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Abstract
Designing learning algorithms that are resistant to
perturbations of the underlying data distribution
is a problem of wide practical and theoretical im-
portance. We present a general approach to this
problem focusing on unsupervised learning. The
key assumption is that the perturbing distribution
is characterized by larger losses relative to a given
class of admissible models. This is exploited by
a general descent algorithm which minimizes an
L-statistic criterion over the model class, weight-
ing small losses more. Our analysis characterizes
the robustness of the method in terms of bounds
on the reconstruction error relative to the under-
lying unperturbed distribution. As a byproduct,
we prove uniform convergence bounds with re-
spect to the proposed criterion for several popular
models in unsupervised learning, a result which
may be of independent interest. Numerical ex-
periments with KMEANS clustering and principal
subspace analysis demonstrate the effectiveness
of our approach.

1. Introduction
Making learning methods robust is a fundamental problem
in machine learning and statistics. In this work we proposes
an approach to unsupervised learning which is resistant to
unstructured contaminations of the underlying data distribu-
tion. As noted by Hampel (Hampel, 2001), “outliers” are
an ill-defined concept, and an approach to robust learning,
which relies on rules for the rejection of outliers (see Ord,
1996, and references therein) prior to processing may be
problematic, since the hypothesis class of the learning pro-
cess itself may determine which data is to be regarded as
structured or unstructured. Instead of the elimination of
outliers – quoting Hampel “data that don’t fit the pattern set
by the majority of the data” – in this paper we suggest to
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restrict attention to “a sufficient portion of the data in good
agreement with one of the hypothesized models”.

To implement the above idea, we propose using L-
estimators (Serfling, 1980), which are formed by a weighted
average of the order statistics. That is, given a candidate
model, we first rank its losses on the empirical data and
than take a weighted average which emphasizes small losses
more. An important example of this construction is the
average of a fraction of the smallest losses. However, our
observations apply to general classes of weight functions,
which are only restricted to be non-increasing and in some
cases Lipschitz continuous.

We highlight that although L-statistics have a long tradition,
a key novelty of this paper is to use them as objective func-
tions based on which to search for a robust model. This
approach is general in nature and can be applied to robustify
any learning method, supervised or unsupervised, based
on empirical risk minimization. In this paper we focus on
unsupervised learning, and our analysis includes KMEANS
clustering, principal subspace analysis and sparse coding,
among others.

This paper makes the following contributions:

• A theoretical analysis of the robustness of the proposed
method (Theorem 1). Under the assumption that the
data-distribution is a mixture of an unperturbed dis-
tribution adapted to our model class and a perturbing
distribution, we identify conditions under which we
can bound the reconstruction error, when the minimizer
of the proposed objective trained from the perturbed
distribution is tested on the unperturbed distribution.

• An analysis of generalization (Theorems 4–6). We
give dimension-free uniform bounds in terms of
Rademacher averages as well as a dimension- and
variance-dependent uniform bounds in terms of cover-
ing numbers which can outperform the dimension-free
bounds under favorable conditions.

• A meta-algorithm operating on the empirical objec-
tive which can be used whenever there is a descent
algorithm for the underlying loss function (Theorem
9).

The paper is organized as follows. In Section 2 we give
a brief overview of unsupervised (representation) learning.
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In Sections 3 to 5 we present and analyze our method. In
Section 6 we discuss an algorithm optimizing the proposed
objective and in Section 7 we present numerical experiments
with this algorithm for KMEANS clustering and principal
subspace analysis, which indicate that the proposed method
is promising. Proofs can be found in the supplementary
material.

Previous Work Some elements of our approach have a
long tradition. For fixed models the proposed empirical
objectives are called L-statistics or L-estimators. They have
been used in robust statistics since the middle of the last
century (Lloyd, 1952) and their asymptotic properties have
been studied by many authors (see Serfling, 1980, and
references therein). Although influence functions play a
certain role, our approach is somewhat different from the
traditions of robust statistics. Similar techniques to ours
have been experimentally explored in the context of classifi-
cation (Han et al., 2018) or latent variable selection (Kumar
et al., 2010). (Cuesta-Albertos et al., 1997) give a special
case of our method applied to k-means with hard threshold.
The method is analyzed with the lenses of different robust-
ness properties in (Garcia-Escudero & Gordaliza, 1999).
Finite sample bounds, uniform bounds, the minimization of
L-statistics over model classes and the so called risk based-
objectives however are more recent developments (Maurer
& Pontil, 2018; 2019; Lee et al., 2020), and we are not
aware of any other general bounds on the reconstruction
error of models trained from perturbed data. A very differ-
ent line of work for robust statistics are model-independent
methods available in high dimensions (Elmore et al., 2006;
Fraiman et al., 2019). Although elegant and very general,
these depth-related pre-processing methods may perform
sub-optimally in practice, as our numerical experiments in-
dicate. Similar data-generating assumption are adopted in
Robust estimation, a related line of work where the goal is to
identify the parameters of a target distribution up to a small
error. In this context, strong parametric assumptions are
made on the target distributions and the learning problems
involves typically simpler model classes such as, mean and
covariance estmations. In constrast, in this paper we focus
allows for non-parametric distributions and more complex
model classes as singletons, subspaces and linear operators.
Please refer to (Diakonikolas & Kane, 2020) for an up-to-
date survey on the results and the techniques employed to
derive efficient algorithms for robust estimation. Finally,
we note that previous work on PAC learning (e.g. Angluin
& Laird, 1987) has addressed the problem of learning a
good classifier with respect to a target, when the data comes
from a perturbed distribution affected by unstructured noise.
Similarly to us, they consider that the target distribution is
well adapted to the model class.

2. Unsupervised Learning
Let S be a class of subsets of Rd, which we call the model
class. For S ∈ S define the distortion function dS : Rd →
[0,∞) by1

dS (x) = min
y∈S
‖x− y‖2 for x ∈ Rd. (1)

We assume that the members of S are either compact sets
or subspaces, so the minimum in (1) is always attained. For
instance S could be the class of singletons, a class of subsets
of cardinality k, the class of subspaces of dimension k, or a
class of compact convex polytopes with k vertices2.

We write P (X ) for the set of Borel probability mea-
sures on a locally compact Hausdorff space X . If µ ∈
P
(
Rd
)
, define the probability measure µS ∈ P ([0,∞))

as the push-forward of µ under dS , that is, µS (A) =
µ ({x : dS (x) ∈ A}) for A ⊆ [0,∞). Now consider the
functional Φ : P ([0,∞))→ [0,∞) defined by

Φ (ρ) =

∫ ∞
0

rdρ (r) , ρ ∈ P . (2)

Then Φ (µS) = EX∼µ [dS (X)] is the expected reconstruc-
tion error, incurred when coding points by the nearest neigh-
bors in S. The measures µS ∈ P ([0,∞)) and the functional
Φ allow the compact and general description of several prob-
lems of unsupervised learning as

min
S∈S

Φ (µS) = min
S∈S

EX∼µ [dS (X)] . (3)

Denote with S∗ = S∗ (µ) a global minimizer of (3). Re-
turning to the above examples, if S is the class of singleton
sets, then S∗ (µ) is the mean of µ. If it is the class of subsets
of cardinality k, then S∗ (µ) is the optimal set of centers
for KMEANS clustering. If S is the class of k-dimensional
subspaces, then S∗ (µ) is the principal k-dimensional sub-
space.

An important drawback of the above formulation is that
the functional Φ is very sensitive to perturbing masses at
large distortions R. In the tradition of robust statistics (see
e.g. Hampel, 1974; Serfling, 1980) this can be expressed in
terms of the influence function, measuring the effect of an
infinitesimal point mass perturbation of the data. Let δR be
the unit mass at R > 0, then the influence function

IF (R; ρ,Φ) :=
d

dt
Φ
(
(1− t)ρ+ tδR

)∣∣∣∣
t=0

(4)

= R− Φ (ρ) ,

1In most parts our analysis applies also to other distortion
measures, for example omitting the square in (1). The chosen form
is important for generalization bounds, when we want to bound the
complexity of the class {x 7→ dS (x) : S ∈ S} for specific cases.

2In these cases the set S is the image of a linear operator on a
prescribed set of code vectors, see (Maurer & Pontil, 2010). Our
setting is more general, e.g. it includes non-linear manifolds.
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can be arbitrarily large, indicating that even a single dat-
apoint could already corrupt S∗ (µ). To overcome this
problem, in the next section we introduce a class of robust
functional based on L-statistics.

