
Fundamental Tradeoffs in Distributionally Adversarial Training

A. Proof of theorems and technical lemmas
A.1. Proof of Proposition 3.2

From the definition of robust surrogate in (9) for the setting
of Proposition 3.2 we have

φγ(θ; z0) := sup
x

{
(y0 − xTθ)2 − γ‖x− x0‖2`2

}
,

by introducing gγ(x) := (y0 − xTθ)2 − γ‖x− x0‖2`2 , for
every scalar c we get

gγ(x0 + cθ) = gγ(x0) + 2c(xT0 θ − y0) ‖θ‖2`2
+ c2 ‖θ‖2`2 (‖θ‖2`2 − γ) ,

this implies if γ < ‖θ‖2`2 , then φγ(θ; z0) = +∞. Consider
γ ≥ ‖θ‖2`2 , then from relation∇2gγ(x) = 2(θθT − γI) we
realize that gγ is concave. Writing the first order optimal
condition we have

(y0 − xTθ)θ + γ(x− x0) = 0 . (34)

Multiplying by θ and solving for xTθ, we get

xTθ =
γxT0 θ − y0‖θ‖2

γ − ‖θ‖2
.

Substituting for xTθ in the stationary condition (34) implies

x∗ = x0 +
xT0 θ − y0

γ − ‖θ‖2`2
θ .

Replacing x∗ in gγ yields

φγ(θ; z) =

+∞ if γ < ‖θ‖2`2 ,
γ(y0−xTθ)2

(γ−‖θ‖2`2 )
if γ ≥ ‖θ‖2`2 .

(35)

Then, we use dual formulation (8) to compute the Wasser-
stein adversarial risk:

AR(θ) := sup
Q∈Uε(PZ)

Ez∼Q [`(θ; z)]

= inf
γ≥0
{γε2 + EPZ [φγ(θ; z)]}

= inf
γ≥‖θ‖2`2

{γε2 + EPZ [φγ(θ; z)]}

= inf
γ≥‖θ‖2`2

{γε2 +
γEPZ [`(θ; z)]

γ − ‖θ‖2`2
} ,

the infimum is achieved at

γ∗ =
1

ε

√
EPZ [`(θ; z)] ‖θ‖`2 + ‖θ‖2`2 .

Finally, this gives us

AR(θ) =
(√

EPZ [`(θ; z)] + ε ‖θ‖`2
)2

.

A.2. Proof of Theorem 3.3

DefineR(θ) := λSR(θ) + AR(θ). Proposition 3.2 implies
AR(θ) = SR(θ) + 2ε ‖θ‖`2

√
SR(θ) + ε2 ‖θ‖2`2 , then by

expanding adversarial risk relation AR(θ) inR(θ) we get

R(θ) = (1 + λ)SR(θ) + ε2 ‖θ‖2`2 + 2ε ‖θ‖`2
√

SR(θ) .
(36)

It is easy to see SR(θ) = σ2
y + θTΣθ − 2vTθ. Replace

∇θSR(θ) = 2(Σθ − v) in (36) to get

∇θR(θ) = 2(1 + λ)(Σθ − v) + 2ε2θ

+ 2ε

(
θ

‖θ‖`2

√
SR(θ) + (Σθ − v)

‖θ‖`2√
SR(θ)

)
,

(37)

therefore stationary points (solutions of∇θR(θ) = 0) and
a critical point θ = 0 are candidates for global minimizers.
From equation SR(θ) = σ2

y + θTΣθ−2vTθ and adversarial
risk relation in Proposition 3.2 it is clear that for θ = 0 we
have SR(θ) = AR(θ) = σ2

y . Next, we focus on characteriz-
ing stationary minimizers ofR(θ) and their corresponding
standard and adversarial risk values. If θ∗ is a stationary
point, then putting (37) to be zero yields((

1 + λ+
ε ‖θ∗‖`2√
SR(θ∗)

)
Σ +

(
ε2 +

ε
√

SR(θ∗)

‖θ∗‖`2

)
I

)
θ∗

=

(
1 + λ+

ε ‖θ∗‖`2√
SR(θ∗)

