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Abstract

The performance of neural networks depends on
precise relationships between four distinct ingre-
dients: the architecture, the loss function, the sta-
tistical structure of inputs, and the ground truth
target function. Much theoretical work has fo-
cused on understanding the role of the first two
ingredients under highly simplified models of ran-
dom uncorrelated data and target functions. In
contrast, performance likely relies on a conspir-
acy between the statistical structure of the input
distribution and the structure of the function to be
learned. To understand this better we revisit ridge
regression in high dimensions, which corresponds
to an exceedingly simple architecture and loss
function, but we analyze its performance under
arbitrary correlations between input features and
the target function. We find a rich mathematical
structure that includes: (1) a dramatic reduction
in sample complexity when the target function
aligns with data anisotropy; (2) the existence of
multiple descent curves; (3) a sequence of phase
transitions in the performance, loss landscape, and
optimal regularization as a function of the amount
of data that explains the first two effects.

1. Introduction and Motivation
The field of machine learning, especially in the form of deep
learning, has undergone major revolutions in the last several
years, leading to significant advances in multiple domains
(LeCun et al., 2015). Many works have attempted to gain a
theoretical understanding of the key reasons underlying the
empirical success of deep neural networks (see e.g. (Bahri
et al., 2020) for a review). A major open puzzle concerns
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understanding the ability of not only deep networks, but also
many other machine learning (ML) methods, to successfully
generalize to test examples drawn from the same distribution
as the training data. Such theory would ideally guide the
choice of various ML hyperparameters to achieve minimal
test error.

However, any such theory that is powerful enough to guide
hyperparameter choices in real world settings necessarily
involves assumptions about the nature of the ground truth
mapping to be learned, the statistical structure of the inputs
one has access to, the amount of data available, and the ma-
chine learning method itself. Many theoretical works study-
ing the generalization properties of ML methods have made
highly simplified assumptions about the statistical structure
of inputs and the ground truth mapping to be learned.

Much work in computer science for example seeks to find
worst case bounds on generalization error over the choice
of the worst data set and the worst ground truth function
(Vapnik, 1998). Such bounds are often quite pessimistic
as the types of data and ground truth functions that occur
in natural problems are far from worst case. These worst
case bounds are then often vacuous (Zhang et al., 2017) and
cannot guide choices made in practice, spurring the recent
search for nonvacuous data-dependent bounds (Dziugaite &
Roy, 2017).

Also, much work in statistical physics has focused instead
on computing exact formulas for the test error of various
ML algorithms (Engel & den Broeck, 2001; Advani et al.,
2013; Advani & Ganguli, 2016a;b) including compressed
sensing (Rangan et al., 2009; Donoho et al., 2009; Ganguli
& Sompolinsky, 2010b;a), single layer (Seung et al., 1992)
and multi-layer (Monasson & Zecchina, 1995; Lampinen
& Ganguli, 2018) neural networks, but under highly sim-
plified random uncorrelated assumptions about the inputs.
Moreover, the ground truth target function was often chosen
randomly in a manner that was uncorrelated with the choice
of the random inputs. In most situations where the ground
truth function possessed no underlying simple structure,
these statistical physics works based on random uncorre-
lated functions and inputs generally concluded that the ratio
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of the number of data points must be proportional to the
number of unknown parameters in order to achieve good
generalization. In practice, this ratio is much less than 1.

A key, and in our view foundational ingredient underlying
the theory of generalization in ML is an adequate model
of the statistical structure of the inputs, the nature of the
ground truth function to be learned, and most importantly,
an adequate understanding of how the alignment between
these two can potentially dramatically impact the success of
generalization. For example, natural images and sounds all
have rich statistical structure, and the functions we wish to
learn in these domains (e.g. image and speech recognition)
are not just random functions, but rather are functions that
are intimately tied to the statistical structure of the inputs.
Several works have begun to explore the effect of structured
data on learning performance in the context of compressed
sensing in a dynamical system (Ganguli & Sompolinsky,
2010a), the Hidden Manifold Model (Goldt et al., 2020;
Gerace et al., 2020), linear and kernel regression (Chen
et al., 2021; Canatar et al., 2021), and two-layer neural
networks (Ghorbani et al., 2020). As pointed out by these
authors, it is likely the case that a fundamental and still
poorly understood conspiracy between the structure of the
inputs we receive and the aligned nature of the functions we
seek to compute on them plays a key role in the success of
various ML methods in achieving good generalization.

