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List of symbols
N Number of samples 1.1
P Number of features 1.1
x Input vector (P × 1) 1.1
X Matrix of inputs (N × P ) 1.1
ε Vector of noise (N × 1) 1.1
y Vector of outputs (N × 1) 1.1
Σ Covariance of x (P × P ) 1.1
S2,U Eigenvalues, eigenvectors of Σ 1.1
σ2
x Total variance of the data ( 1

P TrΣ) 1.1
σ2 Variance of noise 1.1
SNR Signal to noise ratio 1.1
fs Fraction signal power 1.1
fn Fraction noise power 1.1
α Measurement density N/P 1.1
β Inverse measurement density P/N 1.1
w True weights 1.1
ŵ Estimated weights 1.1
λ Regularization coefficient 1.1
IP , IN Identity matrix (P × P , N ×N) 1.1
V Unexplained variance 1.2
F Fraction unexplained variance 1.2
v Vector of mode-wise signal power 1.2
λ̃ Effective regularization 1.2
ρ(ρf ) (Fractional) participation ratio 1.2
z Generating function parameter (−1/λ) 1.2
ti, tN , Ti, TN Generating functions 1.2
ζ Related to ρf 1.2
M(z) Moment generating function 1.3
R(z) R-transform 1.3
γ Aspect ratio in 2-scale model (S1/S2) 5.0.2
H Hessian of the training objective 6
B Inverse Hessian 6
B̃ Related to inverse Hessian 6
D Number of distinct data scales 6
εd Ratio of successive scales 6
γx Data strength measure ( 1

P TrΣ
2) 6

ρ(x) Spectral density of 1
NXXT 6

G(x) Stieltjes transform of ρ(x) 6
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1 Proof of the generalization error formula

1.1 Setting and statement
We study a generative model of data consisting of N independent identically
distributed (iid) random Gaussian input vectors xµ ∈ RP for µ = 1, . . . , N ,
each drawn from a zero mean Gaussian with covariance matrix Σ (i.e. xµ ∼
N (0,Σ)), N corresponding iid scalar noise realizations εµ ∼ N

(
0, σ2

)
, and N

outputs yµ given by
yµ = xµ ·w + εµ,

where w ∈ RP is an unknown ground truth regression vector. The outputs yµ
decompose into a signal component xµ ·w and noise component εµ and signal
to noise ratio (SNR) given by the relative power

SNR :=
Var[x ·w]

Var[ε]
=

wTΣw

σ2
, (1)

plays a critical role in estimation performance. For convenience below we also
define the fractional signal power fs := wTΣw

wTΣw+σ2 and fractional noise power
fn := σ2

wTΣw+σ2 . Note fs + fn = 1 and SNR = fs
fn

.
We construct an estimate ŵ of w from the data {xµ, yµ}Nµ=1 using ridge

regression:

ŵ = arg min
w

1

N

N∑
µ=1

(yµ − xµ · w)
2

+ λ||w||2. (2)

The solution to this optimization problem is given by

ŵ =
(
XTX + λNIP

)−1
XTy, (3)

where X is an N × P matrix whose µth row is xµT , y ∈ RN with components
yµ and IP is the P × P identity matrix.

Finally, define the following: let (β := P/N) α := N/P denote the (inverse)
measurement density, let the eigendecomposition of the data covariance be Σ =
US2UT , and let the total variance of the data be s2x := 1

P TrΣ.

1.2 Proof using diagrammatic expansion
Here we prove the high-dimensional error formula, which states that the fraction
unexplained variance, defined as

F :=
Exµ,εµ,x,ε

[
(y − x · ŵ)

2
]

Ex,ε [y2]
, (4)

converges to the following expression in the high-dimensional limit

F = fn +
1

ρf

P∑
i=1

fsv̂2
i

(
λ̃

S2
i + λ̃

)2

+ fn
1

α

1

P

(
S2
i

S2
i + λ̃

)2
 . (5)
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Here fn, fs = σ2

σ2+wTΣw
, wTΣw
σ2+wTΣw

are the fractional noise and signal power, Σ

has eigendecomposition US2UT , v̂ is the unit vector in the same direction as
v := SUTw, and

λ = λ̃+
1

α

1

P

P∑
j=1

λ̃S2
j

λ̃+ S2
j

(6)

ρf =

(
dλ̃

dλ

)−1
. (7)

We will start by computing the raw unexplained variance V = Exµ,εµ,x,ε

[
(y − x · ŵ)

2
]
,

and then divide by Var [y] = Ex,ε

[
y2
]
to obtain the fraction unexplained vari-

ance F .

Expectations over εµ,x, ε The three expectations in (4) over εµ,x, ε, the
training noise, and test input and noise, are relatively straightforward. First
performing the test example expectation over x, ε, we obtain

Exµ,εµ,x,ε

[
(y − x · ŵ)

2
]

= Exµ,εµEx,ε ((x ·w + ε)− x · ŵ)
2

= Exµ,εµEx,ε (x · (w − ŵ) + ε)
2

= Exµ,εµ

[
(w − ŵ)

T
Σ (w − ŵ) + σ2

]
.

Now all of the random dependence on xµ, εµ is in the (w − ŵ)’s. Using the
definition of ŵ, we have

w − ŵ = w −
(
XTX + λNI

)−1
XT (Xw + ε)

=
(
I−

(
XTX + λNI

)−1
XTX

)
w −

(
XTX + λNI

)−1
XT ε

= λN
(
XTX + λNI

)−1
w −

(
XTX + λNI

)−1
XT ε

= R (X)

(
λw − 1

N
XT ε

)
,

where R (X) =
(

1
NXTX + λI

)−1 is the regularized inverse covariance, and on
line 2 we’ve used the Woodbury matrix identity. This notation makes explicit
that R (X) only depends on the training inputs xµ and not the training noise
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εµ. Using this notation, we now perform the expectation over εµ:

Exµ,εµ,x,ε

[
(y − x · ŵ)

2
]

= Exµ,εµ

[
(w − ŵ)

T
Σ (w − ŵ) + σ2

]
= ExµEεµ

[(
λw − 1

N
XT ε

)T
RΣR

(
λw − 1

N
XT ε

)
+ σ2

]

= Exµ

[
λ2wTRΣRw +

1

N2
Eεµ

[
εTXRΣRXT ε

]
+ σ2

]
= Exµ

[
λ2wTRΣRw +

σ2

N2
Tr
[
XRΣRXT

]
+ σ2

]
= σ2 + wTExµ

[
λ2RΣR

]
w +

σ2

N
Tr
[

1

N
Exµ

[
XRΣRXT

]]
.

Eigendecomposition and change of variables The formula immediately
above depends on the two matrices

Exµ
[
λ2RΣR

]
(8)

1

N
Exµ

[
XRΣRXT

]
. (9)

Let the eigendecomposition of the data covariance be Σ = US2UT . We can
produce training inputs X with this covariance from standard normal variables
Z through X = ZSUT since then the covariance is

E
[

1

N
XTX

]
= E

[
1

N
USZTZSUT

]
= US2UT = Σ.

Now substitute Σ = US2UT and X = ZSUT into the matrices (8) (9) we
obtain

Exµ
[
λ2RΣR

]
= UEZ

[(
I− z 1

N
SZTZS

)−1
S2

(
I− z 1

N
SZTZS

)−1]
UT

1

N
Exµ

[
XRΣRXT

]
= z2

1

N
EZ

[
ZS

(
I− z 1

N
SZTZS

)−1
S2

(
I− z 1

N
SZTZS

)−1
SZT

]
,

where we’ve written the matrices in terms of z = − 1
λ . Defining

TP = EZ

[(
I− z 1

N
SZTZS

)−1
S2

(
I− z 1

N
SZTZS

)−1]
(10)

TN =
1

N
EZ

[
zZS

(
I− z 1

N
SZTZS

)−1
S2

(
I− z 1

N
SZTZS

)−1
SZT

]
, (11)

the unexplained variance can be written

V = σ2 + wTUTPUTw + z
σ2

N
Tr [TN ] . (12)
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Recall that z = − 1
λ . We expand all inverses in powers of z giving

TP =
∑
n

znEZ

∑
p+q=n

(
1

N
SZTZS

)p
S2

(
1

N
SZTZS

)q
=:
∑
n

znAn

TN =
∑
n

zn+1EZ

∑
p+q=n

1√
N

ZS

(
1

N
SZTZS

)p
S2

(
1

N
SZTZS

)q
1√
N

SZT =:
∑
n

zn+1Bn+1.

