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Abstract
Realistic environments often provide agents with
very limited feedback. When the environment
is initially unknown, the feedback, in the begin-
ning, can be completely absent, and the agents
may first choose to devote all their effort on
exploring efficiently. The exploration remains
a challenge while it has been addressed with
many hand-tuned heuristics with different levels
of generality on one side, and a few theoretically-
backed exploration strategies on the other. Many
of them are incarnated by intrinsic motivation
and in particular explorations bonuses. A com-
mon choice is to use 1/

√
n bonus, where n

is a number of times this particular state-action
pair was visited. We show that, surprisingly,
for a pure-exploration objective of reward-free
exploration, bonuses that scale with 1/n bring
faster learning rates, improving the known up-
per bounds with respect to the dependence on the
horizon H . Furthermore, we show that with an
improved analysis of the stopping time, we can
improve by a factor H the sample complexity in
the best-policy identification setting, which is an-
other pure-exploration objective, where the en-
vironment provides rewards but the agent is not
penalized for its behavior during the exploration
phase.

1. Introduction
In reinforcement learning (RL), an agent learns how to act
by interacting with an environment, which provides feed-
back in the form of reward signals. The agent’s objective
is to maximize the sum of rewards. In this work, we study
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how to explore efficiently. In particular we wish to com-
pute near-optimal policies using the least possible amount
of interactions with the environment (in the form of ob-
served transitions). In general, we may be either interested
in the performance of the agent during the learning phase
or we may only care for the performance of the learned
policy. In the first setting, we can measure the performance
of the agent by its cumulative regret which is the differ-
ence between the total reward collected by an optimal pol-
icy and the total reward collected by the agent during the
learning. Therefore, the agent is encouraged to explore new
policies but also exploit its current knowledge (Bartlett &
Tewari, 2009; Jaksch et al., 2010). Another performance
measure related to the regret consists in counting the num-
ber of times during the learning that the value of the policy
used by the agent is ε far from the optimal one. The min-
imization of this count is formalized in the PAC-MDP set-
ting introduced by Kakade (2003), see also Dann & Brun-
skill (2015) and Dann et al. (2017). The second setting and
our central focus in this paper is called pure-exploration
where the agent is free to make mistakes during the learn-
ing and explore more vigorously (Fiechter, 1994; Kearns &
Singh, 1998; Even-Dar et al., 2006). We provide results for
two pure-exploration settings when the environment is an
episodic Markov decision process (MDP): the reward-free
exploration (RFE) and the best-policy identification (BPI).

Best-policy identification In BPI, an agent interacts with
the MDP, observing transitions and rewards, to output an
ε-optimal policy with probability at least 1 − δ (Fiechter,
1994). Most of the work on BPI assumes that the agent
has access to a generative model (oracle, Kearns & Singh,
1998). Having an oracle access means that the agent can
simulate a transition from any sate-action pair. In partic-
ular, Azar et al. (2013) show that the optimal rate of the
sample complexity, defined in this case as the number n of
oracle calls for getting an ε-optimal policy with probability
at least 1− δ is of order1 Õ

(
H4SA log(1/δ)/ε2

)
where S

1Azar et al. (2012), express both the upper and the lower
bounds in the total number of calls to the generative model
(instead of trajectories) and prove them for the γ-discounted in-
finite horizon. They are of order SA(1− γ)−3ε−2 log(1/δ). We
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is the size of the state space, A is the size of the action
space, and H is the horizon (see Table 1 and also Agarwal
et al., 2020, Sidford et al., 2018). The Õ notation hides
terms that are poly-log in H,S,A, ε, and log(1/δ).

Even if the oracle access is reasonable in some situations
(games, physics simulators, . . . ), we focus on the more
challenging and practical setting where the agent has only
access to a forward model, meaning that the agent can only
sample trajectories from some predefined initial state. In
this setting, the sample complexity τ is the number of tra-
jectories that are necessary to output an ε-optimal policy
with probability at least 1−δ (which leads to n = Hτ sam-
pled transitions). A straightforward but indirect approach
to BPI, suggested for example by (Jin et al., 2018), is to run
a regret-minimizing algorithm (for instance, UCBVI of Azar
et al., 2017) for a sufficiently large number K of episodes,
and output a policy π̂ that is chosen uniformly at random
among the K policies executed by the agent. Unfortu-
nately, this indirect approach is sub-optimal with respect to
the error probability δ. Indeed, the resulting sample com-
plexity scales with 1/δ2, instead of the expected log(1/δ)2,
as can be seen in Table 1.

Recently, Kaufmann et al. (2021) proposed BPI-UCRL,
which adapts an episodic version of a UCRL-type algo-
rithm (Jaksch et al., 2010) to best-policy identification. In
essence, they replace the random choice of the predicted
policy by a data-dependent choice. This algorithm enjoys
the correct dependence on δ prescribed by the lower bound
of Dann & Brunskill, 2015 (see also Domingues et al.,
2021b), but suffers a sub-optimal dependence on S, the size
of the state space, when ε is small, as well as a sub-optimal
dependence on the horizon H (Table 1).

As an answer to the above sub-optimalities, we propose
BPI-UCBVI, a new algorithm with a sample complexity
of Õ

(
SAH3 log(1/δ)/ε2

)
, which is optimal in terms of

S,A,H, ε, and log(1/δ) at the first order, according to the
lower bound of Domingues et al. (2021b). BPI-UCBVI is
based on UCBVI of Azar et al. (2017). It relies on a non-
trivial upper bound on the simple regret of a UCBVI-type
algorithm (Lemma 2), similar as Dann et al. (2019), that
shaves the extra S factor of RF-UCRL while keeping the
right dependence on δ. The main feature of this upper
bound is that it can be computed in the empirical MDP and
therefore is accessible to the agent.

translate them to the episodic setting by replacing (1 − γ)−1 by
the horizonH . In particular, the term 1/(1−γ)3 translates toH3

and we include an extraH factor in the upper bound due to the
non-stationary transitions, i.e., when the transition probabilities
depend on the stage h ∈ [H].

2 See Appendix E for a discussion.

Reward-free exploration Efficient exploration is espe-
cially difficult when the reward signals are sparse, as the
agent needs to interact with the environment while receiv-
ing almost no feedback. To address such situations, we
also study reward-free exploration introduced by Jin et al.
(2020), where the interaction with the environment is split
into two phases: (i) an exploration phase, in which the
agent learns the transition model p̂ of the MDP by interact-
ing with the environment for a given number of episodes
(still with a forward model); and (ii) a planning phase, in
which the agent receives a reward function r and computes
the optimal policy for the MDP parameterized by (r, p̂ ).
Given an accuracy parameter ε, we measure the perfor-
mance of the agent by the number of trajectories required
to compute a policy in the planning phase, that is ε-optimal
for any given reward function r with probability at least
1− δ.