Therefore, with these high level motivations in mind, we
sought to develop an asymptotically exact analytic theory of
generalization for ridge regression in the high dimensional
statistical limit where the number of samples N and number
of features P are both large but their ratio is O(1). Ridge
regression constitutes a widely exploited method especially
for high dimensional data; indeed it was shown to be optimal
for small amounts of isotropic but non-Gaussian data (Ad-
vani & Ganguli, 2016a;b). Moreover the high dimensional
statistical limit is increasingly relevant for many fields in
which we can simultaneously measure many variables over
many observations. The novel ingredient we add is that we
assume the inputs have an arbitrary covariance structure,
and the ground truth function has an arbitrary alignment
with this covariance structure. We focus in particular on
examples involving highly heterogeneous multi-scale data.
Our key contributions are: (1) We derive exact analytic
formulas for test error in high dimensions; (2) we show
that for a random target function, isotropic data yields the
lowest error; (3) we demonstrate that for anisotropic data,
alignment of the target function with this anisotropy yields
lowest test error; (4) we derive an analytic understanding
of the optimal regularization parameter as a function of the
structure of the data and target function; (5) for multi-scale
data we find a sequence of phase transitions in the test error
and the optimal regularization parameter that result in multi-
ple descent curves with arbitrary numbers of peaks, thereby

generalizing the phenomenon of double descent (Belkin
et al., 2019; Mei & Montanari, 2020; d’Ascoli et al., 2020);
(6) we analytically compute the spectrum of the Hessian of
the loss landscape and show that this spectrum undergoes
a sequence of phase transitions as successively finer scales
become visible with more data; (7) we connect these spec-
tral phase transitions to the phenomenon of multiple descent
and to phase transitions in the optimal regularization.

Finally, we note that the phenomenon of double descent
in a generalization curve refers to non-monotonic behavior
in this curve, corresponding to a single intermediate peak,
as a function of the ratio of the number data points to pa-
rameters. This can occur either when the amount of data is
held fixed and the number of parameters increases (Belkin
et al., 2019; Mei & Montanari, 2020; d’Ascoli et al., 2020;
Chen et al., 2021), or when the number of parameters is
held fixed but the amount of data increases (Seung et al.,
1992; Engel & den Broeck, 2001). Here we exhibit multiple
descent curves with arbitrary numbers of peaks in the latter
setting. We explain their existence in terms of a hierarchy of
phase transitions in the empirical covariance matrix of multi-
scale correlated data. And furthermore, we show that such
non-monotonic behavior is a consequence of suboptimal
regularization. Indeed we show how to recover monotoni-
cally decreasing generalization error curves with increasing
amounts of data by using an optimal regularization that
depends on the ratio of data points to parameters.

2. Overall Framework
Generative Model. We study a generative model of data
consisting of N independent identically distributed (iid)
random Gaussian input vectors xµ ∈ RP for µ = 1, . . . , N ,
each drawn from a zero mean Gaussian with covariance
matrix Σ (i.e. xµ ∼ N (0,Σ)), N corresponding iid scalar
noise realizations εµ ∼ N

(
0, σ2

)
, and N outputs yµ given

by
yµ = xµ ·w + εµ,

where w ∈ RP is an unknown ground truth regression
vector. The outputs yµ decompose into a signal component
xµ · w and noise component εµ and signal to noise ratio
(SNR) given by the relative power

SNR :=
Var[x ·w]

Var[ε]
=

wTΣw

σ2
, (1)

plays a critical role in estimation performance. For conve-
nience below we also define the fractional signal power
fs := wTΣw

wTΣw+σ2 and fractional noise power fn :=
σ2

wTΣw+σ2 . Note fs + fn = 1 and SNR = fs
fn

.

High Dimensional Statistics Limit. We will be working
in the nontrivial high dimensional statistics limit where
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N,P → ∞ but the measurement density α = N/P re-
mains O(1). We assume that Σ has P eigenvalues that
are each O(1) so that both σ2

x := 1
P ExTx = 1

P Tr Σ and
the individual components of x remain O(1) as P → ∞.
Furthermore we assume that wTw is O(1) (i.e. each com-
ponent of w is O(1/

√
P ) and the noise variance σ2 is O(1)

so that the SNR remains O(1).

Estimation Procedure. We construct an estimate ŵ of w
from the data {xµ, yµ}Nµ=1 using ridge regression:

ŵ = arg min
w

1

N

N∑
µ=1

(yµ − xµ · w)
2

+ λ||w||2. (2)

The solution to this optimization problem is given by

ŵ =
(
XTX + λNIP

)−1
XTy, (3)

where X is anN×P matrix whose µth row is xµT , y ∈ RN
with components yµ and IP is the P × P identity matrix.