TP , TN can be interpreted as generating functions for the matrix sequences
An, Bn. We will interpret these sequences as counting weighted paths through a
certain graph, and then produce a recurrence relation satisfied by An, Bn, from
which generating function equations will follow.

TP , TN can be interpreted as pathsums Generically, for an h× w matrix
M , one can build a bipartite graph with a group of h nodes and on the left and
a second group of w nodes on the right, and interpret Mij as an edge weight
between the ith node on the left and the jth node on the right. For a matrix
product (ML)ij =

∑
kMikLkj , one can interpret the ijth component as a sum

over all paths which start at node i on the left, go through an intermediate node
k, and end at node j on the right. To compute the total weight for the path,
we must chain together the individual “edge weights” contained in M,L, that is
(i→ k → j)⇒MikLkj

We will now apply this interpretation to the matrix sequences An, Bn. Both
sequences are defined in terms of repeated products of ZS and (ZS)

T . We can
interpret these two matrices as describing the same edge weights in a bipartite
graph with one group of N nodes (for the number of samples) and one group of
P nodes (for the number of features). For example, the product(

1

N
SZTZS

)
ij

=
∑
γ

(
1√
N

ZS

)T
iγ

(
1√
N

ZS

)
γj

,

represents a two step path i→ γ → j with individual edge weights given by the
matrix 1√

N
ZS. From this it follows more generally that a power

[(
1
N SZTZS

)p]
ij

will be a pathsum i · · · 2p steps−−−−−→ · · · j where each path has a weight equal to the
product of the individual traversed edge weights found in 1√

N
ZS. We will write

the set of 2n step paths from i → j as P2n (i→ j). Note that because every
(ZS)

T is followed by a (ZS), such paths always alternate between P -type and
N -type nodes at each step.

Slightly abusing notation, the full expressions for An, Bn are interpreted as

An = EZ

∑
p+q=n

(
1

N
SZTZS

)p
S2

(
1

N
SZTZS

)q
= EZ

∑
p+q=n

∑
k

P2p (i→ k) · S2
k · P2q (k → j) ,
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and

Bn+1 = EZ

∑
p+q=n

1√
N

ZS

(
1

N
SZTZS

)p
S2

(
1

N
SZTZS

)q
1√
N

SZT

= EZ

∑
p+q=n

∑
k

P2p+1 (γ → k) · S2
k · P2q+1 (k → η) .

To distinguish the two halves of the bipartite graph, we’ll use Latin indices like
i, j, k whenever an index ranges over a feature (ie. one of the P nodes), and
Greek indices whenever an index ranges over a sample (ie. one of the N nodes).
So a generic path will be of the form i → γ → j → η · · · , which alternates
between the two groups of the bipartite N − P graph.

Pathsum dominated by “tree paths” The weight connecting nodes γ ↔ i

is
(

1√
N

ZS
)
γi

= 1√
N

ZγiSi, which is a standard normal variable Zγi multiplied

by a deterministic scalar S2
i√
N
. If the edge γ ↔ i is only traversed once, then Zγi

will appear as a first power in the path weight, and after taking expectations
EZ the result will be 0. More generally, if any edge γ ↔ i is traversed an odd
number of times, the edge weight will include an odd moment of the correspond-
ing standard normal variable Zγi, making the full path weight 0 after taking
expectations. So only paths which traverse their edges an even number
of times contribute to An, Bn.

Any path starting and ending at different nodes must traverse some edge an
odd number of times, so its path weight will be zero by the previous argument.
So only paths starting and ending at the same node contribute. This is
equivalent to saying An, Bn are diagonal, since (An)ij consists of paths i · · · →
· · · j and similarly for Bn.

For example take the set of 4-step paths starting and ending at i. In order
to contribute to the pathsum it must traverse all its edges an even number of
times. This leaves three possibilities (Figure 1).

To determine how many paths there are of each type, we simply count the
number of distinct P,N -type nodes one can choose (noting that i is the fixed
starting/ending point). There are PN of the first type, N2 of the second type,
and N of the third type. Thus in the limit N,P → ∞ with α = N/P fixed,
the PN,N2 paths of the first two types will dominate the N of the third type
(the paths will also differ in their path weights, since, for example in type 3, the
edge i ↔ γ appears four times giving us a factor of E

[
Z4
γi

]
= 3, but these are

order 1 factors which will not change asymptotic scaling with N,P ).
A straightforward extension of this argument shows that for any number of

steps, as N,P →∞ the pathsum is dominated by paths visiting the maximum
number of distinct N,P -type nodes. These dominant paths cannot have any cy-
cles (as in Figure 2), since one can always cut a cycle to obtain two independent
branches, increasing the N,P scaling of the path type (Figure 2). This implies
that paths whose (paired) edges form a tree dominate the pathsum.
We’ve already demonstrated a special case of this fact in Figure 1: in terms of
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Figure 1: Three possible 4-step paths starting from node i. If edges going in
opposite directions between the same two nodes are paired, the first two paths
give rise to trees, while the third path will have two edge pairs connecting i↔ γ,
and so is not a tree.

edge pairs, path 1) forms a (linear) tree, path 2) forms a tree with root degree
2, and path 3) is not a tree, and so is insignificant in the limit.

Thus whenever we encounter P2n (i→ i), we will restrict attention to the
subset T reen (i→ i), defined as the set of trees with n edges (a path of 2n steps
gives a tree with half as many edges n since the steps are paired).

Generating function for simple trees We start by computing the simpler
generating functions

ti =
∑
n

zn · P2n (i→ i) =
∑
n

zn · T reen (i→ i) (13)

tγ =
∑
n

zn · P2n (γ → γ) =
∑
n

zn · T reen (γ → γ) , (14)

which will allow us to illustrate the general approach.
Briefly, we will make use of the notion of a combinatorial class, which is a

set of objects (here, trees), each of which has a size (here, number of edges), and
a weight (here, the full weight computed by multiplying the step weights given
in 1√

N
ZS). Combinatorial classes have an associated generating function ob-

tained by collecting all objects by size, and adding up the weights in each size

group: f =
∑
n z

n

(∑
obj∈class
|obj|=n

wobj

)
. Using the internal structure of the ob-

jects in a combinatorial class, one can often produce relatively simply equations
for the generating function. The general framework for this is described in detail
in 7.
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Figure 2: Paths with cycles (in terms of edge pairs) as in the path on the left,
will have lower scaling with N,P than those without cycles.

To obtain an expression for ti =
∑
n z

n · T reen (i→ i), we first observe that
this is exactly the generating function of the combinatorial class of trees where
size n is the number of edges and the weight is computed using the edge weight
product described above. Figure 3 shows an example of a 5-edge tree in this
class with each distinct node marked by a different letter.

Using Figure 3 as an aid, any tree based at i can be expressed as an or-
dered sequence of subtrees attached to the root at i, which we’ll write as
ti = SEQ (subtree). Each of these subtrees consists of a proper subtree and
a root edge connecting the subtree to the root: ti = SEQ

(
root
edge× proper

subtree

)
.

Each subtree is based at some (ie. any) N -type node γ, so we write ti =

SEQ
(⋃

γ

root
edge
i↔γ
×

proper
subtree
at γ

)
. Finally, the proper subtree based at γ is itself a

general tree based at node γ, which from (14) is just tγ , so we have ti =

SEQ
(⋃

γ

root
edge
i↔γ
× tγ

)
. Identical reasoning gives an analogous specification tγ =

SEQ
(⋃

i

root
edge
γ↔i
× ti

)
.