Our interest in RFE has two major reasons. First, in some
applications, it is necessary to compute good policies for a
wide range of reward functions. In such case, RFE allows
to satisfy this need with only a single exploration phase.
Second, RFE gives us good strategies for exploring the en-
vironment especially when the reward signal is very sparse
or unknown.

One approach to pure exploration is to rely on known
cumulative-regret minimization methods and their guaran-
tees. This path is taken by RF-RL-Explore of Jin et al.
(2020). More precisely, RF-RL-Explore builds upon the
EULER algorithm by (Zanette & Brunskill, 2019) by run-
ning one instance of this algorithm for each state s and
each episode step h with a reward function incentivizing
the visit of state s in step h. The leading term in their sam-
ple complexity bound scales with Õ

(
S2AH5 log(1/δ)/ε2

)
for MDPs with S states, A actions, and horizon H , which
is sub-optimal in H (Table 1). Kaufmann et al. (2021)
propose RF-UCRL, an alternative algorithm that is rem-
iniscent of the original algorithm proposed by Fiechter
(1994) for BPI with an improved sample complexity of
Õ
(
SAH4(log(1/δ) + S)/ε2

)
. The main idea behind the

algorithm of Fiechter (1994) is to build upper confidence
bounds on the estimation error of the value function of
any policy under any reward function, and then act greed-
ily with respect to these upper bounds to minimize the
estimation error. Using a similar approach, Wang et al.
(2020) study reward-free exploration with a particular lin-
ear function approximation, providing an algorithm with a
sample complexity of order d3H6 log(1/δ)/ε2, where d is
the dimension of the feature space. Finally, Zhang et al.
(2020) study a setting in which there are only N pos-
sible reward functions in the planning phase, for which
they provide an algorithm whose sample complexity is
Õ
(
H5SA log(N) log(1/δ)/ε2

)
.
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Algorithm Setting Upper bound
(non-stationary case)

Lower bound
(non-stationary case)

Empirical QVI (Azar et al., 2012)1 gen. model H4SA
ε2 log

(
1
δ

)
H3SA
ε2 log

(
1
δ

)
UCBVI + random recomm.2 BPI H3SA

ε2
log(1/δ)
δ2

H3SA
ε2 log

(
1
δ

)
BPI-UCRL (Kaufmann et al., 2021) BPI H4SA

ε2

(
log
(

1
δ

)
+ S

)
BPI-UCBVI (this work) BPI H3SA

ε2 log
(

1
δ

)
UCBZero (Zhang et al., 2020) RFE, N tasks H5SA log(N)

ε2 log
(

1
δ

) H2SA log(N)
ε2

RF-RL-Explore (Jin et al., 2020) RFE H7S2A
ε log3( 1

δ ) + H5S2A
ε2 log

(
1
δ

)
SA
ε2

(
H3 log

(
1
δ

)
+H2S

)
3RF-UCRL (Kaufmann et al., 2021) RFE H4SA

ε2

(
log
(

1
δ

)
+ S

)
RF-Express (this work) RFE H3SA

ε2

(
log
(

1
δ

)
+ S

)
Table 1. Best-policy identification (BPI) and reward-free exploration (RFE) algorithms with their respective upper bounds on the sample
complexity, expressed in terms of the number of trajectories required by the algorithms.1 The factors and terms that are poly-log in
S,A,H, ε, and log(1/δ) are omitted.

In this work, we present RF-Express with sample com-
plexity of Õ

(
SAH3(log(1/δ) + S)/ε2

)
, which improves

the bound of Kaufmann et al. (2021) by a factor of H .
In particular, up to poly-log terms, our rate matches the
lower bound Ω(H3SA log(1/δ)/ε2) by Domingues et al.
(2021b) when ε is fixed and δ goes to zero. Moreover we
conjecture that the lower-bound by Jin et al. (2020), proved
for the stationary setting (probability transition indepen-
dent of h) becomes Ω

(
H3SA log(1/δ)/ε2

)
in our non-

stationary setting (transition probabilities that could depend
on the step h). Thus RF-Express would also match this
lower-bound, effective when δ is fixed and ε goes to zero.3

A standard path to get such improved dependence is via
confidence bonuses built using an empirical Bernstein in-
equality (Azar et al., 2012; 2017; Zanette & Brunskill,
2019) to make appear a variance term and then to sharply
upper-bound these variance terms with a Bellman type
equation for the variances (see Appendix F.1 or Azar et al.,
2012). However, this standard path is far less clear for
RFE as the agent does not observe the rewards and there-
fore cannot compute the empirical variance of the values!
Therefore, one of our main technical contributions is to
tackle this challenge by introducing a new empirical Bern-
stein inequality derived from a control of the transition
probabilities (Appendix F.3) and applying the Bellman-
type equation for the variances to construct exploration
bonuses that do not require a computation of empirical
variances. Surprisingly, the bonuses used in RF-Express

3 In Table 1, we combined the Ω
(
H2S2/ε2

)
result of Jin

et al. (2020) and the Ω
(
H3SA log(1/δ)/ε2

)
result of Domingues

et al. (2021b). Note, that we can expect the lower bound by Jin
et al. (2020) proved for the stationary setting (transition probabil-
ities independent of h) to be Ω

(
H3S2/ε2

)
in our non-stationary

stetting (transition probabilities that could depend on h, see Sec-
tion 2).

scale with 1/n(s, a) where n(s, a) is the number of times
the state-action pair (s, a) was visited, instead of the usual
1/
√
n(s, a) bonus.

Contributions To sum up, we highlight our major con-
tributions.

• BPI: we provide BPI-UCBVI, with a sample complex-
ity of Õ

(
H3SA log(1/δ)

)
when ε is small enough.

Up to poly-log terms, it matches the lower bound of
Domingues et al. (2021b) and improves the depen-
dence either on H , 1/δ or S with respect to previous
work.

• RFE: we provide RF-Express with a sample com-
plexity of Õ

(
H3SA(log(1/δ) + S)/ε2

)
. Up to poly-

log terms, our rate matches simultaneously the lower
bound Ω(H3SA log(1/δ)/ε2) by Domingues et al.
(2021b), effective when ε is fixed and δ goes to zero
and, up to a factorH , the lower bound Ω(H2S2A/ε2)
by Jin et al. (2020), effective when δ is fixed and ε
goes to zero.

• Due to the absence of the rewards in RFE, known tech-
niques to get the optimal dependence in the horizonH
(Azar et al., 2012; Zanette & Brunskill, 2019) do not
apply. We therefore develop a new analysis that relies
on the use of exploration bonuses scaling with 1/n in-
stead of the standard 1/

√
n.