3. Proposed Method
Our goal is to minimize the reconstruction error on unper-
turbed test data, from perturbed training data. Specifically,
we assume that the data we observe comes from a perturbed
distribution µ that is the mixture of an unperturbed distri-
bution µ∗, which is locally concentrated on the minimizer
S∗ = S∗ (µ∗), and a perturbing distribution ν which is un-
structured in the sense that it does not concentrate on any of
our models3. Figure 1 depicts such a situation, when S is
the set of singletons and d = 1.

S∗

Figure 1. Densities of the unperturbed distribution µ∗ (light green)
with high local concentration on the optimal model S∗, the perturb-
ing distribution ν (light red) without significant concentration, and
the observable mixture µ = (1− λ)µ∗ +λν∗ (black) at λ = 0.6.

We wish to train from the available, perturbed data a model
Ŝ ∈ S, which nearly minimizes the reconstruction error
on the unperturbed distribution µ∗. To this end we exploit
the assumption that the unperturbed distribution µ∗ is much
more strongly concentrated at S∗ than the mixture µ =
(1− λ)µ∗ + λν is at models S away from S∗ in terms of
reconstruction error.

The key observation is that if the mixture parameter λ is
not too large, the concentration of µ∗ causes the cumulative
distribution function of the losses for the optimal model
FµS∗ : r 7→ µS∗ [0, r] to increase rapidly for small values
of r, until it reaches the value ζ = FµS∗ (r∗), where r∗ is
a critical distortion radius depending on S∗. Thus, when
searching for a model, we can consider as irrelevant the re-
maining mass 1−ζ = µS∗ (r∗,∞), which can be attributed
to ν and may arise from outliers or other contaminating
effects. To achieve this, we modify the functional (2) so
as to consider only the relevant portion of data, replacing

3This is in contrast with the assumptions made in adversarial
learning, where the goal is to increase robustness against adversar-
ial worst-case perturbations (see e.g. Lee & Raginsky, 2018).

Φ (µS) by

ζ−1
∫ F−1

µS
(ζ)

0

rdµS (r) . (5)

Intuitively, the minimization of (5) forces the search to-
wards models with the smallest truncated expected loss.
Among such models there is also S∗, whose losses have
the strongest concentration around a small value and then
leading to a very small value r∗ for F−1µS∗

(ζ).

More generally, since the choice of the hard quantile-
thresholding at ζ is in many ways an ad hoc decision, we
might want a more gentle transition of the boundary be-
tween relevant and irrelevant data. Let W : [0, 1]→ [0,∞)
be a bounded weight function and define, for every ρ ∈
P [0,∞),

ΦW (ρ) =

∫ ∞
0

rW (Fρ (r)) dρ (r) .

We require W to be non-increasing and zero on [ζ, 1] for
some critical mass ζ < 1. The parameter ζ must be chosen
on the basis of an estimate of the amount λ of perturbing
data. Note that if W is identically 1 then Φ1 = Φ in (2),
while if W = ζ−11[0,ζ] then ΦW is the hard thresholding
functional in (5).

We now propose to “robustify” unsupervised learning by
replacing the original problem (3) by

min
S∈S

ΦW (µS) , (6)

and denote a global minimizer by S† ≡ S† (µ).

In practice, µ is unknown and the search for the model
S† has to rely on finite data. If µ̂ (X) = 1

n

∑n
i=1 δXi is

the empirical measure induced by an i.i.d. sample X =
(X1, ..., Xn) ∼ µn, then the empirical objective is the
plug-in estimate

ΦW (µ̂ (X)S)

=
1

n

n∑
i=1

dS (Xi)W

(
1

n
|{Xj : dS (Xj) ≤ dS (Xi)}|

)

=
1

n

n∑
i=1

dS (X)(i)W

(
i

n

)
, (7)

where dS (X)(i) is the i-th smallest member of
{dS (X1) , ..., dS (Xn)}.

The empirical estimate ΦW (µ̂ (X)S) is an L-statistic (Ser-
fling, 1980). We denote a minimizer of this objective by

Ŝ (X) = arg min
S∈S

ΦW (µ̂ (X)S) . (8)

In the sequel we study three questions:
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1 If the underlying probability measure is a mixture
µ = (1− λ)µ∗ + λν of an unperturbed measure µ∗

and a perturbing measure ν, and S† = S† (µ) is the
minimizer of (6), under which assumptions will the
reconstruction error Φ

(
µ∗S†
)

incurred by S† on the
unperturbed distribution approximate the minimal re-
construction error Φ (µ∗S∗)?

2 When solving (6) for a finite amount of data X, under
which conditions can we reproduce the behavior of S†

by the empirical minimizer Ŝ (X) in (8)?

3 How can the method be implemented and how does it
perform in practice?

4. Resilience to Perturbations
Before we address the first question we make a preliminary
observation in the tradition of robust statistics and compare
the influence functions of the functional Φ1 to that one of
the proposed ΦW with bounded W , and W (t) = 0 for ζ ≤
t < 1. While we saw in (4) that for any ρ ∈ P ([0,∞)) the
influence function IF (R; ρ,Φ) = R− Φ (ρ) is unbounded
in R, in the case of ΦW we have, for any R ∈ Rd, that

IF (R; ρ,ΦW ) ≤ IFmax (ρ,W )

:=

∫ F−1
ρ (ζ)

0

W (Fρ (r))Fρ (r) dr.

Notice that the right hand side is always bounded, which
already indicates the improved robustness of ΦW (Hampel,
1974). The upper bound IFmax on the influence function
plays also an important role in the subsequent analysis.

Returning now to the data generating mixture µ =
(1− λ)µ∗ + λν, where µ∗ ∈ P

(
Rd
)

is the the ideal, un-
perturbed distribution and ν ∈ P

(
Rd
)

the perturbation, we
make the following assumption.

Assumption A. There exists S0 ∈ S , δ > 0, β ∈ (0, 1− λ)
and a scale parameter r∗ > 0 (in units of squared euclidean
distance), such that for every model S ∈ S satisfying
Φ (µ∗S) > Φ

(
µ∗S0

)
+ δ we have FµS (r) < βFµ∗S0

(r) for
all r ≤ r∗.

Assumption A does not depend so much on the richness of
S (which will be relevant to generalization) but on the con-
centration properties of µ∗ and ν (see the extreme example
in the supplement). Loosely speaking the assumption pre-
scribes that, under the perturbed distribution µ, any model
S with a large reconstruction error on µ∗, should have its
losses far less concentrated than the losses of S0 for small
values of r (any r ≤ r∗). It generally helps if the perturbing
distribution ν has a bounded density with a small bound,
so that its contributions to FµS (r) remain small for small
values of r. Illustrating examples, which apply to the cases

of K-MEANS clustering and principal subspace analysis are
given in Figures 1 and 2.

We now state the main result of this section.

Theorem 1. Let µ∗, ν ∈ P
(
Rd
)
, µ = (1− λ)µ∗ + λν,

and λ ∈ (0, 1) and suppose there are S0, r∗, δ > 0
and β ∈ (0, 1 − λ), satisfying Assumption A. Let W be
nonzero on a set of positive Lebesgue measure, nonin-
creasing and W (t) = 0 for t ≥ ζ = FµS0 (r∗). Then
IFmax (µS0 ,W ) > 0, and if any S ∈ S satisfies

ΦW (µS)−ΦW (µS0
) ≤

(
1− β

1−λ

)
IFmax(µS0

,W ) (9)

then we have that Φ (µ∗S) ≤ Φ
(
µ∗S0

)
+ δ. In particular we

always have that Φ
(
µ∗S†
)
≤ Φ

(
µ∗S0

)
+ δ.

S∗

S

Figure 2. Illustration of Theorem 1 for d = 2 and k = 1 in the
case of PSA. The target distribution (dark gray) is concentrated
on the subspace S∗, while the perturbing distribution (light gray)
does not concentrate well on any individual subspace.

We close this section by stating some important conclusions
of the above theorem.

1. A simplifying illustration of Theorem 1 for princi-
pal subspace analysis is provided by Figure 2. The
distributions µ∗ and ν are assumed to have uniform
densities ρ (µ∗) and ρ (ν) supported on dark red and
light red areas of the unit disk respectively. Suppose
β = ρ (ν) /ρ (µ∗) < 1 − λ, let r∗ = sin2 (π/ρ (µ∗))
and δ = 4r∗. If Φ (µ∗S) > Φ (µ∗S∗) + δ then the direc-
tion of the subspace S does not intersect the black part
of the unit circle and therefore FµS (r) ≤ βFµ∗

S∗
(r)

for all r ≤ r∗. Thus Assumption A is satisfied and
consequently, if W (t) = 0 for t ≥ FµS∗ (r∗), then
S† must intersect the black part of the unit circle and
Φ
(
µ∗S†
)
≤ Φ (µ∗S∗) + δ. Refer also to Figure 2 for an

illustration.