To determine the combinatorial class associated to
root
edge
i↔γ

, observe that a root
edge is just a tree of size 1. To determine the weight of a particular root edge
i ↔ γ, observe that it is traversed exactly twice, each time acquiring an edge
factor of 1√

N
(ZS)γi giving

1
N (ZS)

2
γi, which after taking expectations becomes

S2
i

N (Zγi is standard normal and hence E
[
Z2
γi

]
= 1). Since it has size 1 and

weight S2
i

N , its combinatorial class is just S2
i

N Z. Our specifications are then

ti = SEQ

(⋃
γ

S2
i

N
Z × tγ

)

tγ = SEQ

(⋃
i

S2
i

N
Z × ti

)
.

Using the rules developed in sec (7), these immediately translate to generating
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Figure 3:

function equations

ti =
1

1−
∑
γ
S2
i

N ztγ

tγ =
1

1−
∑
i
S2
i

N zti
.

The tγ equation doesn’t depend on γ, so we’ll write tN for the single value of
tγ for all γ. Rearranging then gives

ti = 1 + zS2
i tN ti

tN = 1 +
1

N

∑
i

(ti − 1) .

Full generating functions We will now obtain expressions for TP , TN , shown
above to be

(TP )ii =
∑
n

zn ·
∑

p+q=n

∑
k

P2p (i→ k) · S2
k · P2q (k → i)

(TN )γγ =
∑
n

zn ·
∑

p+q=n

∑
k

P2p+1 (γ → k) · S2
k · P2q+1 (k → γ) .

(TP )ii can be intepreted as the generating function of the class of “pointed
trees”, consisting of trees based at i together with a distinguished node k (the
“pointed-to” node) at some point along the path, which multiplies by an extra
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Figure 4: A pointed tree based at i - ie. a tree with a distinguished node visited
sometime during the path traversal - can be decomposed into a maximal left
tree traversed before the point, a maximal right tree traversed after the point,
and finally, when the middle segment is longer than a single node, a root edge
connecting the root i to a smaller pointed tree based at some (any) node γ.

weight of S2
k. Similarly, (TN )γγ is the class of pointed subtrees based at N -type

node γ.
We will now describe the structure of these classes in such a way that we

can obtain generating function equations. Take a pointed tree based at i. Start
at i and follow the path outward. Before and after reaching the pointed-to node
k, it will return to the original node i some number of times, eg.

i1 → · · · → i` → · · · → k → · · · → i`+1 → · · · → iL

We immediately have (TP )ii =
(left segment
i1→···→i`

)
×
(mid segment
i`→···k···→i`

)
×
(

right segment
i`+1→···→iL

)
.

The left and right segments i→ · · · → i` and i`+1 → · · · → i` become arbitrary
unpointed tree paths based at i, that is, members of ti from above, so we have
(TP )ii = ti ×

( mid segment
ik→···j···→ik

)
× ti.

The middle segment i` → · · · → k → · · · → i`+1 is either a single node
or multiple nodes,

(mid segment
i`→···k···→i`

)
=
(
single
node

)
∪ (multnodes). If it is a single node, the

pointed-to node k is actually i, and the segment is just · · · → i`/i`+1 → · · ·
(where the `’s would have been numbered accordingly) and so its class is just
S2
i 1 - ie. a single object of size 0 edges, with the extra pointed weight factor S2

i .
Otherwise it is multiple steps, and it can be decomposed into a proper pointed
subtree and a root edge connecting it to the root (Figure 4), ie. (multnodes) =⋃
γ

root
edge
i↔γ
×
(
pointed
subtree
at γ

)
(there is only need for one root edge/subtree rather than a

sequence since, by construction, all others were absorbed into the left and right
segments). The root edge has class S2

i

N Z, and the pointed subtree is just an
arbitrary pointed subtree based at an N -type node, ie.

⋃
γ (TN )γγ . Putting
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these together, we have

(TP )ii = ti ×

(
S2
i 1 ∪

(
S2
i

N
Z ×

⋃
γ

(TN )γγ

))
× ti.

Similarly, every object of (TN )γγ is a pointed tree path starting at N -space node
γ. It can be decomposed the same way as TP , except that the middle segment
must be multiple steps, since γ is an N -type node, but the pointed-to node is
P -type. So we just remove the single node case S2

i 1 and obtain the specification

(TN )γγ = tγ ×

(⋃
i

S2
i

N
Z × (TP )ii

)
× tγ .

Collecting these two specifications and translating to generating function equa-
tions, we have

(TP )ii = t2iS
2
i

(
1 + z

1

N

∑
γ

(TN )γγ

)

(TN )γγ = zt2γ
∑
i

S2
i

N
(TP )ii .

Noting again that the (TN )γγ equation doesn’t depend on γ (we showed above
tγ is independent of γ and just write tN ), we’ll use write TN for the single value
of (TN )γγ for all γ, which simplifies these equations to

(TP )ii = t2iS
2
i (1 + zTN )

TN = zt2N
∑
i

S2
i

N
(TP )ii .

Substitution into the error expression Collecting these results, we can
write the unexplained variance V in terms of TP , TN as follows,

V = σ2 + wTUTPU
Tw + z

σ2

N
Tr [TN ] ,

where TN , TP are the solutions of the following system (to make the notation
less cumbersome, we’ll write Ti for (TP )ii

ti = 1 + zS2
i tN ti (15)

tN = 1 +
1

N

∑
i

(ti − 1) (16)

Ti = (1 + zTN ) t2iS
2
i (17)

TN = zt2N
1

N

∑
i

S2
i Ti. (18)
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Substituting (17) into (18) gives TN = zt2N (1 + zTN ) 1
N

∑
i S

4
i t

2
i . Eq. (15)

gives t2NS
4
i t

2
i = 1

z2 (ti − 1)
2, so substituting gives

TN =
1

z
(1 + zTN )

1

N

∑
i

(ti − 1)
2

⇒TN =
1

z

ζ

1− ζ
,

where ζ = 1
N

∑
i (ti − 1)

2.
Next, substituting this back into Eq. (17), we obtain

Ti = S2
i t

2
i

(
1 + z

1

z

ζ

1− ζ

)
=

S2
i t

2
i

1− ζ
.

Using these formulas, we can express the cost entirely in terms of λ̃ :=
1

1
N Tr

[
E
[
( 1
NXXT+λIN)

−1
]] . By comparing to how tN was defined, we see λ̃ = λ/tN .

Substituting into tN = 1 + 1
N

∑
i

(
1

1−zS2
i tN
− 1
)
we get

λ = λ̃− λ̃ 1

N

∑
i

S2
i

λ̃+ S2
i

ζ =
1

N

∑
i

(
S2
i

λ̃+ S2
i

)2

.

Differentiating with respect to λ and solving finally gives

dλ̃

dλ
=

1

1− ζ
. (19)

So

TN =
1

z

ζ

1− ζ
=

1

z
λ̃′

1

N

∑
i

(
S2
i

λ̃+ S2
i

)2

Ti =
S2
i t

2
i

1− ζ
= λ̃′S2

i

(
λ̃

λ̃+ S2
i

)2

.

So the unexplained variance is

V = σ2 + λ̃′

∑
i

(
λ̃

S2
i + λ̃

)2

S2
i

∣∣UTw
∣∣2
i

+ σ2 1

N

∑
i

(
S2
i

S2
i + λ̃

)2
 .

with λ̃ equal to the solution of

λ = λ̃− 1

α

1

P

P∑
j=1

λ̃S2
j

λ̃+ S2
j

. (20)
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Finally, we note that using the definition λ̃ := 1
1
N Tr

[
E
[
( 1
NXXT+λIN)

−1
]] , we have

dλ̃

dλ
= N

Tr
[
E
[(

1
NXXT + λIN

)−2]]
Tr
[
E
[(

1
NXXT + λIN

)−1]]2 = N
E
[
Tr
[
B̃2
]]

E
[
Tr
[
B̃
]]2 =

N

ρ
=

1

ρf
, (21)

where ρ (ρf ) is the ordinary (fractional) participation ratio, which proves the

relation ρf =
(
dλ̃
dλ

)−1
.