2. Setting
We consider a finite episodic MDP(
S,A, H, {ph}h∈[H], {rh}h∈[H]

)
, where S is the set

of states, A is the set of actions, H is the number of steps
in one episode, ph(s′|s, a) is the probability transition
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from state s to state s′ by taking the action a at step h,
and rh(s, a) ∈ [0, 1] is the bounded deterministic reward
received after taking the action a in state s at step h. Note
that we consider the general case of rewards and transition
functions that are possibly non-stationary, i.e., that are
allowed to depend on the decision step h in the episode.
We denote by S and A the number of states and actions,
respectively.

Learning problem The agent, to which the transitions
are unknown, interacts with the environment in episodes
of length H , with a fixed initial state s1.4 At each step
h ∈ [H], the agent observes a state sh ∈ S, takes an action
ah ∈ A and makes a transition to a new state sh+1 ac-
cording to the probability distribution ph(sh, ah). In BPI,
the agent receives a deterministic reward rh(sh, ah) at each
step h, for fixed reward functions r , {rh}h∈[H], and it is
required to output an ε-optimal policy with respect to r.
In RFE, no rewards are observed during exploration, and
the agent is required to output an estimate of the transition
probabilities which can be used afterwards to compute an
ε-optimal policy for any reward function.

Policy & value functions A deterministic policy π is a
collection of functions πh : S 7→ A for all h ∈ [H], where
every πh maps each state to a single action. The value func-
tions of π, denoted by V πh , are defined as

V πh (s) , E

[
H∑

h′=h

rh′(sh′ , ah′)

∣∣∣∣∣ sh = s

]
,

where ah′ , πh′(sh′) and sh′+1 ∼ ph′(sh′ , ah′) for
h ∈ [H]. The optimal value functions are defined as
V ?h (s) , maxπ V

π
h (s). Both V πh and V ?h satisfy the Bell-

man equations (Puterman, 1994), that are expressed using
the Q-value functions Qh and Q?h in the following way,

V πh (s) = πhQ
π
h(s), Qπh(s, a) , rh(s, a) + phV

π
h+1(s, a),

V ?h (s) = max
a

Q?h(s, a), Q?h(s, a) , rh(s, a) + phV
?
h+1(s, a),

where by definition, V ?H+1 , V πH+1 , 0. Furthermore,
phf(s, a) , Es′∼ph(·|s,a)[f(s′)] denotes the expectation
operator with respect to the transition probabilities ph and
πhg(s) , g(s, πh(s)) denotes the composition with the
policy π at step h.

Empirical MDP Let (sih, a
i
h, s

i
h+1) be the state, the

action, and the next state observed by an algorithm
at step h of episode i. For any step h ∈ [H]
and any state-action pair (s, a) ∈ S × A, we let

4As explained by Fiechter (1994) and Kaufmann et al. (2021),
if the first state is sampled randomly as s1 ∼ p0, we can simply
add an artificial first state s0 such that for any action a, the transi-
tion probability is defined as the distribution p0(s0, a) , p0.

nth(s, a) ,
∑t
i=1 1

{
(sih, a

i
h) = (s, a)

}
be the num-

ber of times the state action-pair (s, a) was visited
in step h in the first t episodes and nth(s, a, s′) ,∑t
i=1 1

{
(sih, a

i
h, s

i
h+1) = (s, a, s′)

}
. These definitions

permit us to define the empirical transitions as

p̂ th(s′|s, a) ,
nth(s, a, s′)

nth(s, a)
if nth(s, a) > 0

and p̂ th(s′|s, a) , 1/S otherwise. Based on the empirical
transitions and on exploration bonuses, we introduce vari-
ous data-dependent quantities that are useful for designing
algorithms for either the BPI or the RFE objective. While
the former allows the agent to access the reward function r
during exploration, the latter does not. Therefore, in all
data-dependent quantities introduced in Section 3 to de-
sign a RFE algorithm, we always materialize a possible
dependency on r. In particular, we denote by V̂ t,πh (s; r)

and Q̂t,πh (s, a; r) the value and the action-value functions
of a policy π in the MDP with transition kernels p̂ t and re-
ward function r. In Section 4, in which the reward function
is fixed, we drop the dependency on r and use the simpler
notation V̂ t,πh (s) and Q̂t,πh (s, a).

3. Reward-free exploration
In this section, we consider reward-free exploration (RFE)
where the agent does not observe the rewards during the
exploration phase. Again, as the value functions defined in
Section 2 depend on a reward function r, we sometimes use
the notation Vh(s; r) and Qh(s, a; r) instead of Vh(s) and
Qh(s, a).

Reward-free exploration In RFE , the agent interacts
with the MDP in the following way. At the beginning
of the episode t, the agent decides to follow a policy πt,
called the sampling rule, based only on the data collected
up to episode t − 1. Then, a reward-free episode zt ,
(st1, a

t
1, s

t
2, a

t
2, . . . , s

t
H , a

t
H) is generated starting from the

the initial state st1 , s1 by taking actions ath = πth(sth)
and, for h > 1, observing next-states according to sth ∼
ph(sth−1, a

t
h−1). This new trajectory is added to the dataset

Dt , Dt−1 ∪ {zt}. At the end of each episode, the agent
can decide to stop collecting data, according to a random
stopping time τ and outputs an empirical transition kernel
p̂ built with the dataset Dτ .

Any RFE agent is therefore made of a triple
((πt)t∈N? , τ, p̂ ). Our goal is to design an agent that
is (ε, δ)-PAC, probably approximately correct, according
to the following definition, for which the number of
exploration episodes τ , i.e., the sample complexity, is as
small as possible.
Definition 1 (PAC algorithm for RFE). An algorithm is
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(ε, δ)-PAC for reward-free exploration if

P
(

for any reward function r, V ?1 (s1; r)− V π̂
?
r

1 (s1; r) ≤ ε
)
≥ 1−δ,

where π̂?r is the optimal policy in the empirical MDP whose
transitions are given by the transition kernel p̂ returned by
the algorithm and whose reward function is r.

3.1. RF-Express algorithm

In this section, we present the RF-Express algorithm
along with a high-probability bound on its sample com-
plexity. RF-Express relies on upper bounds on the estima-
tion error between the true value functions and their empiri-
cal counterparts. We start with the motivation for the design
choices for RF-Express. We then introduce quantities to
which we engrave our choices and which we subsequently
use in the definition algorithm. In the algorithmic template
we proceed as (Fiechter, 1994) and Kaufmann et al. (2021)
by upper bounding the estimation-error for all the policies
with the striking difference that we only upper bound it at
the initial state. We finish this part by providing more in-
tuition and discussion, in particular, we provide technical
insights into what RF-Express is optimizing and then ex-
plain our 1/n versus 1/

√
n exploration bonuses, the rea-

sons for choosing them and the challenge with analysing
them.