Performance Evaluation. We will be interested in the
fraction of unexplained variance F on a new test example
(x, ε, y), averaged over realizations of the inputs xµ and
noise εµ that determine the training set:

F :=
Exµ,εµ,x,ε

[
(y − x · ŵ)

2
]

Ex,ε[y2]
. (4)

In the high dimensional statistics limit, the error F will
concentrate about its mean value, and will depend upon the
measurement density α, the noise level σ2, the input covari-
ance Σ, the ground truth vector w and the regularization λ.
In particular we will be interested in families of problems
of the same SNR but with varying degrees of alignment
between the ground truth w with eigenspaces of Σ.

Models of Multi-Scale Covariance Matrices. The align-
ment of w with different eigenspaces of Σ (at fixed SNR)
becomes of particular interest when Σ contains a hierar-
chy of multiple scales. In particular consider a D scale
model in which Σ has D distinct eigenvalues S2

d for d =
1, . . . , D where each eigenvalue has multiplicity Pd where∑D

d=1 Pd = P . A special case is the isotropic single scale
model where Σ = S2

1IP . Another important special case is
the anisotropic two scale model with two distinct eigenval-
ues S2

1 and S2
2 with multiplicities P1 and P2, corresponding

to long and short data directions. Throughout we will quan-
tify the input anisotropy via the aspect ratio γ := S1

S2
(with

γ = 1 reducing to isotropy). For simplicity, we will balance
the number of long and short directions (i.e. P1 = P2).

3. Results
3.1. Exact High Dimensional Error Formula.

Our first result is a formula for F for arbitrary α, σ2, Σ, w
and λ,that is asymptotically exact in the high dimensional
statistical limit. To understand this formula, it is useful to
first compare to the scalar case where P = 1 and N is large
but finite. Σ then has a single eigenvalue S2 and F in this
scalar case is given by (see SM for details)

Fscalar ≈ fn+fs

(
λ

S2 + λ

)2

+fn
1

N

(
S2

S2 + λ

)2

. (5)

The first term comes from unavoidable noise in the test ex-
ample. The second term originates from the discrepancy
between ŵ and w. Since increasing λ shrinks ŵ away from
w leading to underfitting, this second term increases with
increasing regularization. The third term originates primar-
ily from the noise in the training data. Since increasing λ
reduces the sensitivity of ŵ to this training noise, this third
term decreases with increasing regularization. Balancing
underfitting versus noise reduction sets an optimal λ. In-
creasing (decreasing) the SNR increases (decreases) the
weight of the second term relative to the third, tilting the
balance in favor of a decreased (increased) optimal λ.

Our main result is that in the high dimensional anisotropic
setting we obtain a similar formula

F=fn+
1

ρf

P∑
i=1

fsv̂2
i

(
λ̃

S2
i + λ̃

)2

+ fn
1

α

1

P

(
S2
i

S2
i + λ̃

)2
 ,

(6)
but with several fundamental modifications compared to
the low dimensional setting, as can be seen by comparing
(5) and (6). First the original regularization parameter λ
is replaced with an effective regularization parameter λ̃.
Second, the single scalar mode is replaced with an average
over the P eigenmodes of Σ. Third, the scalar measurement
densityN is converted to the high dimensional measurement
density α. Fourth, there is an excess multiplicative factor on
the last two terms of the error that increases as the fractional
participation ratio ρf decreases. We now define and discuss
each of these important elements in turn.

The Effective Regularization λ̃. As we show through ex-
tensive calculations in SM (which we sketch in section 3.7)
a key quantity that governs the performance of ridge regres-
sion in high dimensions is the inverse Hessian of the cost
function in (2). This inverse Hessian appears in the estimate
of ŵ in (3) and is given by B :=

(
1
NXTX + λIP

)−1
. A

closely related matrix is B̃ :=
(

1
NXXT + λIN

)−1
. Indeed

the two matrices have identical spectra except for the num-
ber of eigenvalues equal to λ, corresponding to the zero
eigenvalues of XTX and XXT . The effective regulariza-
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tion λ̃ can be expressed in terms of the spectrum of B̃ via

λ̃ := 1/

(
1

N
Tr B̃

)
. (7)

In the high dimensional limit, λ̃ converges to the solution of

λ = λ̃− 1

α

1

P

P∑
j=1

λ̃S2
j

λ̃+ S2
j

, (8)

as we prove in SM . We will explore the properties of the
effective regularization and its dependence on λ, α, and the
spectrum of Σ in more detail in Sec. 3.3.

