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A. Deferred proofs
Proof of Lemma 1. For the sake of the proof, assume that
we have two labeled set of samples of size m and mL from
pXY , call them respectively S and SL. The set S represents
our unlabeled sample, and the set SL represents the labeled
sample. For any δ ∈ (0, 1), we would like to find a γ > 0
such that with probability 1− δ, for all i ∈ 1, . . . , n,∣∣∣∣∣∣ 1

m

∑
(x,y)∈S

`(φi(x),y)− 1

mL

∑
(x,y)∈SL

`(φi(x),y)

∣∣∣∣∣∣ ≤ γ .

(6)

The sample S represents the unlabeled data x1, . . . , xm
we have access to. In fact, 1

m

∑
(x,y)∈S `(φi(x),y) =

R̂(φi;X,Y
∗). The inequality (6) implies that for the

true labeling of the unlabeled data x1, . . . , xm, for any
i ∈ 1, . . . , n, it holds that:

R̂(φi;X,Y
∗) ∈ [µ̂i − γ, µ̂i + γ]

where µ̂i = 1
mL

∑
(x,y)∈SL

`(φi(x),y) is the empirical
mean computed from the labeled sample SL.

By using Hoeffding’s inequality, we have that for a fixed i,
it holds that

P
S,SL


∣∣∣∣∣∣ 1
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∑
(x,y)∈S

`(φi(x),y)− 1
mL

∑
(x,y)∈SL

`(φi(x),y)

∣∣∣∣∣∣ > γ


≤ 2 exp

(
−2γ2∑m

j=1(Bm )2 +
∑mL

j=1( B
mL

)2

)

= 2 exp

(
−2mLmγ

2

B2(m+mL)

)
=
δ

n
. (7)

By taking a union bound and solving (7) with respect to γ,
the statement follows.

Proof of Lemma 4. By invoking Lemma 3, it is easy to see
that the function R̂(hθ;X,Y ′) is a convex combination of
convex functions with respect to θ, hence it is also convex
in θ. Let v ∈ ∂R̂(hθ;X,Y ′). If a function is convex, then
there exists at least one subgradient for each point of its
domain, so v is well defined. Then, we have that for any
θ′′ ∈ Θ, it holds that

R̂(hθ′′ ,Y
′)− R̂(hθ′ ,Y

′) ≥ vT (θ′′ − θ′) .

As f(θ′′) ≥ R̂(hθ′′ ;X,Y
′), we have that

f(θ′′)− f(θ′) ≥ vT (θ′′ − θ′) ,

which implies that v is a subgradient of f at θ′.

Proof of Theorem 5. We need to show that f(θ) is convex
and L-Lipschitz continuous with respect to θ to apply the
standard convergence result for constant step size subgradi-
ent optimization (Bertsekas, 2015), which yields

f(θ̃)− f(θ̂) ≤ diameter(Θ)2 + L2h2T

2hT
. (8)

To show that f(θ) is convex it is straightforward to see that
R̂(hθ;X,Y ) is convex in θ as it is the convex combination
of convex functions in θ. For any λ ∈ [0, 1], we have that

f(λθ1 + (1− λ)θ2) = max
Y ∈Y�

R̂(hλθ1+(1−λ)θ2 ;X,Y )

≤ max
Y ∈Y�

[
λR̂(hθ1 ;X,Y ) + (1− λ)R̂(hθ2 ;X,Y )

]
≤ λ max

Y ∈Y�
R̂(hθ1 ;X,Y ) + (1− λ) max

Y ∈Y�
R̂(hθ2 ;X,Y )

= λf(θ1) + (1− λ)f(θ2) .

Also, f(θ) is L-Lipschitz continuous with respect to θ. In
fact, it is straightforward to see that R̂(hθ;X,Y ) is also L-
Lipschitz continuous with respect to θ. For any θ1,θ2 ∈ Θ,
we have that

|f(θ1)− f(θ2)| ≤ max
Y ∈Y�

|R̂(hθ1 ;X,Y )− R̂(hθ2 ;X,Y )|

≤ L||θ1 − θ2||2 .

The subgradient of f(θ) in θ is computed by using Lemma 4.
The last part of the Theorem immediately follows by substi-
tuting h and T in (8) as in the Theorem statement.