)
v . (38)

Introduce A∗ :=

√
SR(θ∗)

‖θ∗‖`2
and γ∗ := ε2+εA∗

1+λ+ ε
A∗

, then (38)

can be simplified to θ∗ = (Σ + γ∗I)−1v. By replacing
θ∗ = (Σ + γ∗I)−1v in A∗ along with equation SR(θ) =
σ2
y + θTΣθ − 2vTθ we get

A∗ =

√
SR((Σ + γ∗I)−1v)

‖(Σ + γ∗I)−1v‖`2

=
1

‖(Σ + γ∗I)−1v‖`2

(
σ2
y +

∥∥∥Σ1/2(Σ + γ∗I)−1v
∥∥∥2

`2

− 2vT(Σ + γ∗I)−1v

)1/2

,

therefore γ∗ is a fixed point solution of two equations (15)
and (16). Moreover, definition of A∗ gives us SR(θ∗) =

A2
∗
∥∥(Σ + γ∗I)−1v

∥∥2

`2
. Next, from adversarial risk re-

lation in Proposition A.1 we know that AR(θ∗) =
(
√
SR(θ∗) + ε ‖θ∗‖`2)2. This implies AR(θ∗) = (A∗ +

ε)2
∥∥(Σ + γ∗I)−1v

∥∥2

`2
.
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A.3. Proof of Corollary 3.4

For linear data model y = xTθ0 +w with isotropic features
E[xxT ] = Id and Gaussian noise w ∼ N(0, σ2) we have
E[xy] = θ0. In addition, we have E[y2] = σ2 + ‖θ0‖2`2 .
This gives us σ2

y = σ2 + ‖θo‖2`2 . Use Theorem 3.3 with
v = θ0, Σ = I , and σ2

y = σ2 + ‖θ0‖2`2 to get Corollary 3.4.

A.4. Proof of Proposition 3.5

We start by proving the expression for standard risk. By
definition we have

SR(θ) := E[I(y 6= ŷ)] = P(yxTθ ≤ 0)

= P
(
y(yµ+ Σ1/2u)Tθ ≤ 0

)
= P

(
(µ+ Σ1/2u)Tθ ≤ 0

)
= P

(
µTθ +

∥∥∥Σ1/2θ
∥∥∥
`2
ν ≤ 0

)
= Φ

(
− µTθ∥∥Σ1/2θ

∥∥
`2

)
, (39)

with u ∼ N(0, Id) and ν ∼ N(0, 1). To prove the expression
for adversarial risk we use the dual form (8). Our next
lemma characterizes the function φγ given by (9) for the
binary problem under the Gaussian mixture model.

Lemma A.1. Consider the binary classification problem
under the Gaussian mixture model with 0-1 loss. Then, the
robust surrogate for the loss function φγ given by (9) with
distance d(·, ·) (12) satisfies

EPZ [φγ(θ; z)] = Φ
(√ 2

bθγ
− a
)

+
bθγ

2

{(
aθ +

√
2

bθγ

)
ϕ
(
aθ −

√
2

bθγ

)
− aθϕ(aθ) + (a2

θ + 1)
[
Φ
(
aθ −

√
2

bθγ

)
− Φ(aθ)

]}
,

with aθ = µTθ

‖Σ1/2θ‖
`2

and bθ =
‖Σ1/2θ‖2

`2

‖θ‖2`q
.

Proof (Lemma A.1). By definition of the φγ function, for
the setting of Lemma A.1 we have

φγ(θ; z0) = sup
x
{I(y0x

Tθ ≤ 0)− γ

2
‖x− x0‖2`r} .

We let v0 := y0x0 and v = y0x. Given that y0 ∈ {±1}, the
function φγ can be written as

φγ(θ; z0) = sup
v
{I(vTθ ≤ 0)− γ

2
‖v − v0‖2`r} .

First observe that by choosing x = x0, we obtain
φγ(θ, z0) ≥ 0. It is also clear that φγ(θ, z0) ≤ 1. We
consider two cases.