Estimation error Given a policy π and an arbitrary re-
ward function r, we define the estimation error as the ab-
solute difference between the Q-value of π in the empiri-
cal MDP and its Q-value in the true MDP. Precisely, after
episode t, for all (s, a, h), we define

ê t,πh (s, a; r) ,
∣∣Q̂t,πh (s, a; r)−Qπh(s, a; r)

∣∣.
To control the approximation error of the value of any pol-
icy for any reward function starting from the initial state s1,
we introduce the functionsW t

h(s, a) defined inductively by
W t
H+1(s, a) , 0 for all (s, a) ∈ S ×A and for all h ∈ [H]

and (s, a) ∈ S ×A,

W t
h(s, a) , min

(
H, 15H2 β(nth(s, a), δ)

nth(s, a)
(1)

+

(
1 +

1

H

)∑
s′

p̂ th (s′|s, a) max
a′

W t
h+1(s′, a′)

)
,

where β(nth(s, a), δ) is a threshold that depends on how
we build the confidence sets for the transitions probabil-
ities. Notice that the W t

h are all independent of the re-
ward function r. As shown in the next lemma with proof in
Appendix C, the function W t

1(s1, a) can be used to upper
bound the estimation error of any policy under any reward
function in the initial state s1.

Algorithm 1 RF-Express
sampling rule: the policy πt+1 is the greedy policy with re-
spect to W t

h,

∀s ∈ S, ∀h ∈ [H], πt+1
h (s) = arg max

a∈A
W t
h(s, a)

stopping rule:

τ = inf

{
t ∈ N : 3e

√
πt+1

1 W t
1(s1) + πt+1

1 W t
1(s1) ≤ ε/2

}
prediction rule: output the empirical transition kernel p̂ = p̂ τ

Lemma 1. With probability at least 1− δ, for any episode
t, policy π, and reward function r,

ê t,π1 (s1, π1(s1); r) ≤ 3e
√

max
a∈A

W t
1(s1, a)+max

a∈A
W t

1(s1, a).

In particular, the above holds on the event F defined in
Appendix A.

With all the above definitions, we are now ready to outline
our RF-Express algorithm.

Next, we provide a bound on the sample complexity of
RF-Express with a proof in Appendix C.

Theorem 1. For δ ∈ (0, 1), ε ∈ (0, 1], RF-Express with
threshold β(n, δ) , log(3SAH/δ) + S log(8e(n+ 1))
is (ε, δ)-PAC for reward-free exploration. Moreover,
RF-Express stops after τ episodes where, with probability
at least 1− δ,

τ ≤ H3SA

ε2
(log(3SAH/δ) + S)C1 + 1

and whereC1 , 5587e6 log
(
e18(log(3SAH/δ) + S)H3SA/ε

)2.

As a consequence, the sample complexity of RF-Express
is of order Õ

(
H3SA(log(1/δ) + S)

)
and matches the

lower bound of Ω(H2S2A/ε2) of Jin et al. (2020) up to
a factor of H and poly-log terms. This lower bound is in-
formative in the regime where δ is considered as fixed and ε
tends to zero. Moreover, our result also matches the lower
bound of Ω

(
H3SA log(1/δ)/ε2

)
given by Domingues

et al. (2021b) which is informative in the regime where
ε is fixed and δ tends to 0. As explained in the introduc-
tion we believe that that the discrepancy with the depen-
dence on the horizon is rather because of a sub-optimal
lower bound. Indeed the lower-bound by Jin et al. (2020)
is proved in the stationary setting and we conjecture it be-
comes Ω(H3S2A/ε2) in our non-stationary setting (transi-
tion probabilities that could depend on h).

What is RF-Express optimizing? Contrary to RF-UCRL
of Kaufmann et al. (2021), RF-Express does not build
upper bounds on all estimation errors ê t,πh (s, a; r) for
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all h ∈ [H] but only for the one at the initial state
ê t,π1 (s1, π1(s1); r). Moreover, the upper bound is not
W t

1(s1, a) itself, but a function of this quantity, as can
be seen in Lemma 1. Hence, if RF-Express actu-
ally follows the optimism-in-the-face-of-uncertainty prin-
ciple, what quantities are W t

h upper bounding? To an-
swer this question and provide an intuition on the sam-
pling rule of RF-Express, fix a policy π and let Pπ

be the probability distribution governing a random tra-
jectory (s1, a1, s1, a2, . . . , sH , aH) ∼ Pπ in the MDP.
Next, let P̂ t,π be the probability distribution of a trajec-
tory (st1, a

t
1, s

t
1, a

t
2, . . . , s

t
H , a

t
H) ∼ P̂ t,π in the empirical

MDP built using the dataset Dt at episode t. Assuming
that all the state action pairs have been visited at least once
at time t, using the chain rule (see Garivier et al., 2019)
we can compute the Kullback-Leibler divergence between
these two probability distributions as

KL(P̂ t,π, Pπ) =

H∑
h=1

∑
s,a

p̂ t,πh (s, a) KL
(
p̂ t,πh (s, a), ph(s, a)

)
,

where p̂ t,πh (s, a) is the probability to reach state-action
(s, a) at step h under policy π in the empirical MDP in
episode t. Notice now that the bonus of the form β(n, δ)/n
used to define W t is by design chosen to be an upper-
confidence bound on the Kullback-Leibler divergence be-
tween the empirical transition probability and the transition
probability. Indeed, in Appendix A we show that with high
probability, for all (s, a) ∈ S ×A and h ∈ [H],

KL
(
p̂ th(s, a), ph(s, a)

)
≤ β(nth(s, a), δ)

nth(s, a)
·

Therefore, omitting the clipping to H in (1), we have that

max
π

KL(P̂ t,π, Pπ) .
πt+1

1 W t
1(s1)

H2
.

Therefore, RF-Express can be interpreted as an algo-
rithm minimizing an upper-confidence bound on the loss of
maxπ KL(P̂ t,π, Pπ), which requires bonuses of the form
β(n, δ)/n instead of

√
β(n, δ)/n. Notice that this loss is

of the same flavor as the one introduced by Hazan et al.
(2019).

Bonuses of 1/n versus 1/
√
n Our approach differs from

the bonuses typically used in regret minimization (e.g.,
Azar et al., 2017) and in prior work in reward-free explo-
ration (Kaufmann et al., 2021; Zhang et al., 2020), which
uses bonuses proportional to

√
1/n(s, a). Intuitively, since

1/n-bonuses decay faster with n, our algorithm is more ex-
ploratory: once a state-action pair (s, a) has been visited,
the bonus associated to it will be more strongly reduced
than if we used

√
1/n-bonuses and the algorithm tends to

visit other state-action pairs before returning to (s, a) again.