Proof of Lemma 6. For any i ∈ 1, . . . , n, we have that

∂

∂θi
`(hθ(x), e) = 2

(
φi(x)T · hθ(x)− φi(x)T · e

)
.

Therefore, we can bound the norm of the gradient of ` as

||∇θ`(hθ(x), e)||2 = 2

√√√√ n∑
i=1

(
φi(x)T · (hθ(x)− e)

)2
≤ 2

√√√√ n∑
i=1

(1)2

≤ 2
√
n .

The first inequality is an application of Hölder’s Inequality,
as
∥∥φi(x)T

∥∥
1

= 1 and
∥∥hθ(x)− e

∥∥
∞ ≤ 1. This implies

that the function `(hθ(x), e) is 2
√
n-Lipschitz continuous

with respect to θ.

Proof of Lemma 7. First, we will prove that `(hθ(x), e) is
bounded. Without loss of generality, suppose that ei = 1.
We have that

`(hθ(x), e) = − ln

(
exp(wT

i · x)∑k
c=1 exp(wT

c · x)

)
.
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It is easy to see that `(hθ(x), e) ≥ 0. By using the Cauchy-
Schwarz inequality, we have that

`(hθ(x), e) = − ln

(
exp(wT

i · x)∑k
c=1 exp(wT

c · x)

)

≤ − ln

(
exp(−BwBx)

k exp(BwBx)

)
≤ 2BwBx + ln k .

Now, we prove that `(hθ(x), e) is Lipschitz continuous
with respect to θ. For a fixed (x, e) ∈ X × Y , consider the
function ω(p) : Rk → Y�, defined as

ω(p)
.
= −

k∑
c=1

ec · ln(pc) ,

and let

h(θ)
.
=

(
exp(wT

1 · x)∑k
c=1 exp(wT

c · x)
, . . . ,

exp(wT
k · x)∑k

c=1 exp(wT
c · x)

)T
,

where θ = (w1 . . .wk)T , and observe that `(hθ(x), e) =
ω ◦ h(θ).

It is well known that ` is LωLh-Lipschitz continuous with
respect to θ, where Lω and Lh are the Lipschitz constants
respectively of ω andh. It is also a known result thatLω ≤ 1
(see for example Proposition 4 of (Gao & Pavel, 2018)).

We now want to compute Lh. We will use the fact that
maxθ∈Θ ||Jh(θ)||F ≤ Lh, where Jh denotes the Jacobian
matrix of h and || · ||F denotes the Frobenius norm.

For ease of notation, let h(θ) = p = (p1, . . . , pk)T . We
have that for any i ∈ 1, . . . , k, it holds that

∂[h(θ)]i
∂wj

= pipjx for j 6= i , and

∂[h(θ)]i
∂wi

= (pi − p2
i )x .

Therefore, we can bound the square of the Frobenius norm
of the Jacobian matrix of h with

∥∥Jh(θ)
∥∥2

F
=
∑
i,j

∥∥∥∥∥∂[h(θ)]i
∂wj

∥∥∥∥∥
2

2

≤ ||x||22

∑
i

[pi(1− pi)]2 +
∑
i 6=j

[pipj ]
2


≤ ||x||22(k + k2/2) ≤ ||kx||22 .

We can conclude that h is kBx-Lipschitz continuous, and
the statement follows.

Proof of Theorem 8. From Chapter 14 of Mitzenmacher &
Upfal (2017), we know that

R(hθ̂) ≤ R̂(hθ̂;X,Y ∗)+2R̂m(L;X,Y ∗)+O

B
√

ln 1
δ

m

 .

By definition of f(·), it holds that R̂(hθ̂;X,Y ∗) ≤ f(θ̂).
As θ̂ is the optimal solution of (2), we have that f(θ̂) ≤
f(θ∗). Let Y ′ .= arg max

Y ∈Y�
R̂(hθ∗ ;X,Y ). It holds that

f(θ∗) = R̂(hθ∗ ;X,Y
′)

= R̂(hθ∗ ;X,Y
′) + R̂(hθ∗ ;X,Y

∗)− R̂(hθ∗ ;X,Y
∗)

= R̂(hθ∗ ;X,Y
∗) + |R̂(hθ∗ ;X,Y

′)− R̂(hθ∗ ;X,Y
∗)| .