Case 1: (vT0 θ ≤ 0). By choosing v = v0 we obtain that
φγ(θ; z0) ≥ 1 and hence φγ(θ; z0) = 1.

Case 2:(vT0 θ > 0). Let v∗ be the maximizer in definition of
φγ(θ; z0). If vT∗ θ > 0, then we have

φγ(θ; z0) = I(vT∗ θ ≤ 0)− γ

2
‖v∗ − v0‖2`r

= −γ
2
‖v∗ − v0‖2`r ≤ 0 .

Therefore, φγ(θ; z0) = 0 in this case. We next focus on the
case that vT∗ θ ≤ 0. It is easy to see that in this case, v∗ is
the solution of the following optimization:

min
v∈Rd

‖v − v0‖`r

subject to vTθ ≤ 0 (40)

Given that vT0 θ > 0 by assumption, using the Holder in-
equality it is straightforward to see that the optimal value is
given by ‖v − v0‖`r =

vT0θ
‖θ‖`q

, with 1
r + 1

q = 1.

The function φγ is then given by φγ(θ; z0) = 1 −
γ
2

(
vT0θ
‖θ‖`q

)2

. Putting the two conditions vT∗ θ ≤ 0 and

vT0 θ > 0 together, we obtain

φγ(θ; z0) = max
{

1− γ

2

( vT0 θ

‖θ‖`q

)2

, 0
}
,

in this case.

Combining case 1 and case 2 we arrive at

φγ(θ; z0) = I(vT0 θ ≤ 0) (41)

+ max

(
1− γ

2

( vT0 θ

‖θ‖`q

)2

, 0

)
I(vT0 θ > 0) .

(42)

For (x0, y0) generated according to the Gaussian mixture
model, we have vT0 θ = y0x

T
0 θ = µTθ +

∥∥Σ1/2θ
∥∥
`2
ν with

ν ∼ N(0, 1). Hence,

∣∣∣ vT0 θ‖θ‖`q

∣∣∣ =

∣∣∣∣ µTθ

‖θ‖`q
+

∥∥Σ1/2θ
∥∥
`2

‖θ‖`q
ν

∣∣∣∣.
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Letting aθ := µTθ

‖Σ1/2θ‖
`2

, (41) can be written as

φγ(θ; z0) = I(ν ≤ −aθ)

+ max
(

1− γ

2

∥∥∥Σ1/2θ
∥∥∥2
`2

‖θ‖2`q
(ν + aθ)

2, 0
)
· I(ν > −aθ)

= I(ν ≤ −aθ)

+

(
1− bθγ

2
(ν + aθ)

2

)
I
(√

2

bθγ
− aθ > ν > −aθ

)
,

(43)

where bθ :=
‖Σ1/2θ‖2

`2

‖θ‖2`q
. By simple algebraic calculation,

we get

EPZ [φγ(θ; z)] = Φ
(√ 2

bθγ
− aθ

)
+
bθγ

2

{(
aθ +

√
2

bθγ

)
ϕ
(
aθ −

√
2

bθγ

)
− aθϕ(aθ)

+ (a2θ + 1)
[
Φ
(
aθ −

√
2

bθγ

)
− Φ(aθ)

]}
.

The claim of Proposition 3.5 follows readily from
Lemma A.1 and the fact that strong duality holds for the dual
problem (8), where we use the change of variable γ 7→ γ

bθ
.

A.5. Proof of Remark 3.7

Recall the objective (25) and define

R(a) :=λΦ(−a) + γε2 + Φ

(√
2

γ
− a
)

+
γ

2

{
(a+

√
2

γ
)ϕ

(
a−

√
2

γ

)
− aϕ(a)

+ (a2 + 1)

(
Φ

(
a−

√
2

γ

)
− Φ(a)

)}
.