Empirically, we illustrate how 1/n bonuses can be benefi-
cial for exploration in Appendix G. Technically, this might
seem very surprising. Indeed, if we want to estimate the
mean µ of a random variable X with an estimator µ̂n com-
puted with n i.i.d. samples fromX , the error |µ−µ̂n| scales
with

√
1/n by Hoeffding’s inequality, which explains the

shape of the bonuses used in previous works. However,
instead of bounding the error |µ − µ̂n|, our concentration
inequalities based on the KL divergence give us a bound on
the quadratic term (µ − µ̂n)2, which scales with 1/n. This
allows us to use a Bellman-type equation for the variance of
the value functions and reduce the sample complexity by a
factor ofH , similarly to previous work on regret minimiza-
tion (Azar et al., 2017). The main challenge in our case is
that, in reward free exploration, we need to upper bound
the sum of variances for any possible value function, which
makes this technique considerably more challenging to an-
alyze than for the regret minimization.

3.2. Proof sketch

We first sketch the proof of Lemma 1. We begin as it is
done in the analysis of Kaufmann et al. (2021). For a fixed
policy π and an arbitrary reward function r, we decom-
pose the estimation error of the Q-value function of π at
the state-action pair (s, a) as, for all reward function r,

ê t,πh (s, a; r) ≤
∣∣Q̂ t,π

h (s, a; r)−Qπh(s, a; r)
∣∣

≤
∣∣(p̂ th − ph)V πh+1(s, a)

∣∣+ p̂ th|V̂ t,πh+1 − V
π
h+1|(s, a)

=
∣∣(p̂ th − ph)V πh+1(s, a)

∣∣+ p̂ thπ
t
h+1ê

t,π
h+1(s, a; r).

Similarly to Azar et al. (2017) and Zanette & Brunskill
(2019), to obtain the optimal dependency with respect to
the horizon H , we would like to apply the Bernstein in-
equality to control the first term. Since we need to do it for
all value functions of all policies, we could use a covering
of this function space and conclude with a union bound, see
Domingues et al. (2020). Instead we show, via Lemma 10
in Appendix F.3, that from a control of the deviations of the
empirical transition probabilities such that

KL
(
p̂ th(s, a), ph(s, a)

)
≤ β(nth(s, a), δ)

nth(s, a)

with high probability, we deduce an empirical Bernstein
inequality,

ê t,πh (s, a; r) ≤ 3

√√√√Varp̂ t
h
(V̂ t,πh+1)(s, a; r)

H2

(
H2β(nth(s, a), δ)

nth(s, a)
∧ 1

)
+ 15H2 β(nth(s, a), δ)

nth(s, a)
+

(
1 +

1

H

)
p̂ thπ

t
h+1ê

t,π
h+1(s, a; r),
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where the variance of V̂ t,πh+1, in particular with respect to
p̂ th(·|s, a) is defined as

Varp̂ t
h
(V̂ t,πh+1)(s, a; r) =∑
s′

p̂ th(s′|s, a)
(
V̂ t,πh+1(s′; r)− Ez∼p̂ t

h
(·|s,a)

[
V̂ t,πh+1(z; r)

])2
.

Therefore, defining Zt,πH+1(s, a; r) , 0 and recursively the
functions

Z
t,π
h (s, a; r) , min

(
H, 3

√√√√Varp̂ t
h

(V̂ t,πh+1)(s, a; r)

H2

(
H2β(nth(s, a), δ)

nth(s, a)
∧ 1

)

+ 15H
2 β(nth(s, a), δ)

nth(s, a)
+

(
1 +

1

H

)
p̂
t
hπh+1Z

t,π
h+1(s, a; r)

)
,

we prove by induction that for all (s, a, h),

ê t,πh (s, a; r) ≤ Zt,πh (s, a; r). (2)

We now split Zt,π in two terms. The first term is the one
with the bonus in

√
1/n and the second one with the bonus

in 1/n. Precisely, for all (s, a), we define recursively two
other quantities Y t,πH+1(s, a; r) ,W t,π

H+1(s, a) , 0 and

Y
t,π
h (s, a; r) , 3

√√√√Varp̂ t
h

(V̂ t,πh+1)(s, a; r)

H2

(
H2β(nth(s, a), δ)

nth(s, a)
∧ 1

)

+

(
1 +

1

H

)
p̂
t
hπh+1Y

t,π
h+1(s, a; r)

W
t,π
h (s, a) ,min

(
H, 15H

2 β(nth(s, a), δ)

nth(s, a)
+

(
1 +

1

H

)̂
p
t
hπh+1W

t,π
h+1(s, a)

)
.

We then prove by induction (Appendix C, Step 2 of the
proof of Lemma 1) that for all h, s, a,

Zt,πh (s, a; r) ≤ Y t,πh (s, a; r) +W t,π
h (s, a). (3)

Note that although Zt,πh (·; r) is a high-probability upper
bound on ê t,πh (·; r), we cannot use it to build a sampling
rule reducing the errors as it still depends on the reward
function r through the empirical variance term, and this
knowledge is only available in the planning phase. To ob-
tain an upper bound on Zt,πh (·; r) which does not depend
on r, we now further upper-bound Y t,π(·; r). The key
tool for this purpose is to use the Bellman equation for the
variances, see Appendix F.1. We denote by p̂ t,πh (s, a) the
probability of reaching the state-action pair (s, a) at step
h under the policy π in the empirical MDP at time t. Us-
ing Cauchy-Schwarz inequality, Lemma 7 in Appendix F.1,
and the fact that that variance of the sum of reward is upper
bounded by H2, we get

π1Y
t,π
1 (s1; r) =

2
∑
s,a

H∑
h=1

p̂
t,π
h (s, a)

(
1 +

1

H

)h−1

√√√√Varp̂ t
h

(V̂ t,πh+1)(s, a; r)

H2
Bt

≤ 3e

√√√√√∑
s,a

H∑
h=1

p̂ t,πh (s, a)
Varp̂ t

h
(V̂ t,πh+1)(s, a; r)

H2

√√√√∑
s,a

H∑
h=1

p̂ t,πh (s, a)Bt

≤ 3e

√√√√∑
s,a

H∑
h=1

p̂ t,πh (s, a)Bt ≤ 3e

√
W t,π

1 (s1),

where the last inequality is proved in Appendix C (Step 3
of the proof of Lemma 1) and we denoted

Bt =
H2β(nth(s, a), δ)

nth(s, a)
∧ 1 .

Combining inequality π1Y
t,π
1 (s1; r) ≤ 3e

√
W t,π

1 (s1)

with (2) and (3) yields that, for all π,

ê t,π1 (s1, π1(sa); r) ≤ 3e

√
π1W

t,π
1 (s1) + π1W

t,π
1 (s1).