Now define v := SUTw, and set v̂ to the unit vector in the same direction
as v. Note that vTv = wTΣw = σ2SNR. We now rewrite V in terms of v̂ and
α and substitute ρf =

(
dλ̃
dλ

)−1
to obtain

V = σ2 +
1

ρf

P∑
i=1

(wTΣw
)
v̂2
i

(
λ̃

S2
i + λ̃

)2

+ σ2 1

α

1

P

(
S2
i

S2
i + λ̃

)2
 . (22)

Finally, divide (22) by Var [y] = σ2 +wTΣw to obtain the fraction unexplained
variance:

F = fn +
1

ρf

P∑
i=1

fsv̂2
i

(
λ̃

S2
i + λ̃

)2

+ fn
1

α

1

P

(
S2
i

S2
i + λ̃

)2
 , (23)

which is the error formula given above.

1.3 Derivation of λ̃ equation using free probability
We will now use the framework of free probability, where we work in the algebra
of matrices with expectation functional φ (A) = 1

NTr [E [A]].
We start by observing

λ̃−1 =
1

N
Tr
[
B̃
]

=
1

N
Tr

[(
1

N
XXT + λIN

)−1]

= −z
∑
n≥0

zn
1

N
Tr
[
E
[(

1

N
XXT

)n]]

= −z

1 +
∑
n≥1

mnz
n


= −zM (z) ,

where z = 1
λ , and we define the moments mn := 1

NTr
[(

1
NXXT

)n] and the
corresponding moment generating function M (z) ([1] p198). The R-transform

14



defined as R (z) :=
∑
n≥0 κn+1z

n, where κ are the free cumulants [1], is related
to the moment generating function through

1

M (z)
+ zR (zM (z)) = 1, (24)

thus knowledge of the free cumulants of the variable x := 1
NXXT is sufficient

to determine the moment generating function M .
Let the eigendecomposition of the true covariance Σ be US2UT . Thus X

can be generated as X = ZSUT where Z is a matrix of iid standard normal
variables, which implies x = 1

NZS2ZT . Assume for now (and without loss of
generality) that Σ is a D-level covariance - that is, the scales in S appear in D
blocks of Pd components with value S2

d . We can write x as

x =
1

N

D∑
d=1

S2
dZdZ

T
d , (25)

where Zd is a N × Pd standard normal matrix containing the Pd columns of Z
corresponding to S2

d .
In the limit of large N,P the terms of the sum (25) are freely independent, so

the cumulants of x can be computed by computing the cumulants of the terms
separately and adding the results.

To compute the cumulants of the ZdZ
T
d , we start by observing that ZdZ

T
d

is itself a sum of Pd independent outer products of the columns of Zd. Each of
these can be written zzT , whose moments are

µn =
1

N
Tr
[
E
[(
zzT

)n]]
=

1

N
E
[(
zT z

)n]
= Nn−1, (26)

and so the moments of 1
N S

2
dzz

T are mn = Nn−1

Nn S2n
d = 1

N

(
S2
d

)n. Thus 1
N S

2
dzz

T

is a free Bernoulli variable with rate 1 and jump size S2
d , and its cumulants are

κn = 1
N

(
S2
d

)n
+O

(
1
N2

)
([1] p204). Adding Pd of these, we obtain

κn

(
1

N
S2
dZdZ

T
d

)
=

1

α
fd
(
S2
d

)n
+O

(
1

N

)
. (27)

Now using the free independence of blocks, κn (x) = 1
α

∑
d fd

(
S2
d

)n. Com-
puting the R transform gives

R (z) =
∑
n≥0

κn+1z
n =

1

α

∑
d

fdSd
1− zS2

d

. (28)

Finally, plugging this expression into (24), we obtain

1 +
1

α

∑
d

zfdSdM

1− zMS2
d

= M. (29)
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Now summing over individual scales rather than summing over constant-Sd
blocks, we can write this as

M = 1 +
1

α

1

P

P∑
i=1

zSiM

1− zS2
iM

. (30)

Finally, substituting λ̃ = − 1
zM and using the fact that z = − 1

λ , we obtain the
following equation for λ̃

λ = λ̃

(
1− 1

α

1

P

P∑
i=1

Si

λ̃+ S2
i

)
, (31)

which is exactly the equation for λ̃ derived by diagrammatic expansion above.

2 Scalar case
Here we derive an approximate formula for the case of a single input feature, ie.
where P = 1, as a helpful comparison to the high dimensional case. The weight
vector w is replaced by the scalar weight w, the input matrix X is replaced by
a column vector x, and the covariance Σ is now a single scalar S2. With these
changes, the training objective function is

1

N

N∑
i=1

(yµ − xµw)
2

+ λw2, (32)

whose minimum occurs at

ŵ =

(
1

N
xTx + λ

)−1
1

N
xTy

=
1
N xTx

1
N xTx + λ

w +
1
N xT ε

1
N xTx + λ

.

Starting with the the unexplained variance gives

V = Exµ,εµ,x,ε
[
(y − ŵx)

2
]

= Exµ,εµ,x,ε
[
(wx+ ε− ŵx)

2
]

= σ2 + S2Exµ,εµ
[
(w − ŵ)

2
]
.

The term in the expectation can be written λ
1
N xTx+λ

w −
1
N xT ε

1
N xTx+λ

. These two
terms are uncorrelated, so we have

V = σ2 + S2w2E
(

λ
1
N xTx + λ

)2

+ S2E
( 1

N xT ε
1
N xTx + λ

)2

. (33)
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If N is large, the quantity 1
N xTx approaches E

[
1
N xTx

]
= S2, while 1

N xT ε =

σS
(

1
N zT1 z2

)
, where z1, z2 are independent standard normal vectors, is σS ·

O
(

1√
N

)
. Substituting these expressions, and dropping the O for clarity, we

obtain

V ≈ σ2 + S2w2

(
λ

S2 + λ

)2

+ σ2 1

N

(
S2

S2 + λ

)2

. (34)

Finally, dividing (34) by Var [y] = σ2+S2, and noting that fs, fn = S2w2

σ2+S2w2 ,
σ2

σ2+S2w2 ,
we obtain the fractional variance explained:

Fscalar ≈ fn + fs

(
λ

S2 + λ

)2

+ fn
1

N

(
S2

S2 + λ

)2

. (35)

3 Analysis of λ̃

Recall from (20) the corrected regularization λ̃ satisfies

λ = λ̃

1− 1

α

1

P

P∑
j=1

S2
j

λ̃+ S2
j

 . (36)

3.1 Bounds
First we show {

λ ≤ λ̃ ≤ 1
1− 1

α

λ α > 1

λ ≤ λ̃ α < 1.
(37)

Using 0 ≤
∑P
j=1

S2
j

λ̃+S2
j

≤ P we obtain

λ = λ̃

1− 1

α

1

P

P∑
j=1

S2
j

λ̃+ S2
j

 ≤ λ̃
λ = λ̃

1− 1

α

1

P

P∑
j=1

S2
j

λ̃+ S2
j

 ≥ (1− 1

α

)
λ̃.

Thus if α > 1 we have
λ ≤ λ̃ ≤ 1

1− 1
α

λ. (38)

Otherwise, the second inequality is vacuous and we only have

λ ≤ λ̃, (39)

which completes the proof of the bounds in (37).
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We now show λ ≤ λ̃ ≤ λ +
σ2
x

α where σ2
x = 1

P TrΣ , and for large λ, λ̃
approaches this upper bound with error O (1/λ). The bound λ ≤ λ̃ has already

been proven above. Next, for any λ, λ̃, we can use S2
j /λ̃

1+S2
j /λ̃
≤ S2

j /λ̃ to obtain

λ = λ̃

1− 1

α

1

P

P∑
j=1

S2
j /λ̃

1 + S2
j /λ̃

 ≥ λ̃− σ2
x

α
, (40)

proving the bound λ̃ ≤ λ +
σ2
x

α . Finally, if λ is large relative to S2
i , then so is

λ̃ ≥ λ. Then

λ = λ̃

1− 1

α

1

P

P∑
j=1

S2
j

λ̃+ S2
j


= λ̃

1− 1

α

1

P

P∑
j=1

S2
j

λ̃
− 1

α

1

P

P∑
j=1

O

(S2
j

λ̃

)2


= λ̃

(
1− 1

λ̃

σ2
x

α
−O

(
1

λ̃2

))
= λ̃− σ2

x

α
−O

(
1

λ̃

)
.

Since λ̃ > λ, the error O
(

1
λ̃

)
is upper bounded by O

(
1
λ

)
, proving the claim.