The Target-Input Alignment v̂2
i . In the third term, all

P modes are equally averaged via the factor 1
P while in

the second term, each mode is averaged with a different
weight v̂2

i which captures the alignment between the target
function w and the input distribution. To define this weight,
let the eigendecomposition of the true data covariance be
given by Σ = US2UT . The total signal power can be
written wTΣw =

∑
i v

2
i , where v = SUTw, so that the

components v2
i can be interpreted as the signal power in

the ith mode of the data. v̂ in (6) is defined to be the unit
vector in the same direction as v, so the components v̂2

i

quantify the fractional signal power in the ith mode. Both
vTv = wTΣw and v̂T v̂ = 1 are O(1), so v2

i and v̂2
i are

O(1/P ), and so the second term in (6) has a well defined
high dimensional limit. Thus the second term in (6) can be
thought of as a weighted average over each mode i, where
the weight v̂2

i is the fractional signal power in that mode.

The Fractional Participation Ratio ρf . We define the
participation ratio ρ of the spectrum of B̃ as

ρ :=

(
Tr B̃

)2
Tr B̃2

. (9)

ρ measures the number of active eigenvalues in B̃ in a scale-
invariant manner, and always lies between 1 (when B̃ has a
single nonzero eigenvalue) and N (when B̃ has N identical
eigenvalues) (see SM ). The fractional participation ratio
is then ρf := ρ/N which satisfies 1

N ≤ ρf ≤ 1. For a
typical spectrum, the numerator in (9) is O(N2) and the
denominator is O(N), so ρ = O(N) and ρf = O(1). We
also prove a relation between ρf and λ̃ (see SM ): dλ̃dλ = 1

ρf
.

Thus a high sensitivity of the effective regularization λ̃ to
changes in the actual regularization λ coincide with reduced
participation ratio ρf and higher error F in (6).

3.2. Proof Sketch of High Dimensional Error Formula.

We first insert (3) into (4) and average over all variables
except X, which appear inside a matrix inverse. We then

expand this matrix inverse as a power series:

1

N
B =

(
XTX + λNIP

)−1
= −z

∑
n

zn
(

1

N
XTX

)n
,

(10)
where z = − 1

λ . This series is a generating function for
the matrix sequence An =

(
1
NXTX

)n
. We show that

computing the average of An over the training inputs X
reduces to a combinatorial problem of counting weighted
paths (weighted by the eigenvalues of Σ) of length 2n in
a bipartite graph with two groups of nodes corresponding
to the N samples and P features respectively. In the limit
N,P →∞ for fixed α = N/P we further show that only
paths whose (paired) edges form a tree contribute to An.
Thus we show the matrix inverse in (10) averaged over the
training data X is a generating function for weighted trees
embedded in a bipartite graph. We further exploit the recur-
sive structure of such trees to produce a recurrence relation
satisfied by the An averaged over X. This recurrence re-
lation yields recursive equations for both the generating
function in (10) and the effective regularization λ̃ in (8).
From these recursive equations we also finally obtain the
formula for the error F in (6) averaged over all the training
and test data (see SM ).

3.3. Properties of Effective Regularization λ̃ and
Fractional Participation Ratio ρf

We show that the effective regularization λ̃ is an increasing,
concave function of λ satisfying (see SM )

λ ≤ λ̃ ≤ λ+
σ2
x

α
. (11)

Furthermore, for large λ, λ̃ tends to the upper bound in (11)
with error O(1/λ). Thus, when λ is large enough, λ̃ can
be thought of as λ plus a constant correction σ2

x/α which
vanishes in the oversampled low dimensional regime of
large α.

The important qualitative features of λ̃ can be illustrated in
the isotropic case, where

λ̃ =
λ+ S2

(
1
α − 1

)
+

√(
λ+ S2

(
1
α + 1

))2 − 4 1
αS

4

2
.

(12)
For α > 1, the graph of λ̃(λ) rises from the origin and
gradually approaches the line λ̃ = λ + S2/α, coinciding
with the upper bound in (11) (Figure 1A; cyan curves). As
α is decreased the slope at the origin becomes steeper until,
at the critical value α = 1, the slope dλ̃

dλ at λ = 0 is infinite.
After this point for α < 1, λ̃ has nonzero y-intercept (Figure
1A, magenta curves; B shows zoomed in view with critical
α = 1 curve in black). Figure 1C and D show λ̃ and 1/ρf

as a joint function of λ, α. Recalling that 1
ρf

= dλ̃
dλ , the
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bright bar in D representing small ρf corresponds exactly to
λ̃’s infinite derivative at α = 1 (Figure 1B; C, dashed line).
Thus large sensitivity in λ̃ to changes in λ corresponds to a
small fractional participation ratio ρf , which in turn leads
to increased error in (6). For a covariance with multiple
distinct scales, λ̃ behaves analogously, and can attain near
infinite slope at more than one critical value of α (two scale
model shown in Figure 1E,F). We observe in 3.6 that this
can lead to multiple descent curves, and in 3.7 we show how
these effects can be understood in terms of the spectrum of
the inverse Hessian B.