2. The generic application of this result assumes that
S0 = S∗ (µ∗), but this is not required. Suppose S
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is the set of singletons and µ∗ is bimodal, say the mix-
ture of distant standard normal distributions, and λ = 0
for simplicity. Clearly there is no local concentration
on the midpoint S∗ (µ∗), but there is on each of the
modes. If S0 is the mean of the first mode and ζ is
sufficiently small, then S† can be near the mean of the
other mode, because it has comparable reconstruction
error. In this way the result also explains the astonish-
ing behavior of our algorithm in clustering experiments
with mis-specified number of clusters. Refer also to
Figure 3 (top right) for an illustration.

3. The conditions on W prescribe an upper bound on the
cutoff parameter ζ. If the cutoff parameter ζ is chosen
smaller (so that W (t) = 0 for t ≥ ζ � FµS∗ (r∗)),
the required upper bound in (9) decreases and it be-
comes more difficult to find S satisfying the upper
bound. This problem becomes even worse in prac-
tice, because the bounds on the estimation error also
increase with ζ, as we will see in the next section.

5. Generalization Analysis
Up to this point we were working with distributions and
essentially infinite data. In practice we only have sam-
ples X ∼ µn and then it is important to understand to
which extend we can obtain the conclusion of Theorem 1,
when S is the minimizer of the empirical robust functional
ΦW (µ̂ (X)S). This can be settled by a uniform bound on
the estimation error for ΦW .

Proposition 2. Under the conditions of Theorem 1 with
X ∼ µn we have that

Pr
{

Φ
(
µ∗
Ŝ(X)

)
≤ Φ (µ∗S∗) + δ

}
≥ Pr

{
2 sup
S∈S
|ΦW (µS)− ΦW (µ̂S (X))|

≤
(

1− β

1− λ

)
IFmax (µS∗ ,W )

}
.

The left hand side is the probability that the minimization
of our robust L-statistic objective returns a δ-optimal model
for the target distribution µ∗. The right hand side goes to
1 as n grows. As we show next, this is due to the fact that
the class {µS} enjoys a uniform convergence property with
respect to the functional ΦW . Particularly, we present three
uniform bounds that control the rate of decay of the same
estimation error |ΦW (µS)− ΦW (µ̂S (X))|.

The first two bounds are dimension-free and rely on
Rademacher and Gaussian averages of the function class
{x 7→ d (x, S) : S ∈ S}. Bounds for these complexity mea-
sures in the practical cases considered can be found in (Mau-
rer & Pontil, 2010; Lee & Raginsky, 2019; Vainsencher

et al., 2011). Our last bound is dimension dependent but
may outperform the other two if the variance of the robust
objective is small under its minimizer. All three bounds
require special properties of the weight function W .

For this section we assume µ ∈ P
(
Rd
)

to have compact
support, write X =support(µ) and let F be the function
class

F = {x ∈ X 7→ d (x, S) : S ∈ S} .
We also set Rmax = supf∈F ‖f‖∞.

The first bound is tailored to the hard-threshold ζ−11[0,ζ]. It
follows directly from the elegant recent results of (Lee et al.,
2020). For the benefit of the reader we give a proof in the
appendix, without any claim of originality and only slightly
improved constants.

Theorem 3. Let W = ζ−11[0,ζ] and η > 0. With probabil-
ity at least 1− η in X ∼ µn we have that

sup
S∈S
|ΦW (µS)− ΦW (µ̂S (X))|

≤ 2

ζn
EXR (F ,X) +

Rmax

ζ
√
n

(
2 +

√
ln (2/η)

2

)
,

whereR (F ,X) is the Rademacher average

R (F ,X) = Eε

[
sup
S∈S

n∑
i=1

εid (Xi, S)

]
with independent Rademacher variables ε = (ε1, ..., εn).

The next bound requires boundedness and a Lip-
schitz property for the weight function W which
can otherwise be arbitrary. We define the norm
‖W‖∞ = supt∈[0,1] |W (t)| and seminorm ‖W‖Lip =
inf {L : ∀t, s ∈ [0, 1] , W (t)−W (s) ≤ L |t− s|} .
Theorem 4. For any η > 0

sup
S∈S
|ΦW (µS)− ΦW (µ̂S (X))|

≤
2
√
π
(
Rmax ‖W‖∞ + ‖W‖Lip

)
n

EXG (F ,X)

+Rmax ‖W‖∞

√
2 ln (2/η)

n

where G (F ,X) is the Gaussian average

G (F ,X) = Eγ

[
sup
S∈S

n∑
i=1

γid (Xi, S)

]
,

with independent standard normal variables γ1, ..., γn.

Our last result also requires a Lipschitz property for W and
uses a classical counting argument with covering numbers
for a variance-dependent bound.
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Theorem 5. Under the conditions of the previous theorem,
with probability at least 1− η in X ∼ µn we have that for
all S ∈ S

|ΦW (µS)− ΦW (µ̂S (X))|

≤
√

2VSC +
6Rmax

(
‖W‖∞ + ‖W‖Lip

)
C

n

+
‖W‖∞Rmax√

n
,

where VS is the variance of the random variable
ΦW (µ̂S (X)), and C is the complexity term

C = kd ln
(

16n ‖S‖2 /η
)

if S is the set of sets with k elements, or convex polytopes
with k vertices and ‖S‖ = supx∈S∈S ‖x‖, or

C = kd ln
(
16nR2

max/η
)

if S is the set of set of k-dimensional subspaces.

We state two important conclusion from the above theorems.

1. Our bounds decrease at least as quickly as n−1/2 lnn.
However, the bound in the last theorem may be consid-
erably smaller than the previous two if n is large and
the unperturbed distribution is very concentrated. The
last term, which is of order n−1/2 does not carry the
burden of the complexity measure and decays quickly.
The second term contains the complexity, but it de-
creases as n−1. It can be shown from the Efron-Stein
inequality (see e.g. Boucheron et al., 2013, Theorem
3.1) that the variance VS of our L-statistic estimator
is at most of order n−1, so the entire bound is at most
of order n−1/2 lnn. On the other hand Vs can be very
small. For example, if the unperturbed distribution is
completely concentrated at S∗ and ζ is chosen appro-
priately VS∗ = 0 and, apart from the complexity-free
last term the decay is as n−1 lnn.

2. The above bounds implies that, by equating the esti-
mation error to 1

2

(
1− β

1−λ
)
IFmax (µS∗ ,W ) and solv-

ing for η, our method recovers a δ-optimal (w.r.t. µ∗)
model with probability at least equal to 1− exp(−n).

Finally, we highlight that the above uniform bounds may
be of independent interest. For example, consider the case
that the test data also come from the perturbed distribution.
In such a situation one might be interested in evaluating
the performance of the learned model only on data that fit
the model class, i.e. ΦW (µS). These bounds guarantee
that by minimizing the empirical robust functional, one
also get good performances on future data from the same
distribution.

6. Algorithms
In this section we present our algorithm for (approximately)
minimizing the robust L-statistic ΦW (µ̂(X)S) w.r.t. model
S ∈ S. Throughout we assume W non-increasing and
fixed, and to simplify the notation we use the shorthand
Φ̂S(X) ≡ ΦW (µ̂(X)S).

6.1. General Algorithm

Let x = (x1, . . . , xn) be a realization of X ∼ µn, consider
the following function of S ∈ S

Φ̂S(x) =
1

n

n∑
i=1

W

(
π(i)

n

)
dS(xi) (10)

where π is the ascending ordering of the dS(x)(i) and notice
that minimizing (10) is equivalent to minimize (7). Let p
any fixed element in Symn

4 and let

φS(x, p) =
1

n

n∑
i=1

W

(
p(i)

n

)
dS(xi).

In the following we will leverage the following property of
φS .

Lemma 6. For any S ∈ S and any p ∈ Symn, if π is
the ascending ordering of the dS(xi)s, then φS(x, p) ≥
φS(x, π) = Φ̂S(x).

We need also the following definition.

Definition 7. A mapping D : S × Sn → S is a Descent
Oracle for φS iff for any S ∈ S and any p ∈ Symn,
φD(S,p)(x, p) ≤ φS(x, p).