3.2 Derivatives
We show next that λ̃ is an increasing concave function of λ. The bounds given
in the previous section show that λ̃ is always positive. Differentiating equation
(36) with respect to λ gives

1 = λ̃′

1− 1

α

1

P

P∑
j=1

S2
j

λ̃+ S2
j

+ λ̃′λ̃

 1

α

1

P

P∑
j=1

S2
j(

λ̃+ S2
j

)2


= λ̃′

λ
λ̃

+ λ̃

 1

α

1

P

P∑
j=1

S2
j(

λ̃+ S2
j

)2

 .
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which shows that λ̃′ ≥ 0, so λ̃ is increasing. For the second derivative, recall
ζ = 1

α
1
P

∑P
i=1 (ti − 1)

2 and note

dζ

dλ
=

1

α

2

P

P∑
i=1

(ti − 1)
dti
dλ

=
1

α

2

P

P∑
i=1

(ti − 1)
d

dλ

(
1− S2

i

λ̃+ S2
i

)

= λ̃′
1

α

2

P

P∑
i=1

(ti − 1)
S2
i(

λ̃+ S2
i

)2 ≤ 0.

Next, from above we have 0 ≤ dλ̃
dλ = 1

1−ζ , so 0 ≤ ζ ≤ 1. Differentiating this
equation gives

d2λ̃

dλ2
=

ζ ′

(1− ζ)
2

=

(
dλ̃

dλ

)2

ζ ′ ≤ 0,

so λ̃ is concave.

3.3 Intercept
From the bound λ ≤ λ̃ ≤ 1

1− 1
α

λ proved in 3.1 to hold when α > 1, we have that

the y-intercept of λ̃ is 0. For α < 1, λ̃ (λ = 0) satisfies

0 = λ̃

1− 1

α

1

P

P∑
j=1

S2
j

λ̃+ S2
j

 , (41)

so that either λ̃ = 0 or the term in parentheses is 0. Assume λ̃ = 0. Differenti-
ating the λ̃ equation and setting λ, λ̃→ 0 gives

λ̃′ (0) =
1

1− 1
α

< 0, (42)

which cannot be since we proved in 3.2 that λ̃′ ≥ 0. So we must have that λ̃ 6= 0
and the term in the parentheses is 0:

1 =
1

α

1

P

P∑
j=1

S2
j

λ̃ (0) + S2
j

. (43)

Thus, when α < 1, λ̃’s y-intercept is nonzero and satisfies (43).
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3.4 Isotropic data
In the case of a single scale Σ = S2 = SIP , (36) becomes

λ = λ̃

(
1− 1

α

S2

λ̃+ S2

)
. (44)

Solving for λ̃ gives

λ̃ =
λ− S2

(
1− 1

α

)
+

√(
λ− S2

(
1− 1

α

))2
+ 4λS2

2
. (45)

When λ = 0, this simplifies to

λ̃ =

{
0 α > 1

S2
(
1
α − 1

)
α < 1,

(46)

and for large λ, we obtain

λ̃ = λ+
S2

α
+O

(
1

λ

)
= λ+

σ2
x

α
+O

(
1

λ

)
, (47)

consistent with the result given for general Σ given above.

3.5 Well separated scales
Let Σ be a D-level covariance with (descending) eigenvalues S2

d with multi-
plicities Pd with

∑
d Pd = P . Assume the scales are well separated, so that

ε2k = S2
k+1/S

2
k � 1. In terms of the distinct scales S2

d , the λ̃ equation is

λ = λ̃

(
1− 1

α

1

P

D∑
d=1

Pd
S2
d

λ̃+ S2
d

)
(48)

= λ̃

(
1− 1

α

D∑
d=1

fdS
2
d

λ̃+ S2
d

)
, (49)

where fd := Pd
P .

We will obtain expressions for λ̃ (λ) when λ is between the kth and k + 1st

scales S2
k and S2

k+1, in the limit of small εk. To this end, set λ = x
√
S2
kS

2
k+1 =

xSkSk+1 where for small εk, we keep x = O (1). We first show that we obtain
a self consistent solution with λ̃ = ySkSk+1 with y = O (1). Making these
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substitutions, (49) becomes

x = y − 1

α

D∑
d=1

yfdS
2
d

ySkSk+1 + S2
d

= y − 1

α

∑
d≤k

yfdS
2
d

ySkSk+1 + S2
d

− 1

α

∑
d≥k+1

yfdS
2
d

ySkSk+1 + S2
d

= y − 1

α

∑
d≤k

yfd

y SkSk+1

S2
d

+ 1
− 1

α

∑
d≥k+1

yfd
S2
d

SkSk+1

y +
S2
d

SkSk+1

= y − 1

α

∑
d≤k

yfd

yεk

(∏k−1
n=d ε

2
n

)
+ 1
− 1

α

∑
d≥k+1

yfdεk
∏d−1
n=k+1 ε

2
n

y + εk
∏d−1
n=k+1 ε

2
n

.

Keeping terms of order 0, 1 in εn leaves

x =

1− 1

α

∑
d≤k

fd

 y +
1

α
fkεky

2 − 1

α
fk+1εk. (50)

Finally, multiplying by SkSk+1 and writing in terms of λ, λ̃ we obtain

λ =

1− 1

α

∑
d≤k

fd

 λ̃+
fk
αS2

k

λ̃2 − 1

α
fk+1S

2
k+1, (51)

which is a self-consistent first order approximation for λ̃ (λ) in the limit of widely
separated scales as long as

(
1− 1

α

∑
d≤k fd

)
> 0.

3.6 Over- and under-sampled limits

Next we obtain approximate expressions for λ̃, dλ̃dλ ,
d
dλ̃

dλ̃
dλ in the limit of large or

small α. For convenience define β := 1
α .

3.6.1 Oversampled: α→∞, β → 0

For the section below studying the optimal regularization value (sec 5), it will
be most useful to derive expressions in the joint limit that β → 0 and λ → λ0
where λ0 is an arbitrary value (including possibly 0). To this end, expand λ
in powers of β as λ = λ0 + βλ1 + O

(
β2
)
. Now assuming λ̃ has the expansion

λ̃ = λ̃0 + βλ̃1 +O
(
β2
)
, plugging these expansions into the λ̃ equation (36) and

equating powers up to β1, we obtain

λ̃0 = λ0

λ̃1 = λ1 + λ0
1

P

P∑
j=1

S2
j

λ̃0 + S2
j

,
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which implies λ̃ = λ+ β
(

1
P

∑P
j=1

λS2
j

λ+S2
j

)
+O

(
β2
)
. We have from (19) that

dλ̃

dλ
=

1

1− β 1
P

∑P
j=1

(
S2
i

S2
i+λ̃

)2
= 1 + β

1

P

P∑
j=1

(
S2
i

S2
i + λ

)2

+O
(
β2
)
.

Finally, differentiating with respect to λ̃ gives

d

dλ̃

dλ̃

dλ
= −

2β 1
P

∑P
j=1

S4
i

(S2
i+λ̃)

3(
1− β 1

P

∑P
j=1

(
S2
i

S2
i+λ̃

)2)2

=

−2
1

P

P∑
j=1

S4
i

(S2
i + λ)

3

β +O
(
β2
)
.

These are all the formulas we’ll need. Summarizing,

λ̃ = λ+ β

 1

P

P∑
j=1

λS2
j

λ+ S2
j

+O
(
β2
)

(52)

dλ̃

dλ
= 1 + β

 1

P

P∑
j=1

(
S2
i

S2
i + λ

)2
+O

(
β2
)

(53)

d

dλ̃

dλ̃

dλ
= β

−2
1

P

P∑
j=1

S4
i

(S2
i + λ)

3

+O
(
β2
)
. (54)

3.6.2 Undersampled: α→ 0, β →∞

Recall the equation for λ̃ is

λ = λ̃

1− β 1

P

P∑
j=1

S2
j

λ̃+ S2
j

 . (55)

As β grows, the term in parentheses will become negative unless λ̃ grows as
well. Thus for any fixed λ, we must have λ̃→∞, so we expect that λ̃ will have
(at least) a β1 term in its expansion.