Figure 1. λ̃ is the effective regularization parameter satisfying (8).
A: λ̃ vs λ for different values of α. In all cases λ̃ tends to λ plus a
constant positive correction factor (see (11)). In the undersampled
regime α � 1, the intercept is nonzero (magenta traces), while
in the oversampled regime the intercept is zero (cyan traces). B:
Zooming in on the traces in A shows that at α = 1 the slope
dλ̃
dλ

becomes infinite, separating the cases with zero and nonzero
intercept. Right heatmaps: upper row, λ̃ as a function of α, λ;
bottom row, 1/ρf . Brighter colors indicate higher values. For
the isotropic case with S2 = 1 (C,D), and similarly for slightly
anisotropic cases, λ̃, ρf behave as the traces shown in A,B. For
two widely separated scales (S1, S2 = 1, 10−2, and P1

P
, P2
P

=
1

101
, 100
101

; these values were chosen to illustrate the behavior of λ̃.
For all other figures, P1 = P2 unless stated otherwise.) (E,F), λ̃
has a near infinite derivative at two critical values of α. We show
below that this has consequences for the error when fitting with
highly anisotropic data.

3.4. Input Anisotropy Increases Error for Generic
Target Functions

We first address how anisotropy in Σ alone affects perfor-
mance when there is no special alignment between w and
Σ. To this end we draw w from a zero mean Gaussian with
covariance C = σ2 SNR0

P Σ−1. This choice essentially fixes
the expected SNR = wTΣw

σ2 to the constant value SNR0

and spreads it evenly across the modes, with the expected

value of the fractional SNR per mode v̂2
i = 1/P in (6).

Figure 2. Learning a random function is easiest with isotropic data.
A: Error as a function of data anisotropy in a model with 2 dis-
tinct variances (diagrams below x-axis show relative length scales
of the data distribution). Different traces correspond to different
measurement densities α. λ is optimized (either empirically or
using the error formula (6)) for each α and aspect ratio. Across
different α’s, error is minimized on isotropic input data distribu-
tions. Dots showing average error from actual ridge regression at
5 α’s (P1 = P2 = 50, P = 100 and N = 25, 50, 100, 200, 400)
closely match theoretical curves. B: Optimal λ as a function of
the data distribution’s aspect ratio. Traces and colors correspond
to A. Dashed lines show the value of the large and small variance.
For highly anisotropic data, the optimal λ jumps suddenly from
∝ S2

min to ∝ S2
max as α increases (note the sudden jump in cyan

to magenta curves (decreasing α) at the extremal aspect ratios).

For a two-scale model the main parameter of interest is
the aspect ratio γ = S1/S2. Figure 2A shows the error
F in (6), optimized over λ, as a function of γ (with total
SNR held constant as γ varies), for different values of the
measurement density α. The dots correspond to results
from ridge regression, which shows excellent agreement
with the theoretical curves. For all α, F is minimized when
γ = 1, demonstrating that for a generic unaligned target
function, error at constant SNR is minimized when the data
is isotropic.

Figure 2B shows the optimal λ as a function of aspect ra-
tio. As expected, optimal regularization decreases with α,
reflecting the fact that as the number of training examples
increases, the need to regularize decreases. More interest-
ingly, crossing the boundary between undersampled and
oversampled around α = O(1), the optimal regularization
undergoes a sudden jump from ≈ S2

max to ≈ S2
min (diag-

onal dashed lines). Consistent with this, we show in SM
that when the aspect ratio is very large or small, the optimal
regularization λ∗ takes the following values in the under-
and over-sampled limits:

λ∗ →

{
1
α

1
SNRS

2
min α� 1

1
α

(
1
2 + 1

SNR

)
S2
max α� 1.

(13)
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This can be roughly understood as follows: in the under-
sampled regime, where strong regularization is required to
control noise, λ̃ should be increased until the third term in

(6),
(

S2
i

S2
i+λ̃

)2
, stops improving, around λ̃ ≈ S2

max. On the
other hand, in the oversampled regime, where the weights
can be estimated reliably and the biggest source of error
is underfitting from the regularization itself, λ̃ should be

reduced until the second term
(

λ̃
S2
i+λ̃

)2
stops improving,

around λ̃ ≈ S2
min. This argument provides intuition for why

the optimal regularization λ∗ transitions from approximately
S2
min to S2

max as α decreases.

3.5. Weight-Data Alignment Reduces Sample
Complexity and Changes the Optimal
Regularization

We now explore the effect of alignment on sample complex-
ity and optimal regularization λ. First, if the total SNR is
held constant, error decreases as the true weights w become
more aligned with the high variance modes of Σ. To see this,
note that fixed SNR implies wTΣw = σ2SNR, so both
fs, fn are constant. Thus F can only change through the
unit vector v̂i in the second term in (6), where the unnormal-
ized alignment vector is v = SUTw. Thus F is minimized
by aligning w with the highest variance direction of the data
for any regularization λ even if the magnitude of w must be
reduced to keep the total SNR fixed.