The algorithm attempts to minimize (10) via alternating
minimization of φS . At the beginning, it picks an initial
model S0 and sort the induced losses in ascending order,
i.e. pick the optimal permutation π0. Then it starts iterating
this two steps by first calling the descent oracle D(St, πt)
and then sorting the induced losses. At each step either the
permutation πt or the model St are fixed. Pseudocode is
given in Algorithm 1. Indeed, at each step the algorithm
first finds a descending iteration St+1 of φSt(x, πt) and
then sort the losses according to πt+1, an operation that
by Lemma 6 cannot increase the value of φSt+1 . Thus the
following holds.

Theorem 8. Algorithm 1 is a descent algorithm for the
problem of minimizing (10), i.e. for any t, Φ̂St+1(x) ≤
Φ̂St(x).

This algorithm is general and to apply it to a specific learning
problem an implementation of the descent oracle is needed.

4Here Symn denotes the set of all n! permutations over n
objects.
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Algorithm 1
1: Pick any S0 ∈ S
2: π0 ← arg minp∈Symn φS0(x, p)
3: for t = 1, . . . , T do
4: St ← D(St−1, πt−1)
5: πt ← arg minp∈Sn φSt(x, p)
6: end for
7: return ST

The efficiency of Algorithm 1 depends upon such oracle.
In the following we show two descent oracles for the cases
of KMEANS and PSA. On the negative side notice that in
the case of KMEANS when W is the identity, the problem
reduces to finding the optimal KMEANS solution, a problem
which is known to be hard (further hardness evidence are
provided in the supplement). Thus, in the general case, it is
not possible to solve our empirical problem optimally. Our
algorithms, are a first step towards the design of methods
with provable approximation guarantees.

k-Means Clustering (KMEANS). In this case S is the
set of all possible k-tuples of centers in Rd and dS(x) =
minc∈S ‖x − c‖22. Keeping fixed the permutation p, we
consider as descent oracle the following Lloyd-like update
for the centers. Each center c ∈ S induces a cluster formed
by a subset of training points xi, i ∈ I which are closer
to c than every other center (breaking ties arbitrarily). The
overall loss of representing point in I with c is∑

i∈I
W

(
p(i)

n

)
‖xi − c‖22.

This loss is minimized at

ĉ =
1∑

i∈IW
(
p(i)
n

)∑
i∈I

W

(
p(i)

n

)
xi,

so the following holds.

Proposition 9. Given S and p, the mapping that for every
c ∈ S returns the ĉ defined above is a descent oracle for
KMEANS and its runtime is O(nkd).

The resulting algorithm can is a generalization of the method
proposed in (Chawla & Gionis, 2013).

Principal Subspace Analysis (PSA). In this case S is the
set of all possible d × k matrices U such that U>U = Id,
dS(x) = ‖x− UU>x‖22 and

φU (x, p) =

n∑
i=1

W

(
p(i)

n

)
‖x− UU>xi‖22.

Given p, it is easy to see that the above function is mini-
mized at the matrix Û formed by stacking as columns the k

eigenvectors of
∑n
i W

(
p(i)
n

)
xix
>
i associated to the top k

eigenvalues, so the following holds.

Proposition 10. Given U and p, the mapping that returns
the Û defined above is a descent oracle for PSA and its
runtime is O(min{d3 + nd2, n3 + n2d}).

7. Experiments
The purpose of the numerical experiments is to show that:

• Our algorithms for PSA and KMEANS outperform
standard SVD, KMEANS++ and the Spherical Depth
method (SD) in presence of outliers, while obtain simi-
lar performances on clean data.

• Our algorithms on real data are not too sensitive to the
parameters of the weight function. In particular, we
show that there exist a wide-range of ζ values such that
using the hard-threshold function leads to good results.

• In the case of KMEANS our method is able to accurately
reconstruct some of the true centers even when the
value of k is miss-specified. This matches the second
remark after Theorem 1.

Implemented Algorithms. For KMEANS++ we used the
sklearn implementation fed with the same parameters for
the maximum number of iterations T and the initializations
r we used for our method. Notice that T is only an upper
bound to the number of iterations, the algorithms stop when
the difference between the current objective value and the
previous one is smaller than 10−7. To set r we used the
largest value before diminishing returns were observed. For
standard PSA we compute the SVD of

∑
i xix

>
i . The SD

method is a general purpose pre-processing technique that
is applied on the data before performing KMEANS and PSA
(see e.g. Elmore et al., 2006; Fraiman et al., 2019). This
method computes a score for each point in the dataset by
counting in how many balls, whose antipodes are pairs of
points in the data, it is contained. The 1−ζn points with the
smallest scores are discarded. If the data contain n points,
the methods needs to check O(n2) balls for each of the n
point resulting in a runtime ofO(n3). For scalability on real
data, we implemented a randomized version of this method
that for each point only check M balls picked uniformly
at random from the set of all possible balls and used M =
O(n); the resulting runtime is O(n2). In the following we
refers to our methods as RKM and RPSA respectively. All
experiments have been run on an standard laptop equipped
with an Intel i9 with 8 cores each working at 2,4 GHz and
16 GB of RAM DDR4 working at 2,6 GHz.
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Figure 3. Experiments for KMEANS on synthetic data (top row) and real data (bottom row).

7.1. KMEANS Clustering

Synthetic Data. We run two experiments with artificial
data in R2. In the first experiment, we generated 300 inliers
from 3 isotropic truncated Gaussians (100 points each) with
variance 0.1 along both axis and mean (−3, 0), (0, 1) and
(3, 0) respectively. We then corrupt the data adding 100
points from a fourth isotropic truncated Gaussian centered
at (−1,−5) with variance 5 along both axis. For both RKM
and KMEANS++ we T = 10 and r = 30. We initialized
RKM with uniform centers and set ζ = 0.75, the same
ζ is used for SD. Results are shown in Figure 3 top left,
where it is possible to see that while RKM recovers the true
centers, SD and KMEANS++ both fail badly placing one
centers in the middle of the two clusters and the other close
to the mean of the perturbing distribution. In the second
experiment, we generated 300 points from the same 3 inliers
Gaussians and set the algorithms with k = 2 and ζ = 0.6,
while T and r are as above. Results are shown in the top
right of Figure 3, where it is possible to see that KMEANS++
and SD – although to a lesser extend – wasted a center to
merge 2 clusters, while RKM correctly recovers 2 out of the
3 centers.

Real Data. In the synthetic experiments we choose ζ ac-
cording to the exact fraction of outliers, a quantity which
is usually unknown in practice. Here we show that there is
a wide range of values for ζ such that RKM performs bet-
ter than KMEANS++. We used the Fashion-MNIST dataset
which consists of about 70000 28 × 28 images of various
types of clothes splitted in a training set of 60000 images
and a test set of 10000 images. Specifically, there are 10
classes in the dataset: t-shirts, trousers, pullover, dresses,
coats, sandals, shirts, sneakers, bags and ankle boots. The
training data were generated by sampling 1000 points, from
the training set, each from the sneakers and the trousers
classes as inliears, and 250 points from each other class as
outliers. The resulting fraction of outliers is about 0.5. The
test data consist of all the sneakers and the trousers in the
test set and has size of about 2000. We run the algorithms
with T = 50, r = 30,M = 4000, k = 2 and ζ in the range
[0.4, 1]. Results are shown in the bottom row of Figure 3.
In the lower left, it is possible to see that the centers learned
by RKM at the optimal threshold value ζ = 0.5 look good,
while the centers found by SD and KMEANS++ are affected
by the outliers. Specifically, the such centers arise from the
overlap of multiple classes. One center suffers from the
effect of the other two shoes classes (sandald and boots)
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Figure 4. Experiments for PSA on synthetic data (top) and real
data (bottom).

as witnessed by the elongated background area, while the
other is affected by the clothes classes (most noticeably,
the coats) as suggested by background shadow. As for the
reconstruction error, RKM outperforms SD uniformly over
the range of considered values of ζ.

7.2. Principal Subspace Analysis

Synthetic Data. We run a synthetic experiment with artifi-
cial data in R2. We generate 50 points from the uniform dis-
tribution over [−1, 1]× [−0.1, 0.1] as inliers and 50 points
for the uniform distribution over R++ ∪ R−− ∩ B(0, 1)5

as outliers. We run RPSA with T = 50, r = 30, ζ = 0.5
and initialize U as a normalized Gaussian matrix. We set
k = 1 for all algorithms. Results are shown in the top plot
of Figure 4 where it is possible to see that the principal
subspace learned by RPSA is not affected by the outliers, as
opposed to SD and PSA.