As before, we assume λ has an expansion in powers of β. For section 5
below, we’ll be interested in the case that λ = O (β) so we expand as follows:
λ = βλ1 + O (1). Assuming λ̃ = βλ̃1 + O (1), inserting these expressions into
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(55), we obtain λ̃1 = λ1 +σ2
x, so λ̃ = λ+βσ2

x +O (1). Again using (19), we find

dλ̃

dλ
=

1

1− β 1
P

∑P
j=1

(
S2
i

S2
i+λ̃

)2
= 1 + β

1

P

P∑
j=1

(
S2
i

S2
i + λ̃

)2

+O
(
β−2

)
= 1 +O

(
β−1

)
.

Finally, differentiating with respect to λ̃ gives

d

dλ̃

dλ̃

dλ
= −

2β 1
P

∑P
j=1

S4
i

(S2
i+λ̃)

3(
1− β 1

P

∑P
j=1

(
S2
i

S2
i+λ̃

)2)2

= −2β
1

P

P∑
j=1

S4
i(

S2
i + λ̃

)3 +O
(
β−3

)
= −2β

1

λ̃3
γx +O

(
β−3

)
,

where γx := 1
P Tr[Σ

2], and λ̃ = O (β), so the first term is O
(
β−2

)
.

Summarizing,

λ̃ = λ+ βσ2
x +O (1) (56)

dλ̃

dλ
= 1 +O

(
β−1

)
(57)

d

dλ̃

dλ̃

dλ
= −2β

1

λ̃3
γx +O

(
β−3

)
. (58)

3.7 Relationship to α

Taking the ti, tN equations and writing them in terms of β := 1
α , we obtain

ti = 1 + zS2
i tN ti

tN = 1 + β
∑
i

βi (ti − 1) .

Differentiating with respect to β gives

t′i = t′N
1

tN
(ti − 1) ti

t′N =
1

β

1

N

∑
i

(ti − 1) +
1

N

∑
i

t′i.
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Solving these, we obtain
dtN
dβ

=
1

β
tN
tN − 1

1− ζ
. (59)

Using the fact that tN = λ
λ̃
, we have dtN

dβ = − λ
λ̃2

dλ̃
dβ , so

dλ̃

dβ
=

1

β

λ̃− λ
1− ζ

=
1

β

(
λ̃− λ

) dλ̃
dλ

(60)

=⇒ dλ̃

dα
= − 1

α

(
λ̃− λ

) dλ̃
dλ
≤ 0, (61)

which shows that λ̃ is a decreasing function of α - consistent with the intu-
ition that as the sampling ratio goes up, the correction, and consequently the
increment between λ̃ and fixed λ, should go down.

4 Analysis of ρf
ρf is the fractional participation ratio defined as

ρf :=

(
1
NTrB̃

)2
1
NTrB̃2

=

(
1
NTr

[(
1
NXXT + λIN

)−1])2
1
NTr

[(
1
NXXT + λIN

)−2] . (62)

Define γi to be the eigenvalues of B̃ (as argued below in 6, these only differ from
the eigenvalues of B =

(
1
NXTX + λIP

)−1 in their number of eigenvalues equal
to λ). We can then write ρf as

ρf =

(
1
N

∑N
i=1 γi

)2
(

1
N

∑N
i=1 γ

2
i

) =

(
Eγi

[
γ2
]

Eγi [γ]
2

)−1
=

((
σγ
µγ

)2

+ 1

)−1
, (63)

where µγ , σγ are the mean and standard deviation of the eigenvalues γ. From
this it’s clear that ρf ≤ 1. Since γi > 0, we also have from the first equality
that

ρf =
1

N

 ∑N
i=1 γi√∑N
i=1 γ

2
i

2

=
1

N

(
‖γ‖1
‖γ‖2

)2

≥ 1

N
, (64)

where ‖γ‖p is the p-norm of the vector of eigenvalues γi. So 1
N ≤ ρf ≤ 1.

In section 3.7 of the main text we compare empirical and theoretical values
of ρf . Empirical values were obtained by evaluating (62) for large gaussian
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matrices. To obtain analytical values, we use (21) and (19), giving

ρf =

(
dλ̃

dλ

)−1
= 1− ζ

= 1− 1

α

1

P

P∑
i=1

(ti − 1)
2

= 1− 1

α

1

P

P∑
i=1

(
S2
i

λ̃+ S2
i

)2

,

so that ρf can be obtained by solving (20) for λ̃ and substituting.

Sketch of ρf behavior in multiple descent Multiple descent is most pro-
nounced when λ is small, so assume λ → 0. We have from the previous para-
graph that

ρf = 1− 1

α

1

P

P∑
i=1

(
S2
i

λ̃+ S2
i

)2

. (65)

We’ve also shown in 3.3 that when α < 1, at λ = 0, we have

1 =
1

α

1

P

P∑
j=1

S2
j

λ̃+ S2
j

. (66)

Dividing, we find

ρf = 1−
1
P

∑P
i=1

(
S2
i

λ̃+S2
i

)2
1
P

∑P
j=1

(
S2
j

λ̃+S2
j

) . (67)

Because 0 ≤ S2
j

λ̃+S2
j

≤ 1, the numerator is always less than the denominator,

showing ρf ≥ 0. The fractional participation ratio ρf will become small, and
error will grow large, whenever the numerator is approximately equal to the
denominator.

If the scales S2
i are widely seperated, ie. ε2i = S2

i+1/S
2
i � 1, this will happen

whenever λ̃ ≈ εkS2
k since then

S2
j

λ̃+ S2
j

=
S2
j

εkS2
k + S2

j

≈

{
1 j ≤ k
0 j > k

, (68)
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and so ρf ≈ 0. From (66), this value of λ̃ will happen approximately when

1 =
1

α

1

P

P∑
j=1

S2
j

λ̃+ S2
j

=
1

α

1

P

k∑
j=1

1

=
1

α

∑k
j=1 Pj

P
=

1

α

k∑
j=1

fj ,

or α =
∑k
j=1 fj , that is, whenever the number of parameters is equal to the

number of featurers at the top k scales, which corresponds exactly with the
critical α values leading to phase transitions discussed in 6.

5 Optimal λ
We now derive the following leading order (in α) formulas for the optimal reg-
ularization parameter in the over- and under-sampled regimes

λ∗ →

 1
ασ

2
1
P Tr[Σ−1]
wTΣ−1w

α� 1

1
ασ

2 (1 + SNR)
1
P Tr[Σ2]
wTΣ2w

− σ2
x

α α� 1.
(69)

Recall from (5) the fraction unexplained variance is

F = fn + λ̃′
P∑
i=1

fsv̂2
i

(
λ̃

S2
i + λ̃

)2

+ fnβ
1

P

(
S2
i

S2
i + λ̃

)2
 , (70)

where β := 1
α . As argued previously, both terms in the sum have a well defined

limit as P →∞. We will consider these terms now in the limit that α is either
very large or small. To determine the optimal λ we will first solve for the optimal
λ̃. To this end, we differentiate (70) with respect to λ̃ and set the result to 0
when λ̃ is equal to its optimal value λ̃∗, giving

0 =

(
dF
dλ̃

)∗
=

d
(
λ̃′
)

dλ̃

∗ P∑
i=1

fsv̂2
i

(
λ̃∗

S2
i + λ̃∗

)2

+ fnβ
1

P

(
S2
i

S2
i + λ̃∗

)2

(71)

+ 2
(
λ̃′
)∗ P∑

i=1

fsv̂2
i

λ̃∗S2
i(

S2
i + λ̃∗

)3 − fnβ 1

P

S4
i(

S2
i + λ̃∗

)3
 . (72)

We now handle each of the two limits in turn.
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Oversampled: α → ∞, β → 0 In the oversampled limit, α → ∞ or equiva-
lently, β → 0. We will show there is a self-consistent solution to the optimality
criterion (72) with λ̃∗ = O

(
α−1

)
= O (β).

Above we derived the following formulas (eq. (52)) for the oversampled
regime.