Consequently the sample complexity required to achieve
a given performance level can decrease with increasing
weight-data alignment even if total SNR is fixed. Figure
3A illustrates this in a two-scale model with aspect ratio
γ = S1/S2 = 10. Learning curves of F as a function of
measurement density α for optimal λ are plotted for differ-
ent weight-data alignments θ, defined as the angle between
v̂ and the high variance subspace. The superimposed dots
correspond to results from numerical ridge regression and
show excellent agreement with the theoretical curves. To
achieve any fixed error, models with greater weight-data
alignment (blue traces) require fewer samples than those
with less weight-data alignment (red traces).

How does weight-data alignment affect the optimal regular-
ization λ? As we show in Figure 3 B,C, this depends on the
measurement density α. In the undersampled regime (B),
as alignment increases (moving from red to blue traces) the
optimal λ achieving minimal error decreases, while in the
oversampled regime (C), the optimal λ increases. Figure
3D shows that this trend holds more generally. Each curve
shows the optimal λ as a function of alignment. Curves
are decreasing in the undersampled regime where α � 1
(magenta) and increasing in the oversampled regime where
α� 1 (cyan). In SM , we derive the following formula for
the optimal lambda in the over- and under-sampled regimes:

λ∗ →

 1
ασ

2
1
P Tr [Σ−1]
wTΣ−1w

α� 1

1
ασ

2 (1 + SNR)
1
P Tr [Σ2]
wTΣ2w

− σ2
x

α α� 1
(14)

These approximate formulas are plotted in Figure 3D
(dashed lines), and show excellent agreement with the exact
optima at extremal α values (solid). The two approximate
formulas depend on w through wTΣ−1w and wTΣ2w, ex-
plaining why the first set of curves decreases with alignment
while the other increases (see SM for details).

Figure 3E quantifies how helpful regularization is, by com-
paring the error at optimal λ to that of no regularization with
λ = 0. The effect of alignment again depends on α. In the
undersampled regime (magenta), regularization is most help-
ful for misaligned cases, while in the oversampled regime
(cyan) regularization is most helpful for aligned cases. Fig-
ure 3F shows the optimal λ as a function of both α, θ. For
low α, increasing θ increases the optimal λ, while the oppo-
site is true for high α. The behavior switches sharply at a
curved boundary in α, λ space.

3.6. Multiple Descent Curves from Anisotropic Data

It is thought that the performance of a general regression
algorithm should improve as the number of training samples
increases. However this need not be true if regularization
is not tuned properly. For small regularization values, the
test error increases - and in fact becomes infinite in the high
dimensional limit - around α = 1, before eventually mono-
tonically decreasing. This is one example of a phenomenon
known as “double descent”.

We next show how, when the input data is very anisotropic,
learning curves can exhibit one, two, or in fact any number
of local peaks, a phenomenon we refer to as “multiple de-
scent”. We first consider a D = 2 scale model with highly
disparate scales S1 = 1, S2 = 10−2 with P1

P = P2

P = 1
2 .

Figure 4A shows the learning curves for this model, where
each black trace corresponds to a fixed value of λ. For very
low values of λ (orange trace), the learning curve shows 2
strong peaks before descending monotonically, correspond-
ing to “triple descent”. We confirm that this effect can
be seen in numerical ridge regression experiments (orange
dots). This effect disappears when λ is optimized separately
for each value of α (red trace).

In the isotropic regime, singularities in the error typically
arise when the number of samples is equal to the num-
ber of parameters, that is, α = 1. Interestingly, for the 2-
scale model, approximate singularities appear at α = 1 and
α = 1

2 , suggesting that singularities can appear generically
whenever the number of samples is equal to the number of
parameters with “large” variance: when α = 1