Real Data. Similarly to the case of KMEANS, we tested
our method on real data for a range of values of ζ. We used
again the same setting as before on the Fashion-MNIST

5Here with R++ and R−− we denote the top right and the
bottom left orthant of R2.

dataset. We run the algorithms we T = 50, r = 5, M =
4000, k = 2 and ζ in the range [0.4, 1]. Results are shown
in the bottom plot of Figure 4, where it is possible our
algorithm outperforms both PSA and does better than SD.

8. Conclusions and Future Works
In this work, we address the important problem of designing
robust methods for unsupervised learning. We proposed
a novel general framework, based on the minimization of
an L-statistic, to design algorithms that are resilient to the
presence of outliers and/or to model miss-specification. Our
method has strong statistical guarantees, is flexible enough
to incorporate many problems in unsupervised learning and
is effective in practice as the experiments reveal. On the
other hand, several extensions can be considered. First, here
we studied in details KMEANS and PSA, but our theory also
covers the cases of KMEDIAN, sparse coding or non-negative
matrix factorization. A related improvement also regards
the design of methods for the choice of ζ which do not
require an estimate of the fraction of outliers. Second, we
believe that this framework can be extended to supervised
learning problems such us canonical correlation analysis and
partial least squares. Third, our algorithm has only a descent
property, and it would be interesting to design algorithms
with stronger guarantees such as provable approximation
properties.
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Supplementary Material
The supplementary material is organized as follows:

• In Appendix A we prove the statistical properties of the proposed method; in particular we prove Theorems 1, 3 and 5.

• In Appendix B we give a proof of the hardness result described by Theorem 10.

• Finally, in Appendix C we present additional experiments with the proposed method for the case of K-MEANS.

A. Statistical Properties of the Proposed Method
We first analyze some basic properties of the functional ΦW . The following is easily seen to be an alternative definition of
ΦW .

KW (t) =

∫ t

0

W (u) du

and

ΦW (ρ) =

∫ ∞
0

rdKW (Fρ (r)) for ρ ∈ P ([0,∞)) .

From this we find

Lemma 11. For ρ1, ρ2 ∈ P and W bounded

ΦW (ρ1)− ΦW (ρ2) = −
∫ ∞
0

(KW (Fρ1 (r))−KW (Fρ2 (r))) dr, (11)

and
d

dt
ΦW ((1− t) ρ1 + tρ2) =

∫ ∞
0

W
(
F(1−t)ρ1+tρ2 (r)

)
(Fρ1 (r)− Fρ2 (r)) dr.

Proof. Since members of P have finite first moments we have for any ρ ∈ P that rρ (r,∞)→ 0 as r →∞, so

lim
r→∞

r (KW (Fρ1 (r))−KW (Fρ2 (r))) ≤ ‖W‖∞ lim
r→∞

r |ρ2 (r,∞)− ρ1 (r,∞)| = 0,

and the formula (11) follows from integration by parts. Thus for arbitrary ρ ∈ P

ΦW ((1− t) ρ1 + tρ2)− ΦW (ρ) = −
∫ ∞
0

(KW ((1− t)Fρ1 (r) + tFρ2 (r))−KW (Fρ (r))) dr.

Taking the derivative w.r.t. t and using the chain rule and K ′W = W gives the second identity.

We now analyze the influence function of the functional ΦW .

Lemma 12. Let R ∈ [0,∞), ρ ∈ P ([0,∞))

(i) If W is nonnegative, bounded and W (t) = 0 for t ≥ ζ and ζ < 1 then

IF (R; ρ,ΦW ) ≤ IFmax (ρ,W ) :=

∫ F−1
ρ (ζ)

0

W (Fρ (r))Fρ (r) dr.

(ii) If ζ > 0, W = ζ−11[0,ζ], ρ is non-atomic and F−1ρ (ζ) (ρ) = F−1ρ (ζ) = F−1ρ (ζ). Then

IC (R; ρ,ΦW ) =

{
ζ−1

(
R+ (ζ − 1)F−1ρ (ζ)

)
− ΦW (ρ) if 0 ≤ R ≤ F−1ρ (ζ)

F−1ρ (ζ)− ΦW (ρ) if F−1ρ (ζ) < R

≤ F−1ρ (ζ)− ΦW (ρ) .
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Proof. (i) In the second conclusion of Lemma 11, letting ρ2 = δR and taking the limit t → 0 we obtain the influence
function

IF (R; ρ,ΦW ) =

∫ ∞
0

W (Fρ (r)) (Fρ (r)− FδR (r)) dr.

Part (i) follows.

(ii) From Lemma 11 we get

d

dt
Φ ((1− t) ρ+ tδR) (t = 0) = ζ−1

∫ F−1
ρ (ζ)

0

(
Fρ (r)− 1[R,∞) (r)

)
dr

= ζ−1

(∫ F−1
ρ (ζ)

0

Fρ (r) dr −
∫ F−1

ρ (ζ)

0

1[R,∞) (r) dr

)
.

From integration by parts the first term in parenthesis is ζ
(
F−1ρ (ζ)− ΦW (ρ)

)
. The second term is zero if F−1ρ (ζ) < R,

otherwise it is F−1ρ (ζ) − R. This gives the identity. For the inequality observe that R ≤ F−1ρ (ζ) implies
ζ−1

(
R+ (ζ − 1)F−1ρ (ζ)

)
≤ F−1ρ (ζ).

A.1. Resilience to Perturbations

We prove Theorem 1.

Lemma 13. Let S, S∗ ∈ S, µ ∈ P
(
Rd
)
, and suppose that there exists r∗ > 0 and α ∈ (0, 1) such that

∀r ∈ (0, r∗) , FµS (r) ≤ αFµS∗ (r) . (12)

If W is nonzero on a set of positive Lebesgue measure, nonincreasing and W (t) = 0 for all t ≥ FµS∗ (r∗) then

ΦW (µS)− ΦW (µS∗) ≥ (1− α)

∫ r∗

0

W (FµS∗ (r))FµS∗ (r) dr = (1− α) IFmax (µS∗ ,W ) > 0.

Proof. By Lemma 11 and the fundamental theorem of calculus

ΦW (µS)− ΦW (µS∗) =

∫ ∞
0

(∫
[0,1]

W (sFµS (r) + (1− s)FµS∗ (r)) ds

)
(FµS∗ (r)− FµS (r)) dr.

Suppose first r∗ ≤ r. If W > 0 then sFµS (r) + (1− s)FµS∗ (r) < FµS∗ (r∗) ≤ FµS∗ (r) and therefore FµS (r) <
FµS∗ (r∗), so the integrand is positive, or else W = 0. For a lower bound we can therefore restrict the integration in r to the
interval [0, r∗).

If r < r∗ then by (12) sFµS (r) + (1− s)FµS∗ (r) < FµS∗ (r) ≤ FµS∗ (r∗) so W (sFµS (r) + (1− s)FµS∗ (r)) ≥
W (FµS∗ (r)), since W is nonincreasing. The conclusion follows from (12).

We restate Assumption A and Theorem 1.

Assumption A. There exists S0 ∈ S , δ > 0, β ∈ (0, 1− λ) and a scale parameter r∗ ∈ (0, 1) (in units of squared euclidean
distance), such that for every model S ∈ S satisfying Φ (µ∗S) > Φ

(
µ∗S0

)
+ δ we have FµS (r) < βFµ∗S0

(r) for all r ≤ r∗.

Theorem 14. Let µ∗, ν ∈ P
(
Rd
)
, µ = (1− λ)µ∗ + λν, and λ ∈ (0, 1) and suppose there are S0, r∗, δ > 0 and

0 < β < 1− λ, satisfying Assumption A. Suppose that W is nonzero on a set of positive Lebesgue measure, nonincreasing
and W (t) = 0 for t ≥ ζ = FµS0 (r∗).

Proof. Let S, S0 ∈ S and assume that Φ (µ∗S) > Φ
(
µ∗S0

)
+ δ. Then for r ≤ r∗ Assumption A implies FµS (r) ≤

βFµ∗S0
(r) ≤ β

1−λFµS0 (r), and the conditions on W also imply that W = 0 on [FµS∗ (r∗) , 1]. Thus Lemma 13 with
a = β/ (1− λ) < 1 gives
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ΦW (µS)− ΦW (µS0) ≥
(

1− β

1− λ

)
IFmax (µS0 ,W ) > 0.