Then, we get

dR(a)

da
=− λϕ(−a)

+ γ
{
ϕ

(√
2

γ
− a
)
− ϕ(a)

+ a

(
Φ

(√
2

γ
− a
)
− Φ(a)

)}
. (44)

Note that

∂

∂t

(
ϕ(t− a)− ϕ(a) + a (Φ(t− a)− Φ(a))

)
= ϕ(t− a)(2a− t) , (45)

and therefore the maximum of ϕ(t − a) − ϕ(a) +
a (Φ(t− a)− Φ(a)) is achieved at t = 2a. As a result
dR(a)
da ≤ −λϕ(−a) < 0, which implies that the objective

(25) is decreasing in a. Since |a| ≤ ‖µ‖`2 , its infimum is
achieved at a = ‖µ‖`2 .

Equations (26) follows from (24) by substituting for aθ =
‖µ‖`2 and bθ = 1.

A.6. Proof of Corollary 3.8

Recall the distance d(·, ·) on the space Z = {z =
(x, y), x ∈ Rd, y ∈ R} given by d(z, z̃) = ||x − x̃||2 +
∞ · I(y − ỹ). This metric is induced from norm ‖z‖ =
‖x‖`2 +∞ · I(y = 0) with corresponding conjugate norm
‖z‖∗ = ‖x‖`2 . We will use Proposition 2.3 to find the vari-
ation of loss ` and derive the first-order approximation for
the Wasserstein adversarial risk. Denoting by uj ∈ Rd be
the jth row of matrix U , for j = 1, 2, ..., N , we have

∇x`(θ;Z) = ∇x(y − θTσ(Ux))2

= 2(θTσ(Ux)− y)

N∑
j=1

θjσ
′(uTj x)uj

= 2(θTσ(Ux)− y)UTdiag(σ′(Ux))θ . (46)

As we work with Wasserstein of order p = 2, we have
conjugate order q = 2. Therefore, Proposition 2.3 gives us
VPZ ,q(`) =

(
E[||∇z`(θ;Z)||2∗]

)1/2
. By using (46) we get

VPZ ,q(`) = 2

(
E
[
(θTσ(Ux)− y)2

∥∥∥UTdiag(σ′(Ux))θ
∥∥∥2
`2

])1/2

.

Finally, relation AR(θ) = SR(θ) + εVPZ ,q(`) + O(ε2)
from Proposition 2.3 completes the proof. We just need to
verify that the necessary condition in Proposition 2.3 holds
for the loss `(θ; z) = (y − θTσ(Wx))2. By the setting of
the problem, we have x ∈ Sd−1(

√
d) and uj ∈ Sd−1(1).

Therefore ‖x‖`2 ≤
√
d and ‖U‖op ≤

√
max(N, d).

In the following lemma we show that the solution θλ to (14)
is bounded as λ varies in [0,∞).

Lemma A.2. Under the setting of Corollary 3.8, and for θλ
given by (14), there exist constants c0 and c1, independent
of λ, such that with probability at least 1− e−c0d we have
‖θλ‖`2 ≤ c1.

Using Lemma A.2 we can restrict ourselves to the ball of
`2 radius c1. More specifically, we can define a ‘surrogate’
loss for (14) where θ is constrained to be in ball of radius
c1, without changing its solution. We can then apply Propo-
sition 2.3 to establish a relation between SR and AR. In the
following part we show that the conditions of Proposition
2.3 are satisfied.

We adopt the shorthands D = diag(σ′(Ux)), D̃ =
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diag(σ′(Ux̃)), s = σ(Ux), and s̃ = σ(Ux̃), and write

1

2
‖∇z`(θ; z)−∇z`(θ; z̃)‖∗

=
1

2
‖∇x`(θ; z)−∇x`(θ; z̃)‖`2

(a)
=
∥∥∥(θTs− y)UTDθ − (θTs̃− ỹ)UTD̃θ

∥∥∥
`2

(b)

≤
∥∥∥θTsUT(D − D̃)θ

∥∥∥
`2

+
∥∥∥θT(s− s̃)UTD̃θ

∥∥∥
`2

+
∥∥∥yUT(D − D̃)θ

∥∥∥
`2

+
∥∥∥(y − ỹ)UTD̃θ

∥∥∥
`2

(c)

≤ Nc21 +
√
Nc21 ‖s− s̃‖`2 +

√
Nc21 +

√
Nc1|y − ỹ|

(d)