2 , there are
exactly as many samples as parameters at the larger scale
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Figure 3. Weight-data alignment improves sample complexity and
changes the optimal regularization. A: Learning curves showing er-
ror F vs measurement density α for fixed SNR. Different curves
correspond to different weight data alignment θ. Performance
is optimized over the regularization λ for each α and alignment.
Error decreases faster when weights and data are aligned (blue
traces) than when they are misaligned (red traces). B,C: error
vs. λ for the same θs as in A, but α fixed to 1/4 (B), or 4 (C),
corresponding to the dashed lines in A. For undersampled cases
(B), optimal λ decreases with alignment, while for oversampled
cases (C), optimal λ increases with alignment. Dots in panels A-C
show average error from numerical ridge regression and closely
match theoretical curves. For A, P = 100 and N is sampled
log-evenly from 20 to 500. For B, P = 200, N = 50; for C,
P = 50, N = 200. D: Trend shown in B,C holds more generally:
for α� 1, optimal λ decreases with alignment, while for α� 1,
optimal λ increases with alignment. Approximate formulas in (14)
(dashed lines) match exact curves well. E: Error improvement
afforded by optimal regularization as a function of alignment. Just
as for the optimal regularization value, oversampled (α� 1) and
undersampled (α� 1) show opposite dependence on θ. F: Higher
resolution view of optimal regularization value as a function of
θ, α. Colormap is reversed relative to other figures for visual
clarity: dark blue corresponds to high values and light yellow cor-
responds to low values (cf. panel D). Note the sharp transition
between the increasing and decreasing phases.

S1 = 1, and at α = 1, there are as many samples as param-
eters at the largest two scales S1, S2 (which, in this case, is
all the parameters).

As a test of this intuition, we show the learning curves
for a three scale model (with scales S1, S2, S3 =
10−1, 10−3, 10−5) in Figure 4B. As expected, for low λ
(orange trace), we see sharp increases in the error when
α = 1

3 ,
2
3 , and 1, that is, when the number of samples N

equals the number of parameters at the top one (S1), two
(S1, S2), or three (S1, S2, S3) scales.

Figure 4C,D show heatmaps of the error F as a joint func-
tion of α and λ. The orange and red slices correspond to

Figure 4. Multiple descent curves emerge from highly anisotropic
data. A: learning curve for λ ≈ 0 (orange trace) shows triple
descent as a function of measurement density α (i.e. 3 disjoint
regions of α where error descends with increasing α). Error peaks
occur at 1

2
and 1. Black traces correspond to different fixed λ.

The learning curve with λ optimized for each α instead decreases
monotonically (red trace). B: Similar plot showing quadruple
descent with peaks at approximate locations α = 1

3
, 2
3
, 1. Dots

in A,B show average error from numerical simulations of ridge
regression and closely match theoretical curves (P = 100 and N
is sampled evenly from 10 to 200). C,D: Global view of the top
plots showing error as a function of λ and α. Light bars correspond
to error peaks. Horizontal orange (red) slices correspond to orange
(red) traces in top row. The kink in the red curve in panel A
corresponds to the optimal λ suddenly jumping from one local
minimum to another as α is increased (the discontinuity in the red
curve in panel C).

the low λ (orange) and optimal λ (red) traces in A,B. The
bright vertical bars corresponding to high error at the crit-
ical values of α can be completely avoided by choosing λ
appropriately, showing how multiple descent can be thought
of as an artifact from inadequate regularization. Figure
4C also illustrates how, even when regularizing properly,
learning curves can display “kinks” (Figure 3A, 4A) around
the critical values of α as the optimal regularization jumps
from one local minimum to another. In the next section, we
give a more detailed explanation of how the spectrum of the
inverse Hessian B can explain these effects.

3.7. Random Matrix Theory Explains Multiple Descent

We now sketch how multiple descent can be understood in
terms of the spectrum of the inverse Hessian B, or as noted
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above, of the matrix B̃ =
(

1
NXXT + λIN

)−1
, which con-

tains the same information. For detailed proofs see SM .
First, a key quantity encoding information about the spectral
density of 1

NXXT , which we’ll call ρ(x), is the Stieltjes
transform defined as G (x) =

∫ ρ(t)
x−tdt (Nica & Speicher,

2006). The spectrum ρ(x) can be recovered from G through
the inversion formula ρ(x) = 1

iπ limε→0+ G(x + iε). To
obtain an equation for G, we use (8) and the fact that
G(λ) = − 1

N Tr B̃(−λ) = − 1
λ̃(−λ) , giving the following:

1

G
− 1

α

1

P

P∑
i=1

S2
i

S2
iG− 1

= λ. (15)

Although (15) is difficult to solve for general α, λ, Si, we
can obtain approximate formulas for the spectrum when the
scales Si are very different from one another, corresponding
to highly anisotropic data. We also show in SM how to
obtain exact values for the boundaries of the spectrum using
the discriminant of (15) even when the scales are not well
separated. We state the main results (see SM for detailed
proofs):

Density for Widely Separated Scales. Consider a D-
scale model where Σ has Pd eigenvalues with value S2

d

for d = 1, . . . , D. Define fd := Pd/P . Assume the scales
are arranged in descending order, and are very different
from one another - that is, ε2d = S2

d+1/S
2
d � 1. In the limit

of small εd, the spectral density ρ consists of D disjoint
components ρd, roughly centered on the D distinct scales
S2
d , satisfying