Thus, if ΦW (µS)− ΦW (µS0
) <

(
1− β

1−λ

)
IFmax (µS0

,W ), we must have Φ (µ∗S) ≤ Φ
(
µ∗S0

)
+ δ. The condition (12)

is clearly always satisfied by the minimizer S† (µ) of ΦW (µS).

An additional example. We conclude this section with an example to demonstrate that Assumption A does not depend so
much on the richness of S (which will be relevant to generalization) but on the concentration properties of µ∗ and ν. Let
S =

{
S ⊆ Rd

}
, µ∗ be supported in a ball of diameter ε, ν have any bounded density and λ ∈ (0, 1) be arbitrary. Then for

any δ > ε2 we can find r∗ > 0, such that Assumption A holds with arbitrary β ∈ (0, 1).

Proof. Let δ > ε2 and β ∈ (0, 1) be arbitrary and S0 be an arbitrary set containing the support of µ∗, so that Φ
(
µ∗S0

)
= 0.

Let B be the ball containing the support of µ∗. Assume Φ (µ∗S) > Φ
(
µ∗S0

)
+ δ = δ and suppose that x ∈ S. This

implies ‖x− y‖ >
√
δ − ε > 0 for all points in B. The first term in FµS (r) = (1− λ)Fµ∗S (r) + λFνS (r) is zero for all

r <
(√

δ − ε
)2

and the second increases continuously from r = 0 because of the bounded density. We can therefore find

r∗ <
(√

δ − ε
)2

such that FµS (r) = λFνS (r) < β = βFµ∗S0
(r) for all r ≤ r∗. Thus A holds for arbitrary λ and β.

A.2. Generalization

A second application of Lemma 11 gives a Lipschitz property of ΦW relative to the Wasserstein and Kolmogorov metrics
for distributions with bounded support.

Lemma 15. For ρ1, ρ2 ∈ P with support in [0, Rmax] and ‖W‖∞ <∞

ΦW (ρ2)− ΦW (ρ1) ≤ ‖W‖∞ dW (ρ1, ρ2)

and
ΦW (ρ2)− ΦW (ρ1) ≤ Rmax ‖W‖∞ dK (ρ1, ρ2) .

Here dW (ρ1, ρ2) = ‖Fρ1 − Fρ2‖1 is the 1-Wasserstein distance and dK (ρ1, ρ2) = ‖Fρ1 − Fρ2‖∞ the Kolmogorov-
Smirnov distance.

Proof. From (11) and Hoelder’s inequality we get

ΦW (ρ1)− ΦW (ρ2) = −
∫ ∞
0

(∫ Fρ1 (r)

Fρ2 (r)

W (u) du

)
dr ≤ 2 ‖W‖∞

∫ ∞
0

|Fρ1 (r)− Fρ2 (r)| dr.

We can bound the integral either by ‖Fρ1 − Fρ2‖1 = dW (ρ1, ρ2), which gives the first inequality, or by

∫ Rmax

0

|Fρ1 (r)− Fρ2 (r)| dr ≤ ‖Fρ1 − Fρ2‖∞
∫ Rmax

0

dr = RmaxdK (ρ1, ρ2) ,

which gives the second inequality.

The Lipschitz properties imply estimation and bias bounds for the plug-in estimator.

Corollary 16. Let ρ ∈ P with support in [0, Rmax] and ‖W‖∞ <∞ and suppose that ρ̂ is the empirical measure generated
from n iid observations R = (R1, ..., Rn) ∼ ρn

ρ̂ (R) =
1

n

n∑
i=1

δRi .

Then (i)
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Pr {|ΦW (ρ)− ΦW (ρ̂ (R))| > t} ≤ 2 exp

(
−2nt2

R4
max ‖W‖

2
∞

)
.

and (ii)

ΦW (ρ)− E [ΦW (ρ̂ (R))] ≤
Rmax ‖W‖∞√

2n
.

Proof. (i) By Lemma 15 and the Dvoretzky-Kiefer-Wolfowitz Theorem in the version of Massart (Massart, 1990)

Pr {|ΦW (ρ)− ΦW (ρ̂ (R))| > t} ≤ Pr

{
dK (ρ, ρ̂ (R)) >

t

Rmax ‖W‖∞

}
≤ 2 exp

(
−2nt2

R2
max ‖W‖

2
∞

)
.

(ii) Let R′ = (R1, ..., Rn) be iid to R. Then

ΦW (ρ)− E [ΦW (ρ̂ (R))] ≤ ‖W‖∞ E [dW (ρ1, ρ̂ (R))]

= ‖W‖∞ ER

∫ Rmax

0

∣∣∣∣∣ER′

[
1

n

∑
i

1[R′i,∞) (t)

]
−

[
1

n

∑
i

1[Ri,∞) (t)

]∣∣∣∣∣ dt
≤
‖W‖∞
n

∫ Rmax

0

ERR′

∣∣∣∣∣∑
i

(
1[R′i,∞) (t)− 1[Ri,∞) (t)

)∣∣∣∣∣ dt
≤
‖W‖∞
n

∫ Rmax

0

(
ERR′

∑
i

(
1[R′i,∞) (t)− 1[Ri,∞) (t)

)2)1/2

dt

=
‖W‖∞√

n

∫ Rmax

0

(
ER1R′1

(
1[R′1,∞) (t)− 1[R1,∞) (t)

)2)1/2

dt

by Jensens inequality and independence. But the expectation is just twice the variance of the Bernoulli variable 1[R1,∞) (t),
and therefore at most 1/2. The result follows.

Rephrasing part (i) of this corollary in terms of confidence windows we have, for any δ > 0 with probability at least 1− δ
that

|ΦW (ρ)− ΦW (ρ̂ (R))| ≤ Rmax ‖W‖∞

√
ln (2/δ)

2n
.

For the weight function W = ζ−11[0,ζ] the bound on the estimation error scales with ζ−1, which is not surprising, since we
only consider a fraction ζ of the data. So for decreasing ζ the functional becomes more robust (because the influence Rζ
decreases) but it becomes more difficult to estimate.

Restatement of Proposition 2.

Proposition 17. Assume the conditions of Theorem 1. Then

Pr
{

Φ
(
µ∗
Ŝ(X)

)
≤ Φ (µ∗S∗) + δ

}
≥ Pr

{
2 sup
S∈S
|ΦW (µS)− ΦW (µ̂S (X))| ≤

(
1− β

1− λ

)
ICmax (µS∗ ,W )

}
.

Proof.

ΦW

(
µŜ(X)

)
− ΦW (µS∗) ≤

(
ΦW

(
µŜ(X)

)
− ΦW

(
µ̂Ŝ(X) (X)

))
+
(

ΦW

(
µ̂Ŝ(X) (X)

)
− ΦW (µ̂S† (X))

)
+ (ΦW (µ̂S† (X))− ΦW (µS†)) + (ΦW (µS†)− ΦW (µS∗)) .
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The second term and the last term are negative by the minimality properties of Ŝ (X) and S†. The remaining terms are
bounded by 2 supS∈S |ΦW (µS)− ΦW (µ̂S (X))|. Thus

Pr

{
2 sup
S∈S
|ΦW (µS)− ΦW (µ̂S (X))| ≤

(
1− β

1− λ

)
ICmax (µS∗ ,W )

}
≤ Pr

{
ΦW

(
µŜ(X)

)
− ΦW (µS∗) ≤

(
1− β

1− λ

)
ICmax (µS∗ ,W )

}
≤ Pr

{
Φ
(
µ∗
Ŝ(X)

)
≤ Φ (µ∗S∗) + δ

}
,

where the last inequality follows from Theorem 1.

Lemma 18. If W = ζ−11[0,ζ] with ζ < 1, then for ρ ∈ P ([0, Rmax))

ΦW (ρ) = sup
λ∈[0,Rmax]

{
λ− ζ−1

∫ ∞
0

max {λ− t, 0} dρ (t)

}

Proof. Integration by parts gives

∫ ∞
0

max {λ− t, 0} dρ (t) =

∫ λ

0

Fρ (t) dt = λFρ (λ)−
∫ λ

0

tdρ (t) .

The maximum of λ− ζ−1
∫ λ
0
Fρ (t) dt is attained at ζ = Fρ (λ), which shows λ ≤ Rmax, and substitution gives

sup
λ∈R

{
λ− ζ−1

∫ ∞
0

max {λ− t, 0} dρ (t)

}
= λ− ζ−1

(
λFρ (λ)−

∫ λ

0

tdρ (t)

)

= ζ−1
∫ F−1

ρ (ζ)

0

tdρ (t) =

∫ ∞
0

tζ−11[0,ζ] (Fρ (t)) dρ (t)

= ΦW (ρ) .

