = O
✓

1

��n

+

✓
1

�↵n

+ 1

◆
kh� � h0k

◆
. (100)

Hence, ��n must go to infinity as least as fast as kh� � h0k�1. That is, for h0 2 H� , Proposition 12 implies that

�2�2
n
� ��min(�,2) ) � � �

�min( 2
�+2 ,

1
2 )

n . (101)

Thus, to get the fastest possible rate, we will choose � = �
�min( 2

�+2 ,
1
2 )

n . Consequently, the rate of convergence of kĥ��h0k
and kh� � h0k will coincide if and only if ↵n�

�min( 2
�+2 ,

1
2 )

n is bounded away from zero. Finally, by Lemma 13 and Lemma
14, we substitute ↵n =

p
n and �n =

p
n to get the stated result.

Proof of Proposition 3

Proof. We can adapt Lemma 9 easily to see that, setting m = nt and for simplicity of notation writing �̂ = �̂(
nnt),

|�̂(a)� �(a)|  kĥ�kHAWX k�(a)kHAkµ̂nt � µkHAW + kĥ� � h0kHAWX k�(a)kHAkµkHAW

= O(kµ̂nt � µkHAW ) + O(kĥ� � h0kHAWX ) (102)

From Lemma 8, by setting g to be the feature map on A⇥W , we have

kµ̂nt � µk 
r

Ck

nt

+

s
2Ck log(1/�)

nt

= O(n
�

1
2

t
) (103)

By Theorem 3 we have
kĥ� � h0k = O

⇣
n�

1
2 min( 2

�+2 ,
1
2 )
⌘

. (104)

Thus, collecting rates of both terms in (102) we get

|�̂(a)� �(a)| = O(n
�

1
2

t
+ n�

1
2 min( 2

�+2 ,
1
2 )) (105)



Proximal Causal Learning with Kernels: Two-Stage Estimation and Moment Restriction

Figure 7: Synthetic generative model, sample size=1000

D Experiments

D.1 Data

D.1.1 REAL WORLD DATA

Disclaimer: We have applied our proposed methodologies on real world datasets to demonstrate performance of
our methods. The results should only be interpreted within framework of assessing methodologies.

For the Abortion and Criminality data (Woody et al., 2020), the treatment variable is effective abortion rate, the outcome
variable is murder rate, and the covariates are prisoner population per capita, state unemployment rate, income per capita,
state poverty rate, beer consumption per capita, presence of concealed weapons law, police employment rate per capita,
and generosity to Aid to Families with Dependent Children. How we selected the proxy variables are described below. We
mask the rest of the variables as unobserved confounders.

For the Education case study (Deaner, 2018; Fruehwirth et al., 2016), we are interested in the effect of grade retention
on long-term cognitive outcome, measured in terms of a reading and maths score when the subject is aged around 11.
In particular, our treatment variables are discrete, with levels at 0 (no retention), 1 (kindergarten retention) and 2 (early
elementary school retention). Following (Deaner, 2018), we use as proxy variables Kindergarten test scores (W ) and early
or late elementary school test scores (Z). Like in the Abortion and Criminality data, we mask the rest of the variables as
unobserved confounders.

To construct the True Average Causal Effect for real world datasets, where we do not have access to the full generative
model to infer E(y|do(a)), we have developed an empirical model to learn the latent variable for each dataset. Specifically,
we followed the procedure below to model the latent confounder.

1. We identified the potential candidates for proxies W and Z by stratifying variables based on the domain knowledge
and correlation with y and a. For Criminology case study (”Legalized abortion and crime”), we followed (Woody
et al., 2020) to identify proxy variables and categorize them as W and Z. For the Educational case study (”Grade
retention and Cognitive outcome”), we selected proxies as proposed by (Deaner, 2018). By this, we constructed a
multi-dimensional proxy variables W and Z for each example.
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2. We have included all other covariates as common endogenous confounders in generative model, i.e. X .
In Criminology case, as proposed by (Woody et al., 2020), we added a set of exogenous common confounders to the
model. In contrast with endogenous confounders, the common latent confounder (U ) is not a parent of the exogenous
confounders/covariates.

3. Assuming a generative model consistent with graph in fig. 1, we learned parameters of this generative model from
data. Specifically, we assumed a graph G consistent with fig. 1 and learned the Structural causal model (SCM),
E(Vi|pa(Vi)) = fi(pa(Vi)), 8i 2 G, for each endogenous variable. We fit a generalized additive model for each
experiment to learn parameters of the generative model.

4. To learn the generative distribution of the unmeasured confounder, we fit a Gaussian Mixture Model on noise term
of SCMs, learned at the previous stage. That is, we assumed the latent confounder U (multidimensional confoudner
unaccounted for in previous step) manifest as correlated noises of SCMs. We learned the parameters of a Gaussian
Mixture model representing this latent variable.

5. We proceed to generate samples {(a, x, z, w, y)i}ni=1 from the generative model for G learnt in previous steps
(n=10000).