By using the fact that ` is bounded, and the definition of
diameter DY� , we have that

|R̂(hθ∗ ;X,Y
′)− R̂(hθ∗ ;X,Y

∗)|

=

∣∣∣∣∣∣ 1

m

m∑
j=1

k∑
c=1

`(hθ∗(xj), ec)(y
′
jc − y∗jc)

∣∣∣∣∣∣
≤ B 1

m

m∑
j=1

k∑
c=1

∣∣∣y′jc − y∗jc∣∣∣ ≤ BDY� .

To wrap it up, it results that

R(hθ̂) ≤R̂(hθ∗ ;X,Y
∗) +BDY� + 2R̂m(L;X,Y ∗)

+O

B
√

ln 1
δ

m


≤ R(hθ∗) +BDY� + 4R̂m(L;X,Y ∗)

+O

B
√

ln 1
δ

m


≤ R(hθ∗) +BDY�

+ sup
Y ∈Y �

4R̂m(L;X,Y ) +O

B
√

ln 1
δ

m

 .

Proof of Lemma 9 The proof is along the same lines of the
proof of Lemma 1, but we take a union bound with respect
to all the nK intervals4i,c,ĉ for i ∈ 1, . . . , n, c ∈ 1, . . . , k,
and ĉ = 1, . . . , ki. Moreover, as for any j ∈ 1, . . . ,m, we
have that yj,c[φi(xj)]c̃ ≤ 1, we take B = 1 during the
proof (as defined in Lemma 1).
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B. Additional Experimental Details
We provide further information specifying the experimental
setup used to generate our figures.

B.1. Weak Supervision Sources

We first build the weak supervision sources on our two
datasets as follows.

Animals with Attributes. Each class is annotated with a bi-
nary vector of attributes. For each attribute, we train a binary
classifier by finetuning a ResNet-18 using labeled data from
the seen classes. When we consider a classification task
between two unseen classes, we use as weak supervision
sources the classifiers for the attributes which are different
between the animals of these two unseen classes. We report
the results of the 4 binary classification tasks which have the
lowest majority vote accuracy. We chose these particular
tasks to demonstrate the abilities of our methods on the tasks
that have the least accurate weak supervision sources.

DomainNet. We sample 5 of the 25 classes of DomainNet
with the largest number of datapoints. For each domain, we
use 60% of the available data for those classes to fine tune a
pretrained ResNet-18 network. We perform this procedure
on two disjoint samples of test classes to illustrate our results
on two distinct multiclass classification tasks.

In our experiments, we use the pretrained ResNet-18 from
PyTorch. We finetune this ResNet-18 network following the
approach described in (He et al., 2016), using cross-entropy
loss.

B.2. Algorithm Hyperparameters

The subgradient method (Algorithm 1) used to train AMCL-
CC and AMCL-LR uses the following hyperparameters:

AMCL-CC: We set δ = 0.1, and build the constraints as in
Lemma 1. We use ε = 0.1, and define the step size h and
the number of iterations T as in Theorem 5, using L = 2

√
n

and diameter of Θ equal to
√

2.

AMCL-LR: In this case, the loss function is bounded as in
Lemma 7. Since this value could be potentially very large,
which in turn it would result in large intervals and number
of iterations, we use the value B = 0.1 in the experiments.
We set δ to 0.1 and build the constraints as in Lemma 1. We
do not bound the set of weights Θ: in the experiments, the
norm of the weights of the multinomial logistic regression
model has never diverged. We run the subgradient algorithm
for T = 1000 iterations with step size h = 0.02.

C. Additional Figures
C.1. Animals with Attributes

We provide the remaining figures for our experiments on
the Animals with Attributes dataset. The last two binary
classification tasks are bat v. rat and horse v. giraffe.

From Figure 3, we note that our methods show similar
results as the figures displayed in the main body of the paper.
AMCL-LR matches or outperforms all other methods on
both tasks, over all ranges labeled data. AMCL-CC is within
a few accuracy points of the other baselines and AMCL-LR
on these tasks.