λ̃ = λ+ β

 1

P

P∑
j=1

λS2
j

λ+ S2
j

+O
(
β2
)

(73)

dλ̃

dλ
= 1 + β

 1

P

P∑
j=1

(
S2
i

S2
i + λ

)2
+O

(
β2
)

(74)

d

dλ̃

dλ̃

dλ
= β

−2
1

P

P∑
j=1

S4
i

(S2
i + λ)

3

+O
(
β2
)
, (75)

which implies that
d(λ̃′)
dλ̃

= d
dλ̃

dλ̃
dλ = O (β) for all λ. Based on the assumption

that λ̃∗ = O (β), the first sum in (72) is O
(
β2
)
; the second sum, on the other

hand, will have terms of order O (β). Using the expressions immediately above,
and keeping terms of order O (β), we obtain

λ̃∗ = β
fn

1
P

∑P
i=1

1
S2
i

fs
∑P
i=1 v̂2

i
1
S4
i

= βσ2
1
P Tr

[
Σ−1

]
wTΣ−1w

. (76)

Finally, λ̃ = λ+ β
(

1
P

∑P
j=1

λS2
j

λ+S2
j

)
+O

(
β2
)
implies

λ∗ = βσ2
1
P Tr

[
Σ−1

]
wTΣ−1w

+O
(
β2
)
. (77)

Undersampled: α → 0, β → ∞ Here we show there is a self-consistent
solution with λ̃∗ = O (β). In this limit, the expressions derived above (eq. (56))
are

λ̃ = λ+ βσ2
x +O (1) (78)

dλ̃

dλ
= 1 +O

(
β−1

)
(79)

d

dλ̃

dλ̃

dλ
= −2β

1

λ̃3
γx +O

(
β−3

)
. (80)

By inspection both sums of (72) will vanish at order O
(
β−2

)
, so keeping terms

up to this order gives

λ̃∗ = βγx
1

fs
∑P
i=1 v̂2

iS
2
i

= βγx
wTΣw + σ2

wTΣ2w
= βσ2 (SNR+ 1)

1
P Tr

[
Σ2
]

wTΣ2w
, (81)
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giving the optimal value of λ̃. Using (78), we determine the optimal λ̃ to be

λ∗ = βσ2 (SNR+ 1)
1
P Tr

[
Σ2
]

wTΣ2w
− βσ2

x +O (1) . (82)

5.0.1 Effect of alignment on optimal regularization

From the formulas

λ∗ →

 1
ασ

2
1
P Tr[Σ−1]
wTΣ−1w

α� 1

1
ασ

2 (1 + SNR)
1
P Tr[Σ2]
wTΣ2w

− σ2
x

α α� 1,
(83)

the optimal λ depends on the weights w through wTΣ−1w in the oversampled
regime and wTΣ2w in the undersampled regime. The eigenvalues of the two
matrices Σ−1,Σ2 are in exactly complementary order, so changes which align
w to large eigenvalues of Σ−1 will align w to small eigenvalues of Σ2 and vice
versa. Thus changes to w will tend to have opposite effects on the optimal
regularization in the under- and over-sampled limits.

5.0.2 Random w

For the random-weights model with signal to noise ratio SNR the weights are
sampled from a multivariate gaussian with covariance C = σ2 SNR

P Σ−1. Thus

the weights w are generated by
√
σ2 SNR

P Σ−1/2z where z is a standard normal
vector. This implies

wTΣ−1w = σ2SNR
1

P
Tr
[
Σ−2

]
(84)

wTΣ2w = σ2SNR
1

P
Tr [Σ] = σ2SNRσ2

x, (85)

so that the formulas for optimal λ simplify to

λ∗ →


1
α

1
SNR

1
P Tr[Σ−1]
1
P Tr[Σ−2]

α� 1

1
α

(
1 + 1

SNR

) 1
P Tr[Σ2]
σ2
x
− σ2

x

α α� 1.
(86)

2-scale model Let Σ be a 2-scale covariance with eigenvalues S2
1 = γ and

S2
2 = γ−1 so the aspect ratio is S1/S2 = γ. For simplicity take the multiplicities

to be P1 = P2 = 1
2P . Then 1

P Tr [Σn] = 1
2 (γn + γ−n). In particular, when γ is

large, we can write

1

P
Tr [Σn] ≈


1
2γ
−n = 1

2S
n/2
min n < 0

1 n = 0
1
2γ

n = 1
2S

n/2
max n > 0.

(87)
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Analogous formulas hold for very small γ. Thus the formulas for optimal λ in
(86) simplify to

λ∗ →

{
1
α

1
SNRS

2
min α� 1

1
α

(
1
2 + 1

SNR

)
S2
max α� 1.

(88)

6 The spectrum of the Hessian and multiple de-
scent

The training cost for estimated weights ŵ is defined to be 1
N

∑N
i=1 (yµ − xµ · ŵ)

2
+

λ |ŵ|2 , which in matrix notation is

1

N
‖y −Xw‖2 + λŵT ŵ. (89)

The Hessian of this cost function is therefore H = 1
NXTX + λIP , and the

inverse Hessian is B :=
(

1
NXTX + λIP

)−1. In the main text we point out
that the many of the phenomena of interest can be understood in terms of the
spectrum of B, or equivalently in terms of the spectrum of the related matrix
B̃ :=

(
1
NXXT + λIP

)−1, which is identical except for the number of eigenvalues
equal to λ, corresponding to the zero eigenvalues of XTX,XXT . To see this,
note that for any nonzero eigenvalue, eigenvector of XTX denoted by µ, v, we
have XXT (Xv) = X

(
XTXv

)
= µ (Xv) so that Xv is an eigenvector of XXT

with the same nonzero eigenvalue µ. Thus, the nonzero spectra are in one-to-
one correspondence. The remaining 0 eigenvalues give rise to eigenvalues of λ
in B, B̃.

The Stieltjes transform of the spectral density ρ (x) of the matrix 1
NXXT ,

is defined as G (x) :=
∫ ρ(t)
x−tdt ([1] p198). Thus

1

N
TrB̃ =

1

N
Tr

[(
1

N
XXT + λIN

)−1]

=

∫
ρ (t)

t+ λ
dt = −G (−λ) .

Recalling that λ̃ was originally defined as λ̃ := 1
1
N TrB̃

, we have λ̃ (λ) = − 1
G(−λ) .

Substituting this into (20), we obtain the following equation for the Stieltjes
transform:

λ =
1

G
− 1

α

1

P

P∑
j=1

S2
j

S2
jG− 1

. (90)

Although it is difficult to obtain the spectrum from (90) for general α,S, λ, it
is possible to obtain an exact equation for the boundaries of the support of the
spectrum by 1) clearing denominators to obtain a polynomial equation in G, 2)
computing the discriminant of this polynomial, which is itself a polynomial in
λ, and 3) setting this polynomial to 0. Boundary points of the spectrum must
be λ-roots of this polynomial.
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6.1 Widely separated scales
We can also use (90) to obtain approximate expressions for the spectral den-
sity when the scales are very different from one another: Let Σ be a D-scale
covariance with eigenvalues S2

d for d = 1, . . . , D with multiplicities Pd such that∑
d Pd = P . Define fd := Pd

P . Assume the scales are arranged in descending
order and are very different from one another, so that ε2d = S2

d+1/Sd � 1. In
the limit of small ε2d, the spectral density ρ consists of D disjoint components
ρd, roughly centered on the D distinct scales S2

d , satisfying

ρd (x) =

√
(x+ − x) (x− x−)

2πS2
dλ

(91)

x± = S2
d

(
1− 1

α

∑
d′<d

fd′

)(
1±

√
fd

α−
∑
d′<d fd′

)2

. (92)

To show this, we will first derive a version of (90) which is valid to first order
in the ε2d. The density formulas above will then come from further specializing
these equations to 0th order.