6. The True Average Causal Effect at a given A = a is estimated by fixing A at a and averaging the Y samples sampled
from the fixed A and the rest of its parents.

D.2 Hyperparameters selection

For both KPV and PMMR, we employ Gaussian kernel (106) for continuous variables, as it is a continuous, bounded, and
characteristic kernel and meets all assumptions required to guarantee consistency of the solution at population level.

kxi,xj = exp{�kxi � xjk2
2�2

} (106)

See (Sriperumbudur et al., 2011) for survey of properties of these kernels. For multidimensional inputs, we use the product
of scalar kernels for each dimension as the kernel of the input. In both KPV and PMMR settings, we deal with two categories
of hyper-parameters: (1) Kernel’s length-scale (�), and (2) regularization hyper-parameters.

D.2.1 HYPERPARAMETER SELECTION PROCEDURE (KPV).

Kernel’s length-scale. A convenient heuristic is to set the length-scale equal to the median inter-point distances of all points
in sample with size n. that is, � := Med(|xi � xj |H) 8 i, j 2 n. We initiated the length-scale hyperparameter according
to this heuristic for every input (and every dimension of multidimensional inputs). We, subsequently, chose the optimal
length-scale from a narrow range around this level to allow for narrower/wider kernels to be considered.

Regularization hyper-parameters. For the regularization parameters, for both Stage 1 and Stage 2, we use the leave-one-
out cross validation method and follow the procedure proposed in (Singh et al., 2020, Algorithm. H1) to find the optimal
regularization hyper-parameter. In particular, we constructed H� and H̃� for Stage 1 as:

H�1 = I �KAXZ(KAXZ + m1�1)
�1, H̃�1 = diag(H�1), KAXZ := KAA �KXX �KZZ

and implemented a grid search over ⇤1 to find �1 as a minimizer of the closed form of validation loss (107).

�̂1 = argmin
�12⇤1

1

m1
|H̃�1

�1
H�1KWWH�1H̃

�1
�1

|2, ⇤ 2 R (107)

For Stage 2:
H�2 = I �A (m2�2 + ⌃)�1 , H̃�2 = diag(H�2)

where A := �( eA, eX,eZ)⌦Im2⇥m2 and ⌃ is defined as (59). We implemented a grid search over ⇤2 to find �2 as a minimizer
of the closed form of validation loss (108).

�̂2 = argmin
�22⇤2

1

m2
|H̃�1

�2
H�2y|22, ⇤2 2 R (108)

Note that in our setting, we assumed that the optimal hyperparameters of the first and second stages can be selected
independently. In reality, however, the hyperparameter selected in first stage, has a direct effect on second stage loss and
consequently, the optimal value of the hyperparameter in second stage.



Proximal Causal Learning with Kernels: Two-Stage Estimation and Moment Restriction

D.2.2 HYPERPARAMETER SELECTION PROCEDURE (PMMR).

Kernel’s length-scale. We select �l and �k using the median interdistance heuristic on the joint kernels l : (A⇥X⇥W )2 ! R
and k : (A⇥X ⇥ Z)2 ! R.

Regularization hyper-parameters. For the regularization parameter �, we let b2
l

= (�n2)�1 =) � = 1
(bln)2

. For all
training sizes n, we fixed the range of bln to be [2, 450], which translate to a range in � of [4.9⇥ 10�6, 0.25], and we do
grid search with a grid size of 50.

The metric we use for hyperparameter selection is the empirical estimate of the V � statistic, that is, bRV . We select the
hyperparameter � which minimizes R̂V over a held-out validation set.

D.3 Results

D.3.1 ABORTION & CRIMINALITY

The unobserved confounding variables (U ) are selected as ”income per capita”, ”police employment rate per capita”, ”state
unemployment rate” and ”state poverty rate”; the outcome inducing proxies (W ) are selected as ”prisoner population per
capita”, ”prescence of concealed weapons law”, ”beer consumption per capita”. We calculate their Canonical Correlation,
obtaining an absolute correlation value (|rCCA|) of 0.48, suggesting strong correlation between W and U .

E A Connection between Two-stage Procedure and Maximum Moment Restrictions for the
Proxy Setting

Note that R and R̃, true loss for PMMR and KPV methods, respectively, are both positive quantities.
Lemma 15. A minimizer of R̃ is a minimizer of R; and vice-versa. This minimize is unique.

Proof. For any h, h0 2 L2
PAXW

, by developing the squares and using the law of iterated expectation, we have :

R̃(h)� R̃(h0) = EAXY Z [(Y � E[h(A, X, W ) | A, X, Z])2]� EAXY Z [(Y � E[h0((A, X, W ) | A, X, Z])2]

= 2EAXY Z [Y E[h0(A, X, W )� h(A, X, W )|A, X, Z]] + EAXZ [E[h(A, X, W )|A, X, Z]2]

� EAXZ [E[h0(A, X, W )|A, X, Z]2]

= 2EAXZ [E[Y |A, X, Z]E[h0(A, X, W )� h(A, X, W )|A, X, Z]]

+ EAXZ [E[h(A, X, W )|A, X, Z]2]� EAXZ [E[h0(A, X, W )|A, X, Z]2]

= R(h)�R(h0).