ρd (x) =

√
(x+ − x) (x− x−)

2πS2
dλ

x± = S2
d

(
1− 1

α

∑
d′<d

fd′

)(
1±

√
fd

α−
∑
d′<d fd′

)2

(16)
The dth component is proportional to a Marchenko-Pastur
density supported on [x−, x+] and exists for values of
α >

∑
d′<d fd′ . This result reveals that as α increases

one encounters a sequence of phase transitions in the spec-
trum of B̃; at each transition a successively finer scale
in the data becomes visible and the spectrum associated
with the previous already visible scale acquires an extended
tail just before the transition. These essential spectral fea-
tures can be illustrated in the balanced 2-scale model with
S1 = 1, S2 = 10−2, whose learning curves were previously
shown to exhibit triple descent in Figure 4A,C. Figure 5A
shows the empirical histograms of the nonzero eigenval-
ues of randomly generated 1

NXXT for several values of
α (colored histograms; log scale), which show excellent
agreement with the densities predicted above (black traces).
As α increases we see a phase transition from one large
visible scale to two visible scales, both the large and the

Figure 5. Changes in the spectrum of 1
N
XXT explain multiple

descent. All panels show behavior of the 2-scale model with
S1 = 1, S2 = 10−2 shown in Figure 4A,C. A: empirical his-
tograms for nonzero eigenvalues of 1

N
XXT for 5 values of α

(colored histograms; log scale). Black traces show approximate
formulas for density for widely separated scales (see (16)). Distinct
components center on the scales S2

1 , S
2
2 . B: Heatmap of the eigen-

value density. Each horizontal line is normalized by its maximum
value to allow comparison for different values of α. Dashed lines
correspond to the values of α sampled in A. Note rapid changes in
the spectrum around α = 1

2
, 1. C: Log of the participation ratio

ρf vs λ for the same values of α as in A. For small values of λ,
the participation ρf becomes very small around the critical values
α = 1

2
, 1. Horizontal dashed lines (corresponding to ρf = 1√

10
for each trace) are drawn to aid comparison. D: Inverse participa-
tion ratio vs α, λ. 1

ρf
shows strong increases around the critical α,

explaining the local increases in error seen in the multiple descent
curves in Figure 4A,C. The error heatmap in Figure 4C is copied
in the red inset. Red dots show corresponding points in the α− λ
plane.

small one. This transition occurs at the predicted critical
value α = 1/2 by the formulas above, and a precursor to
this transition is a large spread in the spectrum.

Figure 5B shows the spectral density for all α ∈ [0, 2]. The
horizontal dashed lines show the values of α sampled in
A, and the black dots show the boundaries of the empirical
histograms. Consistent with A, the density undergoes phase
transitions at critical values of α = 1

2 , 1. Intriguingly, these
critical values correspond exactly to the α values where
the triple descent curves in Figure 4A achieve their local
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maxima. The reason for this connection lies in the fact that
the inverse fractional participation ratio 1/ρf appears in the

error F in (6) and 1/ρf can be written as 1
ρf

=
(
σγ
µγ

)2
+ 1

where µγ and σγ are the mean and standard deviation of the
nonzero spectrum of B =

(
1
NXTX + λIP

)−1
. Thus when

the spectrum of XXT is spread out, ρf is small and F is
large. We confirm this intuition in (Figure 5C) which shows
a match between theory (with the ρf calculated analytically
in SM ) and experiment (with ρf calculated numerically for
random matrices). Furthermore, both theory and experiment
indicate that ρf at small λ drops precipitously as a function
of α at precisely the critical values of α (Figure 5C) at which
the triple descent curves in Figure 4A peak. Indeed plotting
1/ρf as a joint function of α and λ matches exceedingly
well in terms of the location of peaks, the error F as a joint
function of α and λ (see Figure 5D). Thus the structure
of phase transitions in the spectrum of the random matrix
1
NXXT drawn from a true covariance Σ with multiple
scales can explain the emergence of multiple descent, with
a one to one correspondence between the number of widely
separated data scales and the number of peaks.

4. Discussion
Thus we obtain a relatively complete analytic theory for
a widespread ML algorithm in the important high dimen-
sional statistical limit that takes into account multi-scale
anisotropies in inputs that can be aligned in arbitrary ways
to the target function to be learned. Our theory shows how
and why successful generalization is possible with very little
data when such alignment is high. We hope the rich mathe-
matical structure of phase transitions and multiple descent
that arises when we model correlations between inputs and
target functions and their impact on generalization perfor-
mance motivates further research along these lines in other
settings, in order to better bridge the gap between the theory
and practice of successful generalization.
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