C.2. DomainNet

We provide the remaining figures for our experiments on
the DomainNet dataset. We provide histograms when using
the other 4 domains as the target task and also provide
histograms for results on another of the samples of 5 classes.
The first sample of classes as mentioned in the main body
of the paper is {sea turtle, vase, whale, bird, violin }. The
second sample is {tornado, trombone, submarine, feather,
zebra }.

From Figures 4–8, we note that in most domains our meth-
ods perform better than or match all other approaches,
namely in both samples of Clipart, Quickdraw, Painting,
and the second sample of Sketch. Our methods achieve
slightly lower accuracy than the best performing baseline on
the Real domain and on the second sample of the Infograph
domain, although they are not beaten by a single baseline
in all of these tasks. We believe that the combination of our
theoretical guarantees and that our methods achieve simi-
lar or sometimes better empirical performance captures the
benefits of AMCL.
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Figure 3. Experimental results on the Animals with Attributes dataset for the binary classification tasks of bat vs. rat and horse vs. giraffe
as we vary the amount of labeled data. Each method uses 347 unlabeled data for bat vs. rat and 1424 unlabeled data for horse vs. giraffe.
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Figure 4. Experimental results on the second sample of Domain Net for the clipart and quickdraw domains as we vary the amount of
labeled data. Each method uses 500 unlabeled data.
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Figure 5. Experimental results on both samples of Domain Net for the Infograph domain as we vary the amount of labeled data. Each
method uses 500 unlabeled data.
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Figure 6. Experimental results on both samples of Domain Net for the Painting domain as we vary the amount of labeled data. Each
method uses 500 unlabeled data.
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Figure 7. Experimental results on both samples of Domain Net for the Real domain as we vary the amount of labeled data. Each method
uses 500 unlabeled data.
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Figure 8. Experimental results on both samples of Domain Net for the Sketch domain as we vary the amount of labeled data. Each method
uses 500 unlabeled data.



Adversarial Multiclass Learning under Weak Supervision with Performance Guarantees

D. Experiments on Synthetic Data
We run synthetic experiments to show that our method is
robust with respect to the addition of correlated weak su-
pervision sources. Similar experiments have been done for
ALL by Arachie & Huang (2019).

We consider a multiclass classification task over 5 classes,
and 25 weak supervision sources φ1, . . . ,φ25. In this clas-
sification task, each item of the domain X has a unique true
label. Given an item x ∈ X , for i ∈ 1, . . . , 10, the weak su-
pervision sourceφi returns the correct label with probability
1/2, and a random label with probability 1/2. The output of
the weak supervision source φi is independent to the output
of the weak supervision sourcesφj for j ∈ {1, . . . , 10}\{i}.
Therefore, the weak supervision source φi is correct with
probability 1

2 (1 + 1
k ). For i = 11, . . . , 25, the weak su-

pervision sources φi outputs the same result than the weak
supervision source φ1. Note that the weak supervision
sources φ11, . . . ,φ25 do not provide any additional infor-
mation with respect to the target classification task, as they
add redundant constraints to the set of feasible labelings
Y�. The majority vote of the weak supervision sources
φ1, . . . ,φ25 is highly affected by these dependencies, and
it is very likely to provide the same answer as φ1, which is
only 1

2 (1 + 1
k ) accurate on average. On the other hand, the

majority vote of the weak supervision sources φ1, . . . ,φ10

would improve upon the individual accuracy of the weak
supervision sources, as their output is independent.

We use 500 unlabeled examples, run experiments vary-
ing the amount of labeled data, and show that our method
AMCL-CC is robust against those dependencies. For the
sake of these experiments, as we want to use very small
amount of labeled data, we set γ = 0 when building the
constraints for Y� as in Lemma 1. The experimental results
are reported in Table D. The table shows that AMCL-CC is
robust with respect to dependencies among weak supervi-
sion sources, whereas majority vote is greatly affected by
them. In fact, in this case the majority vote does not im-
prove upon the individual accuracy of the weak supervision
sources, which is on average 1

2 (1 + 1
k ) = 3

5 .

Table 1. We report the experimental results on the synthetic dataset.
We report the accuracy obtained by our method AMCL-CC and
the majority vote, when varying the amount of labeled examples
(we report the average accuracy over 3 distinct runs).

Labeled Examples AMCL-CC Majority Vote
100 0.902 0.595
50 0.828 0.602
25 0.819 0.598