The approximation for small ε2d is based on the intuition that for widely
separated scales, G should have D more or less distinct regimes when λ is
around each of the D scales. When λ is around the kth scale, we have λ = λkS

2
k

where λk = O (1). We will show there is a self-consistent solution in this regime
with G = Gk

1
S2
k
where Gk = O (1). Plugging these two expressions into (90)

and keeping terms up to order 1 in ε2k gives

λk =
1

Gk
− 1

α

D∑
d=1

fd
S2
d

S2
dGk − S2

k

=
1

Gk
− 1

α

∑
d<k

fd
1

Gk −
S2
k

S2
d

− 1

α
fk

1

Gk − 1
− 1

α

∑
d>k

fd
S2
d/S

2
k

S2
d

S2
k
Gk − 1

=
1

Gk
− 1

α

∑
d<k

fd
1

Gk −
∏k−1
n=d ε

2
n

− 1

α
fk

1

Gk − 1
− 1

α

∑
d>k

fd

∏d−1
n=k ε

2
n

Gk
∏d−1
n=k ε

2
n − 1

=
1

Gk
− 1

α

1

Gk

∑
d<k

fd −
1

α

1

G2
k

fk−1ε
2
k−1 −

1

α
fk

1

Gk − 1
+

1

α
fk+1ε

2
k,

giving us the first order equation

λk =

(
1− 1

α

∑
d<k fd

)
Gk

−
1
αfk

Gk − 1
−

1
αfk−1

G2
k

ε2k−1 +
1

α
fk+1ε

2
k, (93)

which we will keep for reference. Specializing now to 0th order in ε2k and now
writing in terms of the original λ,G, we obtain

λ

S2
k

=

(
1− 1

α

∑
d<k fd

)
S2
kG

−
1
αfk

S2
kG− 1

, (94)
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where we stipulate that this equation is approximately valid when λ = O
(
S2
k

)
.

Using the formulas derived in 6.1.1, we obtain the density

ρd (x) =

√
(x+ − x) (x− x−)

2πS2
dλ

x± = S2
d

(
1− 1

α

∑
d′<d

fd′

)(
1±

√
fd

α−
∑
d′<d fd′

)2

,

completing the proof of the formulas above.
Some remarks about this density are in order. First, one can see from the

expression for x± that the dth component of the density only appears for values
of α satisfying α >

∑
d′<d fd′ . In other words, there is a critical measurement

density at which the dth scale in the data first becomes detectable. At this α the
support of the dth component is the single point x = S2

dfd. As α→∞ all scales
become visible and the components become perfectly concentrated around the
values S2

d . Furthermore, the dth scale has another critical α when its support
reaches 0 at the single point α =

∑
d′≤d fd′ =

∑
d′<d+1 fd′ , which is exactly the

α where the d + 1st scale first appears. Thus as α is increased, the spectrum
undergoes a sequence of phase transitions where the dth component acquires an
extended tail and the d+ 1st component appears around S2

d+1fd+1.
Comparing these formulas to (96), we can also see that, whenever it exists,

the dth component has total mass∫
ρd (x) dx =

{
1− 1

α

∑
d′<d fd′

∑
d′<d fd′ < α <

∑
d′≤d fd′

1
αfd

∑
d′≤d fd′ < α.

(95)

These masses sum to 1 when α < 1, and we also have that when the dth scale
first appears it starts out with 0 mass, which gradually increases to a limiting
value of 1

αfd for large α. In this limit the D scales have relative mass fd,
corresponding to their multiplicities, and the nonzero scales have total mass∑
d

1
αfd = 1

α , which is consistent with the fact that for α > 1, XXT has P < N
nonzero eigenvalues out of N total, so the fraction of nonzero eigenvalues is
P
N = 1

α .

6.1.1 Formulas for Marchenko-Pastur-type distributions

First we have the following directly from the pdf of the Marchenko-Pastur dis-
tribution: if r± = σ2 (1±

√
r)

2, then∫ r+

r−

1

2πσ2

√
(r+ − x) (x− r−)

rx
dx =

{
1 r < 1

1/r r > 1.
(96)

Second, for a density with Stieltjes transform satisfying

λ

S2
k

=
a

S2
kG
− b

S2
kG− 1

, (97)
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we can solve for G in terms of λ to obtain

G =
(a− b)S2

k + λ±
√

((b− a)S2
k − λ) 2 − 4aλS2

k

2λS2
k

. (98)

From the Stieltjes inversion formula, ρ(x) = − 1
π limε→0+ ImG(x+ iε) ([1] p31),

we see that the spectrum is nonzero only when the Stieltjes transform has a
nonzero imaginary part at x + iε for ε → 0+. This can only happen when the
term in the square root is negative, in which case the imaginary part of G comes
exclusively from the square root, and we have

ρ (x) =

√
4axS2

k − ((b− a)S2
k − x) 2

2πS2
kx

. (99)

The radicand is a quadratic polynomial with leading coefficient −1 and roots
x± = S2

k

(
a+ b± 2

√
ab
)
, so this can be written

ρ (x) =

√
(x+ − x) (x− x−)

2πS2
kx

x± = S2
k

(√
a±
√
b
)2
.

7 Rules for manipulating generating functions
This section will serve as a reference for the portions of the diagrammatic proof
in 1.2 utilizing generating functions. Here we will introduce a framework for
quickly and compactly producing generating function equations for various com-
binatorial problems, developing what is needed from scratch so as to make the
exposition self-contained. We will follow closely along the lines of the exposition
in [2].

7.1 Combinatorial classes
A combinatorial class A is a set of objects a, each of which has a size |a| (in our
case, a nonnegative integer) and a weight wa (any real number). The counting
sequence {An} is the number of objects in A having size n. The generating
function of a class A is defined as

A (z) =
∑
a∈A

waz
|a| =

∑
n

zn

∑
a∈A
|a|=n

wa

 ,

which is just a weighted generalization of the usual generating function for

the sequence An defined as
∑
n z

nAn =
∑
n z

n

(∑
a∈A
|a|=n

1

)
. Throughout, we’ll
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write the combinatorial class in script letters, as inA, and its generating function
in straight font, as in A.

Given a set of objects, the usual approach to obtaining a generating function
involves applying a recursion relation satisfied by the counting sequence to the
generating power series. Here we’ll use a more direct approach that, by building
up a set of basic composition rules, will allow us to avoid error-prone algebraic
manipulation of power series later on.

Often, we can describe a combinatorial class as a combination of simpler
classes - a kind of combinatorial “recipe”. The strategy will be to derive a few
rules which allow us to translate combinatorial recipes into generating function
relations very quickly and easily.

7.2 Rules
First define two basic classes: 1 will be the class with one object of size 0 with
weight 1; and Z will be the class with one object of size 1 with weight 1. These
symbols are chosen since the generating function of 1 is 1 and the generating
function of Z is z.

1 Scalar multiplication Rule:

A = ρB =⇒ A = ρB

where the combinatorial equation A = ρB means A’s objects are identical to
those of B but with weights that have an additional factor ρ.

Proof: This is straightforward: A =
∑
a∈A waz

|a| =
∑
b∈A ρwbz

|b| = ρB.

2 Disjoint union Rule:

A = B ∪ C =⇒ A = B + C

where B and C are assumed to be disjoint (or if not, their shared objects are
considered distinct as members of A). This rule easily extends to a union of
any finite number of combinatorial classes.

Proof: A =
∑
a∈A waz

|a| =
∑
b∈B wbz

|b| +
∑
c∈C wcz

|c| = B + C.

3 Product Rule:
A = B × C =⇒ A = B · C

where × is the usual cartesian product and for an object (b, c) ∈ B × C the
size is just |b| + |c| (ie as if concatenating the two objects) and the weight is
wbwc. This rule easily extends to a product of any finite number of classes.

Proof:

A =
∑
a∈A

waz
|a| =

∑
b∈B,c∈C

wbwcz
|b|+|c| =

∑
b∈B

wbz
|b|
∑
c∈C

wcz
|c| = B · C
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4 Sequence Rule:

A = SEQ (B) =⇒ A =
1

1−B
where the notation SEQ (B) means a sequence of any length of objects from

B (including length 0), that is SEQ (B) = 1 ∪ B ∪ (B × B) ∪ (B × B × B) ∪ · · · .
Proof: using the rules we’ve alread derived, A =

∑
nB

n = 1
1−B

Summary

1 =⇒ 1

Z =⇒ z

A = ρB =⇒ A = ρB

A = B ∪ C =⇒ A = B + C

A = B × C =⇒ A = B · C

A = SEQ (B) =⇒ A =
1

1−B

These are all the rules we’ll need.
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