Restatement of Theorem 3.

Theorem 19. Let W = ζ−11[0,ζ] and η > 0. With probability at least 1− η in X ∼ µn we have that

sup
S∈S
|ΦW (µS)− ΦW (µ̂S (X))| ≤ 2

ζn
EXR (F ,X) +

Rmax

ζ
√
n

(
2 +

√
ln (2/η)

2

)
,

whereR (F ,X) is the Rademacher average

R (F ,X) = Eε

[
sup
S∈S

n∑
i=1

εid (Xi, S)

]
with independent Rademacher variables ε = (ε1, ..., εn).

Proof. Using Lemma 18 we get with independent Rademacher variables ε = (ε1, ..., εn)
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E
[

sup
S∈S

ΦW (µS)− ΦW (µ̂S (X))

]
≤ ζ−1EX

[
sup

λ∈[0,Rmax],S∈S

∫ ∞
0

max {λ− t, 0} dµ̂S (X) (t)−
∫ ∞
0

max {λ− t, 0} dµS (t)

]

= ζ−1EX

[
sup

λ∈[0,Rmax],S∈S

1

n

n∑
i=1

max {λ− d (Xi, S) , 0} − EX∼µ [max {λ− d (X,S) , 0}]

]

=
1

ζn
EXX′

[
sup

λ∈[0,Rmax],S∈S

n∑
i=1

(max {λ− d (Xi, S) , 0} −max {λ− d (X ′i, S) , 0})

]

=
1

ζn
EXX′ε

[
sup

λ∈[0,Rmax],S∈S

n∑
i=1

εi (max {λ− d (Xi, S) , 0} −max {λ− d (X ′i, S) , 0})

]

≤ 2

ζn
EXε

[
sup

λ∈[0,Rmax],S∈S

n∑
i=1

εi max {λ− d (Xi, S) , 0}

]

≤ 2

ζn
EXε

[
sup

λ∈[0,Rmax],S∈S

n∑
i=1

εi (λ− d (Xi, S))

]

≤ 2

ζn
EXε

[
sup
S∈S

n∑
i=1

εid (Xi, S)

]
+

2

ζn
Eε

[
sup

λ∈[0,Rmax]

λ

n∑
i=1

εi

]

≤ 2

ζn
EXR (F ,X) +

2Rmax

ζ
√
n
.

Here the third identity is a standard symmetrization argument, the second inequality the triangle inequality, followed by the
contraction inequality for Rademacher averages, since t→ max {t, 0} is a contraction. Then we used the triangle inequality
again. Now let Ψ (X) be the random variable supS∈S ΦW (µS)− ΦW (µ̂S (X)). It then follows from Lemma 15 and the
bounded difference inequality that with probability at least 1− η we have Ψ (X) ≤ EΨ (X) + ζ−1Rmax

√
ln (1/η) / (2n).

Combined with above bound on EΨ (X) this completes the proof.

Theorem 4 follows directly from Theorems 2 and 5 in (Maurer & Pontil, 2019) and from the bias bound, Corollary 16 (ii).

Restatement of Theorem 5.

Theorem 20. Under the conditions of the previous theorem, with probability at least 1− η in X ∼ µn we have that for all
S ∈ S

|ΦW (µS)− ΦW (µ̂S (X))| ≤
√

2VSC +
6Rmax

(
‖W‖∞ + ‖W‖Lip

)
C

n
+
‖W‖∞Rmax√

n
,

where VS is the variance of the random variable ΦW (µ̂S (X)), and C is the complexity term

C = kd ln
(

16n ‖S‖2 /η
)

if S is the set of sets with k elements, or convex polytopes with k vertices and ‖S‖ = supx∈S∈S ‖x‖, or

C = kd ln
(
16nR2

max/η
)

if S is the set of set of k-dimensional subspaces.

Proof. For any fixed S ∈ S the L-statistic x ∈ Xn 7→ fS (x) := ΦW (µ̂S (x)) is
(
Rmax ‖W‖∞ , Rmax ‖W‖Lip

)
-weakly

interacting (see (Maurer & Pontil, 2018)) and therefore satisfies the following version of Bernstein’s inequality (see (Maurer
et al., 2019), (Maurer & Pontil, 2018)): For η ∈ (0, 1/e) with probability at least 1− η in X ∼µn we have



Robust Unsupervised Learning via L-Statistic Minimization

E [fS ]− fS (X) ≤
√

2VS ln (1/η) +Rmax

(
2 ‖W‖∞

3
+

3 ‖W‖Lip
2

)
ln (1/η)

n
,

where E [fS ] and VS are expectation and variance of the random variable fS (X) = ΦW (µ̂S (X)) respectively. We will
make this bound uniform with a covering number argument.

Define a pseudo metric dX on S by

dX (S1, S2) = sup
x∈X
|d (x, S1)− d (x, S2)| .

It follows from Lemma 15 that for every x ∈Xn we have

fS1 (x)− fS2 (x) ≤ ‖W‖∞ dW (µ̂S1 (x) , µ̂S2 (x)) ≤ ‖W‖∞ dX (S1, S2) .

In particular |E [fS1
]− E [fS2

]| ≤ ‖W‖∞ dX (S1, S2) and

√
VS1
−
√
VS2

= ‖fS1
− E [fS1

]‖L2(µn)
− ‖fS2

− E [fS2
]‖L2(µn)

≤ ‖fS1
− fS2

‖L2(µn)
+ |E [fS1

]− E [fS2
]| ≤ 2 ‖W‖∞ dX (S1, S2) .

Now let N = N (S, dX , ε) be the corresponding minimal covering number of S with dX -balls of radius ε, and let S0 ⊆ S be
such that ∀S ∈ S , ∃S′ ∈ S0 with dR (S, S′) < 1/n and |S0| ≤ N . Then, abbreviatingRmax

(
2 ‖W‖∞ /3 + 3 ‖W‖Lip /2

)
with C, with probability at least 1− η in X that for every S ∈ S

E [fS ]− fS (X) ≤ E [fS′ ]− fS′ (X) +
2 ‖W‖∞

n
≤
√

2VS′ ln (N/η) +
C ln (N/η) + 2 ‖W‖∞

n

=
√

2VS ln (N/η) +
C ln (N/η) + 2 ‖W‖∞

n
+
(√

VS′ −
√
VS

)√
2 ln (N/η)

≤
√

2VS ln (N/η) +
C ln (N/η) + 2 ‖W‖∞

√
2 ln (N/η) + 2 ‖W‖∞

n
.

In the first inequality we used uniform approximation of fS by fS′ , where S′ is the nearest neighbour of S in S0. The next
line combines Bernstein’s inequality with a union bound over S0. Finally we again approximate

√
VS′ by

√
VS .

Next we bound the covering numbers N (S, dX , 1/n), which we do separately for the case of uniformly bounded S and
PSA. In case of the mean, k-means or sparse coding is easy to see that for S1, S2 ∈ S and any two respective enumerations
xi and yi or enumerations of the extreme points

dX (S1, S2) ≤ 2 ‖S‖H (S1, S2) ≤ 2 ‖S‖max
i
‖xi − yi‖ .

It follows that N (S, dX , 1/n) can be bounded by the covering number of a ball of radius ‖S‖2 in a kd-dimensional Banach
space. Use the standard result of Cucker and Smale (Cucker & Smale, 2002) we have

N (S, dX , 1/n) ≤
(

8n ‖S‖2
)kd

.

For PSA we can use unit vectors spanning the subspaces and instead of ‖S‖2 we have the maximal squared norm in the
support, so

N (S, dX , 1/n) ≤
(

8n ‖X‖2
)kd

.

kd ln
(

8n ‖S‖2 /η
)
.
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Putting it all together and adding the bias bound ΦW (µS)− E [ΦW (µ̂S (X))] ≤ ‖W‖∞Rmax/
√
n (Corollary 16 (ii)) we

get

ΦW (µS)− ΦW (µ̂S (X))

≤
√

2σ2 (ΦW (µ̂S (X))) kd ln
(

8n ‖S‖2 /η
)

+
Rmax

(
6 ‖W‖∞ +

3‖W‖Lip
2

)
kd ln

(
8n ‖S‖2 /η

)
n

+
‖W‖∞Rmax√

n

The result follows from elementary estimates and algebraic simplifications.

B. Algorithms
Restatement of Lemma 6.

Lemma 21. For any S ∈ S and any p ∈ Symn, if π is the ascending ordering of the dS(xi)s, then φS(x, p) ≥ φS(x, π) =
Φ̂S(x).