Finally, we note that by construction, π1W
t,π
1 (s1) ≤

maxa∈AW
t
1(s1, a), which allows us to conclude the proof

of Lemma 1.

Next, we sketch the proof of Theorem 1. The fact that
RF-Express is (ε, δ)-PAC is a simple consequence of
Lemma 1. Indeed, on an event of probability at least 1− δ,
if the algorithm stops at time τ we know that for all policy
π and for all reward function r,

ε

2
≥ 3e

√
max
a∈A

W τ
1 (s1, a) + max

a∈A
W τ

1 (s1, a)

≥ ê τ,π1 (s1, π1(s1); r) = |V̂ τ,π1 (s1; r)− V π1 (s1; r)|.

Therefore, still on the same event it holds that

V
?
1 (s1; r)− V π̂

?

1 (s1; r) ≤ |V π
?
r

1 (s1; r)− V̂ τ,π
?
r

1 (s1; r)|

+ |V̂ τ,π̂
?
r

1 (s1; r)− V π̂
?
r

1 (s1; r)| ≤ ε .

The proof of the bound on the sample complexity is close to
the one of a regret bound. We fix a time t < τ . We start by
proving an upper-bound on W t

1(s1, π
t+1(s1)). For that us-

ing again the empirical Bernstein inequality of Lemma 10,
with high probability, it holds that

W t
h(s, a) ≤ 21H2

(
β(nth(s, a), δ)

nth(s, a)
∧ 1

)
+

(
1 +

3

H

)
phπ

t+1
h+1W

t
h+1(s, a).

We denote by pth(s, a) the probability to reach the state-
action pair (s, a) at step h under policy πt in the true
MDP. Unfolding the previous inequality and switching to
the pseudo-counts, defined by n̄th(s, a) ,

∑t
`=1 p

`
h(s, a),

by Lemma 8 proved in Appendix F.2 we get

πt+1
1 W t

1(s1) ≤ 84e3H2
H∑
h=1

∑
s,a

pt+1
h (s, a)

β(n̄th(s, a), δ)

n̄th(s, a) ∨ 1
·

(4)
Since t < τ we know that due to stopping rule

ε ≤ 3e

√
πt+1

1 W t
1(s1) + πt+1

1 W t
1(s1).
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Summing the previous inequalities for 0 ≤ t < τ then
using the Cauchy-Schwarz inequality we obtain

τε ≤
τ−1∑
t=0

3e

√
πt+1

1 W t
1(s1) + πt+1

1 W t
1(s1)

≤ 3e

√√√√τ

τ−1∑
t=0

πt+1
1 W t

1(s1) +

τ−1∑
t=0

πt+1
1 W t

1(s1).

We now upper-bound the sum that appears in the left-
hand terms. Using successively (4), β(·, δ) is increasing,
Lemma 9 of Appendix F.2, we have
τ−1∑
t=0

π
t+1
1 W

t
1 (s1) ≤ 84e

3
H

2
τ−1∑
t=0

H∑
h=1

∑
s,a

p
t+1
h (s, a)

β(n̄th(s, a), δ)

n̄th(s, a) ∨ 1

≤ 84e
3
H

2
β(τ − 1, δ)

H∑
h=1

∑
s,a

τ−1∑
t=0

n̄t+1
h (s, a)− n̄th(s, a)

n̄th(s, a) ∨ 1

≤ 336e
3
H

3
SA log(τ + 1)β(τ − 1, δ).

Therefore, combining with the above inequality with the
previous one, we get

τε ≤ 55e3
√
τH3SA log(τ + 1)β(τ − 1, δ)

+ 336e3H3SA log(τ + 1)β(τ − 1, δ).

Using Lemma 13, we invert the inequality above and obtain
an upper bound on τ , which allows us to conclude the proof
of the theorem.

4. Best-policy identification
Unlike in the previous section, we now consider a more
standard setup in which there is a single reward function
r and in which the agent observes the reward at each step,
during the exploration phase. To ease the presentation, we
drop the dependence on the reward r in all data-dependent
quantities introduced in this section.

Best-policy identification In BPI, the agent interacts
with the MDP in a way described in Section 2. Notice that
the difference from Section 3 is that the agent also observes
the reward. In each episode t, the agent follows a policy
πt (the sampling rule) based only on the information col-
lected up to and including episode t−1. At the end of each
episode, the agent can decide to stop collecting data (we
denote by τ its random stopping time) and outputs a guess
π̂ for the optimal policy.

A BPI algorithm is therefore made of a triple
((πt)t∈N, τ, π̂). The goal is to build an (ε, δ)-PAC
algorithm according to the following definition, for which
the sample complexity, that is the number of exploration
episodes τ , is as small as possible.
Definition 2 (PAC algorithm for BPI). An algorithm is
(ε, δ)-PAC for best policy identification if it returns a pol-
icy π̂ after some number of episodes τ that satisfies

P
(
V ?1 (s1)− V π̂1 (s1) ≤ ε

)
≥ 1− δ.

Algorithm 2 BPI-UCBVI
sampling rule: the policy πt+1 is the greedy policy with re-
spect to Q̃th,

∀s ∈ S, ∀h ∈ [H], πt+1
h (s) = arg max

a∈A
Q̃th(s, a)

stopping rule:

τ = inf
{
t ∈ N : πt+1

1 Gt1(s1) ≤ ε
}

prediction rule: π̂ = πτ+1

4.1. BPI-UCBVI algorithm

Similarly to Azar et al. (2017) and Zanette & Brunskill
(2019), we define upper confidence bounds on the optimal
Q-value and value functions as

Q̃
t
h(s, a) , min

(
H, rh(s, a) + 3

√
Varp̂ t

h
(Ṽ th+1)(s, a)

β?(nth(s, a), δ)

nth(s, a)

+14H
2 β(nth(s, a), δ)

nth(s, a)
+

1

H
p̂
t
h(Ṽ

t
h+1 − ˜

V
t
h+1)(s, a) + p̂

t
hṼ

t
h+1(s, a)

)
,

Ṽ
t
h(s) , max

a∈A
Q̃
t
h(s, a), Ṽ

t
H+1(s) , 0,

where β? is some exploration rate (that does not have a
linear scaling in the number of states S, unlike β) and

˜
V t

is a lower confidence bound on the optimal value function;
see Appendix B for a complete definition.

As in RFE, we need to build an upper confidence bound
on the gap V ?1 (s1) − V πt+1

1 (s1), between the value of the
optimal policy and the value of the current policy, to define
the stopping rule. We recursively define the functions Gt

as G t
H+1(s, a) , 0 for all (s, a) and for all (s, a, h) with

h ≤ H as

G t
h(s, a) , min

(
H, 6

√
Varp̂t

h
(Ṽ th+1)(s, a)

β?(nth(s, a), δ)

nth(s, a)

+36H2 β(nth(s, a), δ)

nth(s, a)
+

(
1 +

3

H

)
p̂ thπ

t+1
h+1G

t
h+1(s, a)

)
.