≤ (N +
√
N)c21 +Nc21 ‖x− x̃‖`2 +

√
Nc1|y − ỹ|

≤ (N +
√
N)c21 +Nc21

(
‖x− x̃‖`2 +∞ I{y 6=ỹ}

)
(e)

≤ M + L‖z − z̃‖ ,

where (a) comes from (46), in (b) we used triangle inequal-
ity, (c) is a direct result of Cauchy inequality and the fact
that σ(u) ≤ u, (d) comes from Lipschitz continuity of σ,
and in (e) we used C = (N+

√
N)c21 and L = Nc21. There-

fore the necessary condition in Proposition 2.3 is satisfied.

A.6.1. PROOF OF LEMMA A.2

By comparing the objective value (14) at θλ and 0 and using
the optimality of θλ we get

(1 + λ)SR(θλ)

≤ (1 + λ)SR(θλ)

+ 2ε Ex
[[

(fd(x)− θTλσ(Ux))2 + σ2
]

×
∥∥UTdiag(σ′(Ux))θλ

∥∥2

`2

]1/2
≤ (1 + λ)SR(0) .

Therefore by invoking (31) we get

Ex
[
(fd(x)− θTλσ(Ux))2

]
≤ Ex

[
fd(x)2

]
(47)

Using the inequality (a− b)2 ≥ a2

2 − b
2, we get

E[(θTλσ(Ux))2] ≤ 4Ex[fd(x)2] < c2 , (48)

with probability at least 1 − e−c3d for some constants
c2, c3 > 0. We next lower bound the eigenvalues of
E[σ(Ux)σ(Ux)T] from which we can upper bound ‖θλ‖`2 .

Define the dual activation of σ as

σ̃(ρ) = E(v,w)∼Nρ [σ(v)σ(w)]

where Nρ denotes the two dimensional Gaussian with mean

zero and covariance
(

1 ρ
ρ 1

)
. With this definition, we have

E[(σ(Ux)σ(Ux)T)ij ] = σ̃(uTi uj) for i, j = 1, . . . , N . Let
{ar}∞r=0 denote the Hermite coefficients defined by

ar :=
1√
2π

∫ ∞
−∞

σ(g)hr(g)e−
g2

2 dg ,

where hr(g) is the normalized Hermite polynomial defined
by

hr(x) :=
1√
r!

(−1)re
x2

2
dr

dxr
e−

x2

2 .

Using the properties of normalized Hermite polynomials we
have

σ̃(ρ) = E(v,w)∼Nρ

[
(

∞∑
r=0

arhr(v))(

∞∑
r̃=0

ar̃hr̃(u))
]

=

∞∑
r=0

a2
rρ
r.

(49)

Writing in matrix form we obtain

E[(σ(Ux)σ(Ux)T)] = σ̃(UUT) =

∞∑
r=0

a2
r(UU

T)�r ,

(50)

where for a matrix A�r = A� (A�(r−1)) with � denoting
the Hadamard product (entrywise product).

We next use the identity (AAT)� (BBT) = (A ∗B)(A ∗
B)T, with ∗ indicating the Khatri-Rao product. By using
this identity and applying induction on r it is straightforward
to get the following relation for any matrix A:

(AAT)�r = (A∗r)(A∗r)T , (51)

with A∗r = A ∗ (A∗(r−1)). By using the above identity in
Equation (50) we obtain

E[(σ(Ux)σ(Ux)T)] =

∞∑
r=0

a2
r(UU

T)�r

=

∞∑
r=0

(arU
∗r)(arU

∗r)T

� a2
r(U

∗r)(U∗r)T ,

for any r ≥ 0. Using this bound with r = 2 and the fact
that a2 = 1

2
√
π

for ReLU activation, we get

E[(σ(Ux)σ(Ux)T)] � 1

4π
(U ∗ U) ≥ c4 , (52)

where the last step holds with probability at least 1− e−c5d
for some constants c4 and c5 using the result of (?)Corollary
7.5]soltanolkotabi2018theoretical.

Combining Equations (48) and (52) gives us ‖θλ‖`2 ≤√
c2/c4, which completes the proof.