Proof. Writing w (i) = W
(
π(i)
n

)
and zi = dS

(
xπ(i)

)
it is enough to show that the identity permutation is a minimizer of

r (p) =

n∑
i=1

w (p (i)) zi for p ∈ Symn

This follows from the following claim, which we prove by induction:

For k ∈ {1, ..., n} there is for every p ∈ Symn some p′ ∈ Symn such that r (p′) ≤ r (p) and p′ (j) = j for all 1 ≤ j < k.
The case k = 1 holds trivially. If the claim holds for any k ≤ n− 1 then there is q ∈ Symn such that r (q) ≤ r (p) and
q (j) = j for all 1 ≤ j < k. If q (k) = π (k) then the claim for k + 1 clearly holds by defining p′ := q. If q (k) 6= k note
first that both q (k) > k and q−1 (k) > k. Then define p′ (j) := q (j) except for p′ (k) := k and p′

(
q−1 (k)

)
:= q (k).

Then p′ (j) = j for all 1 ≤ j < k + 1 and

r (p′)− r (p) ≤ r (p′)− r (q) = (w (k)− w (q (k)))
(
zk − zq−1(k)

)
≤ 0,

because the first term is non-negative (since w is non-increasing) and the second non-positive. So r (p′) ≤ r (p) which
proves the claim for the case k + 1 and completes the induction.

Theorem 22. Minimizing Φ̂S(x) for the case of KMEANS when k = 1 and W is the hard threshold is NP-Hard.

Proof. Notice that minimizing the Φ̂S(x) in the case of KMEANS is equivalent to minimize the following function of a
subset C ⊆ X of size bznc

L(C) =
1

n

∑
x∈C
‖xi − µC‖22

where µC = mean(C) and return µC . In what follow we will consider L(C) as actually L(C)n in order to remove the
constant factor outside the objective and simplify the notation. The following lemma enables us to rewrite L(C) in terms of
pairwise distances.

Lemma 23. Let C ⊆ X , then

L(C) =
1

2|C|
∑
x,y∈C

‖x− y‖22. (13)
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Proof. Let X and Y two i.i.d. random variables supported on C, then

E[‖X − Y ‖22] = E[‖X‖22] + E[‖Y ‖22]− 2E[〈X,Y 〉]
= E[‖X‖22] + E[‖X‖22]− 2E[‖E[X]‖22]

= 2E[‖X‖22]− 2E[‖E[X]‖22] = 2E[‖X − E[X]‖22].

Now assume X and Y are independent samples from the uniform distribution on C, then

E[‖X − E[X]‖22] =
1

|C|
∑
x∈C
‖x− µC‖22

= E[‖X − Y ‖22]/2 =
1

2|C|2
∑
x,y∈C

‖x− y‖22

from which the thesis follows.

We recall the definition of NP-hardness for optimization problems.

Definition 24. A computational problem Π is said NP-hard (optimization) if and only if the related decision problem ΠD

is NP-hard. Assume Π is defined as the problem of minimizing a function fX(µ) defined by an input instance X if the
minimum exists, then ΠD is defined as the problem of determining, given in input X and a rational number c, whether there
exist an assignment to the variables µ such that fX(µ) ≤ q.

In order to show hardness of an optimization problem Π, it is enough to show hardness of the related decision problem ΠD.
For this reason, the following will be useful.

Definition 25. DECISION ROBUST 1-MEANS

Input: Points X = {x1, . . . , xn} ⊂ Rd, an integer h and a rational number c.

Output: Yes if there exist a C ⊆ X such that |C| = h and L(C) ≤ c, No otherwise.

To prove the theorem we will reduce n/2-CLIQUE to the decision version ROBUST 1-MEANS via a polynomial time algorithm.
Since n/2-CLIQUE is NP-complete, hardness for ROBUST 1-MEANS will follow.

Definition 26. n/2-CLIQUE

Input: A simple undirected connected graph G = (V,E) with |V | = n.

Output: Yes if G contains a clique of size n/2, No otherwise.

Given an instance of n/2-CLIQUE in the form of a graph G = (V,E) with n vertices, we create an instance of ROBUST
1-MEANS ΠD(G) which is equivalent to G. Let A denote the symmetric n × n adjacency matrix of G, i.e. Aij = 1 iff
(i, j) ∈ E otherwise Aij = 0. Consider the graph embedding given by the map φ : V → Rn such that φ(i) = Ai: + nei,
where Ai: denotes the i-th row of A and ei denotes the i-th vector of the canonical basis of Rn. Given G we build an
instance of ROBUST 1-MEANS by setting X = {φ(1), . . . , φ(n)}, h = n/2 and c = m(2n2 − 3n), where we set m =

(
n
2

)
as a shortcut. Notice that it takes O(n) to build such instance. The following lemma finishes the proof by showing the
aforementioned equivalence.

Lemma 27. G is a Yes instance iff ΠD(G) is a Yes instance.
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Dataset k RKM SD K-MEANS++

FMNIST 2 25.98 33.17 34.39
EMNIST 2 38.41 37.78 40.29
cifar10 4 31.07× 104 96.42× 105 95.57× 105

Victorian 5 1.64 1.66 1.76
Iris 1 0.32 3.71 4.75

Table 1. Experimental results for the case of K-MEANS clustering. In all the experiments ζ = 0.5. In each row, the performance in bold
corresponds to the winning algorithm.

Proof. Assume that G is a Yes instance, i.e. G contains at least clique of size n/2. Notice that for any (i, j) ∈ E it holds that

‖φ(i)− φ(j)‖22 ≤ (n− 1)2 + (n− 1)2 = 2n2 − 4n+ 2 ≤ 2n2 − 3n

while for any (i, j) /∈ E it holds
‖φ(i)− φ(j)‖22 ≥ 2n2.

If {c1, . . . , cn/2} are the vertices in the clique, the cost L(C), by Lemma 23, of the subset C = {φ(c1), . . . , φ(cn/2)} is at
most c, since in such clique contains exactly m edges.

Now suppose that ΠD(G) admits a cost of at most c. Lets denote by C the subsets of X achieving such cost, then the
associated vertices must form a clique otherwise at least one of the m distance will be larger than 2n2 leading to a cost
larger of c.

Thus if we could solve in polynomial time DECISION ROBUST 1-MEANS we could solve in polynomial time n/2-CLIQUE.

C. Experiments
In this section we discuss the additional experimental results we obtained with our method in the case of K-MEANS clustering.
We tested RKM, SD and standard K-MEANS++ with the ζ = 0.5, r = 30, and T = 100. Due to its cubic runtime, SD is
slow even on moderate-sized datasets. Thus, we considered the randomized version of SD with M equals to the size of the
training set. For this method, we repeated each experiment 5 times and reported the average reconstruction error on the test
data (standard deviations resulted to be negligible in all cases).

In the following we describe each dataset, but Fashion MNIST whose experiment has already been described in the main
body.

EMNIST. This dataset consists of about 814000 28 × 28 images of digits, lowercase and uppercase letters from the
English alphabet arranged in 62 classes. The training data were generated by sampling 1000 0s and 1000 1s as inliers and
sampling 33 points from each other class as outliers. We used k = 2 clusters. The test data consist of all the 0s and 1s in the
test set and has a size of about 2000.

cifar10. The dataset consists of about 60000 100× 100 images from 10 classes: airplanes, cars, trucks, ships, dogs, cats,
frogs, horses, birds and deer. The training data were generated by sampling 1000 points from each of the vehicle classes as
inliers and 300 points from each of the animal classes as outliers. We used k = 4 clusters. The test data consist of all the
vehicle images from the test set and has size of about 4000.

Victorian. This dataset consists of 4500 texts from 45 authors of English language from Victorian Era, 100 texts from
each author. The data have been processed as in (Ahmadian et al., 2019) and is made of 10 features. The training data were
generated by sampling 50 points from each of one of the first 5 authors in the dataset as inliears and 5 points from each other
class as outliers. We used k = 5. The test data consist of the remaining 50 points from each of the inlier authors and has a
size of about 250.
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Iris. This dataset consists of 150 records of iris flowers. Each record contains 4 features: sepal length, sepal width, petal
length and petal width. There classes. The training data were generated by sampling 30 points from the iris-setosa class as
inliear and 15 points from each other class as outliers. We used k = 1. Since the training set is small sized, we used exact
version for SD. The test data consist of all the remaining iris-setosa points and has a size of about 20.