We prove the following result in Appendix D.
Lemma 2. With probability at least 1− δ, for all t,

V ?1 (s1)− V π
t+1

1 (s1) ≤ πt+1
1 Gt1(s1) .

In particular it holds on the event G defined in Appendix A.

We are now ready to define our BPI-UCBVI algorithm. We
provide a sample complexity bound for BPI-UCBVI in the
next theorem, which we prove in Appendix D.
Theorem 2. For δ ∈ (0, 1), ε ∈ (0, 1/S2], BPI-UCBVI us-
ing thresholds β(n, δ) , log

(
3SAH/δ

)
+ S log

(
8e(n +

1)
)

and β?(n, δ) , log(3SAH/δ) + log
(
8e(n + 1)

)
is

(ε, δ)-PAC for best policy exploration. Moreover, with
probability 1− δ,

τ ≤ H3SA

ε2

(
log(3SAH/δ) + 1

)
C1 + 1,
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where C1 , 5904e26 log
(
e30(log(3SAH/δ) + S)H3SA/ε

)2.

Therefore, the rate of BPI-UCBVI is of order
Õ
(
H3SA log(1/δ)/ε2

)
when ε is small enough and

matches the lower bound of Ω
(
H3SA log(1/δ)/ε2

)
by

Domingues et al. (2021b) up to poly-log terms. To the best
of our knowledge, BPI-UCBVI is the first algorithm for
BPI whose sample complexity has an optimal dependence
on S,A, ε, and δ.

Acknowledgements
The research presented was supported by European
CHIST-ERA project DELTA, French Ministry of Higher
Education and Research, Nord-Pas-de-Calais Regional
Council, French National Research Agency project BOLD
(ANR19-CE23-0026-04). Anders Jonsson is partially
supported by the Spanish grants PID2019-108141GB-
I00 and PCIN-2017-082. Pierre Ménard is supported
by the SFI Sachsen-Anhalt for the project RE-BCI
ZS/2019/10/102024 by the Investitionsbank Sachsen-
Anhalt.

References
Agarwal, Alekh, Kakade, Sham, and Yang, Lin F. Model-

based reinforcement learning with a generative model is
minimax optimal. In Conference on Learning Theory,
2020.

Azar, Mohammad Gheshlaghi, Munos, Rémi, and Kappen,
Bert. On the sample complexity of reinforcement learn-
ing with a generative model. In International Conference
on Machine Learning, 2012.

Azar, Mohammad Gheshlaghi, Munos, Rémi, and Kappen,
Hilbert J. Minimax PAC bounds on the sample complex-
ity of reinforcement learning with a generative model.
Machine Learning, 91(3):325–349, 2013.

Azar, Mohammad Gheshlaghi, Osband, Ian, and Munos,
Rémi. Minimax regret bounds for reinforcement learn-
ing. In International Conference on Machine Learning,
2017.

Bartlett, Peter L. and Tewari, Ambuj. REGAL: A regu-
larization based algorithm for reinforcement learning in
weakly communicating MDPs. In Uncertainty in Artifi-
cial Intelligence, 2009.

Boucheron, Stéphane, Lugosi, Gábor, and Massart, Pascal.
Concentration inequalities. Oxford University Press,
2013.

Cover, Thomas M. and Thomas, Joy A. Elements of infor-
mation theory. John Wiley & Sons, 2006.

Dann, Christoph and Brunskill, Emma. Sample complex-
ity of episodic fixed-horizon reinforcement learning. In
Neural Information Processing Systems, 2015.

Dann, Christoph, Lattimore, Tor, and Brunskill, Emma.
Unifying PAC and regret: Uniform PAC bounds for
episodic reinforcement learning. In Neural Information
Processing Systems, 2017.

Dann, Christoph, Li, Lihong, Wei, Wei, and Brunskill,
Emma. Policy certificates: Towards accountable rein-
forcement learning. In International Conference on Ma-
chine Learning, 2019.

de la Peña, Victor H., Klass, Michael J., and Lai, Tze Le-
ung. Self-normalized processes: Exponential inequali-
ties, moment bounds and iterated logarithm laws. Annals
of probability, 32:1902–1933, 2004.

Domingues, Omar Darwiche, Ménard, Pierre, Pirotta, Mat-
teo, Kaufmann, Emilie, and Valko, Michal. Regret
bounds for kernel-based reinforcement learning. arXiv
preprint arXiv:2004.05599, 2020.

Domingues, Omar Darwiche, Flet-Berliac, Yannis,
Leurent, Edouard, Ménard, Pierre, Shang, Xue-
dong, and Valko, Michal. rlberry - A Reinforce-
ment Learning Library for Research and Education.
https://github.com/rlberry-py/rlberry,
2021a.

Domingues, Omar Darwiche, Ménard, Pierre, Kaufmann,
Emilie, and Valko, Michal. Episodic reinforcement
learning in finite MDPs: Minimax lower bounds revis-
ited. In Algorithmic Learning Theory, 2021b.

Durrett, Rick. Probability: Theory and Examples. Cam-
bridge Series in Statistical and Probabilistic Mathemat-
ics. Cambridge University Press, 4 edition, 2010.

Even-Dar, Eyal, Mannor, Shie, and Mansour, Yishay. Ac-
tion elimination and stopping conditions for the multi-
armed bandit and reinforcement learning problems.
Journal of Machine Learning Research, 7:1079–1105,
2006.

Fiechter, Claude-Nicolas. Efficient reinforcement learning.
In Conference on Learning Theory, 1994.

Garivier, Aurélien, Ménard, Pierre, and Stoltz, Gilles. Ex-
plore first, exploit next: The true shape of regret in bandit
problems. Mathematics of Operations Research, 44(2):
377–399, 2019.