Assuming 9h, h0 2 L2
PA,X,W

such that E[Y |A, X, Z] = E[h(A, X, W )|A, X, Z], according to the preceding computations
we have:

R̃(h)� R̃(h0) = R(h)�R(h0)

= 2EAXZ [E[Y |A, X, Z]E[h0(A, X, W )� h(A, X, W )|A, X, Z]]

+ EAXZ [E[h(A, X, W )|A, X, Z]2]� EAXZ [E[h0(A, X, W )|A, X, Z]2]

= EAXZ [E[h0(A, X, W )|A, X, Z]2]� 2EAXZ [E[h(A, X, W )|A, X, Z]E[h0(A, X, W )|A, X, Z]]

+ EAXZ [E[h(A, X, W )|A, X, Z]2]

= EAXZ [(E[h0(A, X, W )|A, X, Z]� E[h(A, X, W )|A, X, Z])2].

Taking h0 = h in the equation above shows that h is a minimizer of R and R̃ Hence, a unique minimizer of R is a minimizer
of R̃; and vice-versa.

2. By Lemma 1, R(h) = 0 if and only if h satisfies the conditional moment restriction (CMR): E[Y �
h(A, W, X) | A, Z, X] = 0, P(A, Z, X)-almost surely. We now show Rk(h) = 0 if and only if R(h) = 0. Firstly, by the
law of iterated expectations,

E[(Y � h(A, W, X))k((A, Z, X), ·)] = EA,X,Z [E[(Y � h(A, W, X))k((A, Z, X), ·)|A, X, Z]]

= EA,X,Z [E[(Y � h(A, W, X))|A, X, Z]k((A, Z, X), ·)].
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By Lemma 2, Rk(h) = kE[(Y � h(A, W, X))k((A, Z, X), ·)]k2
HAZX

. Hence, if h satisfies the CMR condition, then
Rk(h) = 0. We now assume that Rk(h) = 0. We can write Rk(h) as:

ZZ
g(a, x, z)k((a, x, z), (a0, x0, z0)g(a0, x0, z0)d(a, x, z)d(a, x, z) = 0,

where we define g(a, x, z) = EAXWY [Y �h(A, X, W )|a, x, z]d⇢(a, x, z). Since k is ISPD by Assumption 11, this implies
the CMR: E[Y � h(A, W, X) | A, Z, X] = 0, P(A, Z, X)-almost surely.

3. In KPV, the method is decomposed in two stages.

First stage. Under the assumption that E[f(w)|A, X, Z = ·] is in HAXZ for any f 2 HW , the conditional mean embedding
µ can be written µW |a,x,z = CW |A,X,Z�(a, x, z) for any (a, x, z) 2 A⇥X ⇥Z , where CW |A,X,Z : HAXZ ! HW is the
conditional mean embedding operator is well-defined (Song et al., 2009). Let H� the vector-valued RKHS of operators
from HAXZ to HW . A crucial result is that the tensor product HAXZ ⌦HW is isomorphic to L2(HAXZ , HW) the space
of Hilbert-Schmidt operators from HAXZ to HW . Hence, by choosing the vector-valued kernel � with feature map :
(w, a, x, z) 7! [�(a) ⌦ �(x) ⌦ �(z) ⌦ �(w)] = �(a) ⌦ �(x) ⌦ �(z)h�(w), ·iHW , we have H� = L2(HAXZ , HW) and
they share the same norm. We denote by L2(A⇥X ⇥Z, ⇢AXZ) the space of square integrable functions from A⇥X ⇥Z
to W with respect to measure ⇢AXZ , where ⇢AXZ is the restriction of ⇢ to A⇥ X ⇥ Z . Assuming CW |A,X,Z 2 H�, it is
the solution to the following risk minimization:

CW |A,X,Z = argmin
c2H�

E(C) where E(C) = EAXZW

⇥
k�(W )� C�(a, x, z)k2

HW

⇤
(109)

Second stage. Under the assumptions of a characteristic kernel and that h0 2 HAW , E[h(A, X, W )|A, X, Z] =
⌘AXW [�(a, x)⌦ µW |a,x,z]. The operator ⌘AXW minimizes

⌘AXW = argmin
⌘2HAXW

R̃(⌘) where R̃(⌘) = EAXY Z

⇥
(Y � ⌘AXW [�(a, x)⌦ µW |a,x,z])

2
⇤
,

where µW |a,x,z = CW |A,X,Z�(a, x, z) and CW |A,X,Z is the solution of (109). Hence, as long as the problem is well-
posed, i.e CW |A,X,Z 2 H� and h 2 HAXW , the KPV approach recovers E[h(A, X, W )|·], with E[h(A, X, W )|A, X, Z] =
⌘AXW [�(a, x)⌦ µW |A,X,Z ] = ⌘AXW [�(a, x)⌦ CW |A,X,Z�(A, X, Z)].
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