Hazan, Elad, Kakade, Sham, Singh, Karan, and Soest,
Abby Van. Provably efficient maximum entropy explo-
ration. In International Conference on Machine Learn-
ing, 2019.

https://arxiv.org/pdf/1906.03804.pdf
https://arxiv.org/pdf/1906.03804.pdf
https://arxiv.org/pdf/1906.03804.pdf
https://arxiv.org/pdf/1206.6461.pdf
https://arxiv.org/pdf/1206.6461.pdf
https://hal.archives-ouvertes.fr/hal-00831875
https://hal.archives-ouvertes.fr/hal-00831875
https://arxiv.org/pdf/1703.05449.pdf
https://arxiv.org/pdf/1703.05449.pdf
https://arxiv.org/pdf/1205.2661.pdf
https://arxiv.org/pdf/1205.2661.pdf
https://arxiv.org/pdf/1205.2661.pdf
https://www.hse.ru/data/2016/11/24/1113029206/Concentration inequalities.pdf
https://www.amazon.com/Elements-Information-Theory-Telecommunications-Processing/dp/0471241954
https://www.amazon.com/Elements-Information-Theory-Telecommunications-Processing/dp/0471241954
https://arxiv.org/pdf/1510.08906.pdf
https://arxiv.org/pdf/1510.08906.pdf
https://arxiv.org/pdf/1703.07710.pdf
https://arxiv.org/pdf/1703.07710.pdf
https://arxiv.org/pdf/1811.03056.pdf
https://arxiv.org/pdf/1811.03056.pdf
https://arxiv.org/pdf/math/0410102.pdf
https://arxiv.org/pdf/math/0410102.pdf
http://arxiv.org/abs/2004.05599
http://arxiv.org/abs/2004.05599
https://github.com/rlberry-py/rlberry
https://arxiv.org/pdf/2010.03531.pdf
https://arxiv.org/pdf/2010.03531.pdf
https://arxiv.org/pdf/2010.03531.pdf
https://services.math.duke.edu/{~}rtd/PTE/PTE5{_}011119.pdf
https://jmlr.csail.mit.edu/papers/volume7/evendar06a/evendar06a.pdf
https://jmlr.csail.mit.edu/papers/volume7/evendar06a/evendar06a.pdf
https://jmlr.csail.mit.edu/papers/volume7/evendar06a/evendar06a.pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=7F5F8FCD1AA7ED07356410DDD5B384FE?doi=10.1.1.49.8652&rep=rep1&type=pdf
https://arxiv.org/pdf/1602.07182.pdf
https://arxiv.org/pdf/1602.07182.pdf
https://arxiv.org/pdf/1602.07182.pdf
https://arxiv.org/pdf/1812.02690.pdf
https://arxiv.org/pdf/1812.02690.pdf


Pure exploration in reinforcement learning

Jaksch, Thomas, Ortner, Ronald, and Auer, Peter. Near-
optimal regret bounds for reinforcement learning. Jour-
nal of Machine Learning Research, 99:1563–1600,
2010.

Jin, Chi, Allen-Zhu, Zeyuan, Bubeck, Sébastien, and Jor-
dan, Michael I. Is Q-learning provably efficient? In
Neural Information Processing Systems, 2018.

Jin, Chi, Krishnamurthy, Akshay, Simchowitz, Max, and
Yu, Tiancheng. Reward-free exploration for reinforce-
ment learning. In International Conference on Machine
Learning, 2020.

Jonsson, Anders, Kaufmann, Emilie, Ménard, Pierre,
Domingues, Omar Darwiche, Leurent, Edouard, and
Valko, Michal. Planning in markov decision processes
with gap-dependent sample complexity. In Neural In-
formation Processing Systems, 2020.

Kakade, Sham. On the sample complexity of reinforcement
learning. PhD thesis, University College London, 2003.

Kaufmann, Emilie, Ménard, Pierre, Domingues,
Omar Darwiche, Jonsson, Anders, Leurent, Edouard,
and Valko, Michal. Adaptive reward-free exploration.
In Algorithmic Learning Theory, 2021.

Kearns, Michael J. and Singh, Satinder P. Finite-sample
convergence rates for Q-learning and indirect algo-
rithms. In Neural Information Processing Systems, 1998.

Puterman, Martin L. Markov decision processes: Discrete
stochastic dynamic programming. John Wiley & Sons,
New York, NY, 1994.

Sidford, Aaron, Wang, Mengdi, Wu, Xian, Yang, Lin F.,
and Ye, Yinyu. Near-optimal time and sample complexi-
ties for solving discounted Markov decision process with
a generative model. In Neural Information Processing
Systems, 2018.

Talebi, Mohammad Sadegh and Maillard, Odalric-
Ambrym. Variance-aware regret bounds for undis-
counted reinforcement learning in MDPs. In Algorithmic
Learning Theory, 2018.

Wang, Ruosong, Du, Simon S, Yang, Lin F, and Salakhut-
dinov, Ruslan. On reward-free reinforcement learning
with linear function approximation. In Neural Informa-
tion Processing Systems, 2020.

Zanette, Andrea and Brunskill, Emma. Tighter problem-
dependent regret bounds in reinforcement learning with-
out domain knowledge using value function bounds. In
International Conference on Machine Learning, 2019.

Zhang, Xuezhou, Ma, Yuzhe, and Singla, Adish. Task-
agnostic exploration in reinforcement learning. In Neu-
ral Information Processing Systems, 2020.

http://www.jmlr.org/papers/volume11/jaksch10a/jaksch10a.pdf
http://www.jmlr.org/papers/volume11/jaksch10a/jaksch10a.pdf
https://arxiv.org/pdf/1807.03765.pdf
http://arxiv.org/abs/2002.02794
http://arxiv.org/abs/2002.02794
http://arxiv.org/abs/2006.05879
http://arxiv.org/abs/2006.05879
https://homes.cs.washington.edu/~sham/papers/thesis/sham_thesis.pdf
https://homes.cs.washington.edu/~sham/papers/thesis/sham_thesis.pdf
https://arxiv.org/pdf/2006.06294.pdf
http://papers.neurips.cc/paper/1531-finite-sample-convergence-rates-for-q-learning-and-indirect-algorithms.pdf
http://papers.neurips.cc/paper/1531-finite-sample-convergence-rates-for-q-learning-and-indirect-algorithms.pdf
http://papers.neurips.cc/paper/1531-finite-sample-convergence-rates-for-q-learning-and-indirect-algorithms.pdf
https://onlinelibrary.wiley.com/doi/book/10.1002/9780470316887
https://onlinelibrary.wiley.com/doi/book/10.1002/9780470316887
https://arxiv.org/pdf/1806.01492.pdf
https://arxiv.org/pdf/1806.01492.pdf
https://arxiv.org/pdf/1806.01492.pdf
https://arxiv.org/pdf/1803.01626.pdf
https://arxiv.org/pdf/1803.01626.pdf
https://arxiv.org/pdf/2006.11274.pdf
https://arxiv.org/pdf/2006.11274.pdf
https://arxiv.org/pdf/1901.00210.pdf
https://arxiv.org/pdf/1901.00210.pdf
https://arxiv.org/pdf/1901.00210.pdf
https://arxiv.org/pdf/2006.09497.pdf
https://arxiv.org/pdf/2006.09497.pdf

	Introduction
	Setting
	Reward-free exploration
	RF-Express algorithm
	Proof sketch

	Best-policy identification
	BPI-UCBVI algorithm


